土壤空气和热量

合集下载

第六章 土壤空气和热量状况

第六章 土壤空气和热量状况

土壤通气性测定 土壤通气性造成的土壤剖面分异
第二节 土壤热状 况
一、土壤热量soil heat (一)土壤热量来源 太阳辐射、生物热、地球内热 (二)土壤热量消耗 土壤水分蒸发、给近地面空气升温、向地下传 递 热通量:单位面积单位时间内垂直通过的热量。 J/cm2.min
二、土壤热性质
土壤热性质包括土壤热容量、导热率和导温率,决定 着土壤热量和温度变化的程度、热量传导的速度和深度。 (一)土壤热容量soil heat capacity,分为质量热容量和容积 热容量 1、质量热容量mass heat capacity是指单位质量土壤的温度升高 1℃所需的热量(焦/克.度),也叫土壤比热 2、容积热容量volume heat capacity是指单位容积土壤的温度升 高1℃所需的热量(焦/厘米3.度) 土壤容积热容量=土壤重量热容量×容重 土壤矿物质的质量热容量为0.71-1.09焦/克.度,平均为0.84 水的热容量最大,容积热容量为空气的千倍 各种土壤组分的密度和热容量单位时间内,单位面积土壤上由土 壤扩散出来的CO2量。 2、氧气扩散率ODR(oxygen diffusion rate) 单位时间通过单位土壤截面扩散的氧的质量。 微克/厘米2.分钟
五、土壤通气性指标 3、土壤通气孔隙度soil air porosity 4、土壤氧化还原电位Eh 由土壤溶液中氧化态物质和还原态物质相 对比例变化而产生的电位。 Eh是土壤通气性指标。大于400mv为氧化 态,通气好。
O2(%) 20.94 18.0-20.03
CO2(%) 0.03 0.15-0.65
N2(%) 78.05 78.8-80.24
其他气体(%) 0.98 0.98
三、土壤空气的意义
1、土壤形成发育,二氧化碳溶于土壤溶液变为碳酸,使土壤中碳酸盐类 溶解,增加了土壤溶液中钙、镁、钾、钠、铁、锰,为植物增长提供了 养分,促进了他们的移动。 2、土壤空气影响着土壤微生物的活动,从而对土壤有机质的分解和植物 营养物质的转化及其生物有效性产生影响。 3、由于氧的作用,可氧化土壤中某些矿物,如硫铁矿变为溶解态的硫酸 铁,亚铁和亚锰变为高价铁锰化合物。 4、植物生长发育 植物从种子发芽到成熟都需要有足够的土壤空气,块茎类植物对土壤空 气要求高于一般植物,种子发芽需要土壤空气中氧的含量10%以上,低 于0.5%种子不发芽,对于ODR临界值要求15×18-8—25×18-8克/厘米2. 分的范围。

第四章土壤空气和热量

第四章土壤空气和热量

二、土壤通气性
• 土壤通气性泛指土壤空气与大气进行交换、 不同土层之间气体扩散或交换的能力。
(一)土壤通气性的重要意义
• 其重要性在于补充氧气。 • 如果没有大气氧气的补充,土壤中的氧气 将迅速被耗尽,缺氧将严重影响根系的正 常生长,影响好气微生物的活动,从而影 响土壤养分的有效化。一些有毒的还原性 物质的累积将毒害根系,严重时会使植物 死亡。 • 因此,土壤必须具有一定的通气性。
(二)土壤通气性的机制
1、气体扩散 指某种气体由于分压梯度而产生的移动。 这是土壤与大气进行气体交换的主要形式。 土壤呼吸: O2(大气) 土壤 CO2(土壤) 大气
2、气体整体流动
• 由于土壤空气与大气之间存在总压力梯度 而引起的气体运动,称为整体流动。 • 温度、气压、降水、灌溉水的挤压等都可 以引起气体的整体流动。
• R随时间而变(年、月、日、瞬间) • 当R为正值,地面辐射收入大于支出,地 面增温; • 当R为负值,地面辐射收入小于支出,地 面降温; • 一般白天R为正值,地面增温; • 夜间R为负值,地面降温。
(二)影响地面辐射平衡的因素
1、太阳辐射强度 ---太阳的总辐射强度取决于气候(天气)情 况。 ---晴天的辐射强度比阴天大; ---日照角越大,单位面积上接受的热量越多, 辐射强度越高(中午,垂直,最高) ---北半球的南坡,太阳入射角比平地大,土 温比平地高;南坡土温比北坡高。
四、土壤热性质
一、土壤热容量(C) 土壤热容量指单位质量或容积的土壤每升 高(或降低)1º C所需要(或放出)的热容 量。 C = Cv*ρ ρ:土壤容重
• 水的热容量最大(4.184); • 气体的热容量最小(1.255*10-3); • 矿物质(2.163-2.435)和有机质(2.515)热 容量介于其中。 • 在固相组成物质中,腐殖质热容量大于 矿物质。 • 土壤热容量主要取决于水分含量的多少 和腐殖质含量。

土壤空气、土壤热量及水气热调节

土壤空气、土壤热量及水气热调节

式中:E0:标准氧化还原电位,即体系中氧化剂与 还原剂浓度相等时的电位。
n:反应中电子转移数
39/42
氧化还原 状况
氧化
弱度还原
中度还原 强度还原
表2-20 土壤氧化还原状况分级
Eh范围
>400mV
400~ 200mV 200~100mV
<-100mV
化学反应
对作物生长的 影响
O2占优势,各物质以 旱作有利,水稻
2.5.2.2 土壤导热率(soil thermal conductivity)
土壤导热率是评价土壤传导热量快慢的指标,它 是指在面积为1m2、相距1m的两截面上温度相差1K度 时,每秒中所通过该单元土体的热量焦耳数。其单位 为:J·(m•K•s)-1。
土壤导热率的大小主要与土壤矿物质和土壤空气 有关。与土壤容重呈正相关,与土壤孔隙度呈负相关。
土壤
水分
4.187
4.187 0.0054-0.0059
矿质
土粒
1.930
0.712 0.0167-0.0209
土壤 有机质
2.512
1.930 0.0084-0.0126
导温率 (cm2 ·s-1) 0.1615-0.1923 0.0013-0.0014 0.0087-0.0108 0.0033-0.0050
2.6 土壤水、气、热的调节与氧化还原性 2.6.1 土壤水、气、热的调节 2.6.2 土壤氧化还原性质
30/42
2.6.1 土壤水、气、热的调节 2.6.1.1 土壤水分的调节 (1)土壤水分平衡 土壤水分的收入以降雨和灌溉水为主,此外还有 地下水的补给和其它来源的水(如水气凝结、外来径流 等)。 土壤水的支出主要有土表蒸发、植物蒸腾、向下 渗漏及地表径流损失等。

土壤空气和热量答案1土壤空气组成有哪些特点土壤

土壤空气和热量答案1土壤空气组成有哪些特点土壤

第七章土壤空气和热量答案1. 土壤空气组成有哪些特点?(1)土壤空气中的CO2含量高于大气(2)土壤空气中的O2含量低于大气(3)土壤空气中水汽含量一般高于大气(4)土壤空气中含有较多的还原性气体(5)土壤空气的组成不是绝对不变的,它会受其他因素的影响而发生变化。

2. 土壤热量主要有哪些来源?影响土壤热量状况的因素包括哪些?土壤热量的来源主要包括太阳的辐射能、生物热、地球内热。

影响土壤热量状况的因素包括太阳的辐射强度、地面的反射率、地面有效辐射。

3 土壤热容量与导热率有何区别?土壤热容量是单位质量(重量)或容积的土壤每升高(或降低)1℃所需要(或放出的)的热量。

在土壤的固、液、气三相物质组成中,水的热容量最大,气体热容量最小,矿物质和有机质热容量介于两者之间。

土壤导热率是在单位厚度(1cm)土层,温差为1℃时,每秒钟经单位断面(1 cm2)通过的热量焦耳数。

固体部分导热率最大,空气导热率最小,水的导热率介于两者之间。

4 土壤温度的时空变化与气温有何不同?土温的四季变化与气温的变化类似,通常全年表土最低温度出现在1-2月份,最高温度出现在7-9月份。

随着土层深度的增加,土温的年变幅范围逐渐缩小,最高最低温度出现的时间亦逐渐推迟。

土壤温度的日变化随着气温的变化而变化,但与气温相比,土温最高最低温度存在滞后现象,土温的昼夜变幅随深度的增加而缩小,而且最高、最低温度出现时间亦逐渐推迟。

土壤温度的空间变化主要受纬度、海拔高度及地形等因子的影响。

随着维度增高,土壤温度和气温均逐渐降低。

随着海拔升高,土壤温度和气温均降低,但是高山上的土温比气温高。

地形对土壤温度的影响影响表现主要在坡向与坡度方面。

大体表现为北半球的南坡(即阳坡),土温比平地要高,北坡(即阴坡)的情况与南坡则相反。

坡度越陡,南、北坡向的温差就越大。

5 土壤水、气、热的主要调节措施包括哪些?(1)通过耕作和施肥,改善土壤的物理性质(2)灌溉和排水措施(3)混交、间种措施(4)采用人工覆盖物措施6 土壤水、气、热三者之间存在什么关系?土壤水、气、热是组成土壤肥力的重要因素,三者是互为矛盾,又互相制约的统一体。

土壤空气、土壤热量及水气热调节

土壤空气、土壤热量及水气热调节

项目 对照 自然含水量 9.90
化肥 11.76
猪粪 15.08
秸秆 14.10
化肥+猪 粪
16.92
化肥+秸 秆
15.71
田间持水量 25.00 28.40 30.98 29.12 31.23 31.41
饱和含水量 35.18 35.10 39.23 36.90 40.71 40.68
34/42
2.6.1.2 土壤空气调节
对于粘质土壤的通气不良可采取合理耕作结合增 施有机肥料,以改善土壤结构、增加土壤通气孔隙。
对于地势低洼、地下水位高的易涝地区的土壤通 气不良应加强土壤水分管理,建立完整的排水系统,降 低地下水位,及时排除渍涝。
对于因降(灌)水量大而造成的土壤过湿、表土 板结而影响通气的,应及时中耕、松土,破除地结皮等, 土壤通气性就会大大改善。
K =λ /Cv
式中:K为土壤导温率;
λ 为导热率;
Cv为土壤容积热容量。
26/42
27/42
土壤组成与土壤的热特性
重量
导热率
土壤组 成分
容积热容量 (J·cm-3·K-1)
热容量 (J·g-1·K-1)
(J·cm-1·s-1·K-1)
土壤
空气
0.0013
1.00 0.00021-0.00025
28/42
2.5.3 土壤温度与作物生长 2.5.3.1 土壤温度与种子萌发 2.5.3.2 土壤温度与作物根系生长 2.5.3.3 土壤温度与作物营养生长和生殖生长 2.5.3.4 土壤温度影响养分转化与吸收 此外,土壤有机质的转化、养分的释放以及土壤 中水、气的运动等也都受到土壤温度的影响。
29/42
2.6 土壤水、气、热的调节与氧化还原性 2.6.1 土壤水、气、热的调节 2.6.2 土壤氧化还原性质

第五章 土壤空气与热状况

第五章 土壤空气与热状况

4、对土壤热特性的影响因素:固、液、气三相物质比例 由下表可见,土壤水分热容量最大,土壤空气最小,而 矿质土粒和土壤有机质介于两者之间,而固体是相对稳 定的,则主要取决于土壤水分和土壤空气的含量。 所以,粘土:水分含量较高,早春季节解冻迟,土壤回 升慢,为冷性土; 砂土:水分含量低,早春土温回升快,为热性土。
三、土壤通气性(soil aeration) 土壤通气性(土壤透气性):指土壤空气与近地层大气进行气
体交换以及土体内部允许气体扩散和流动的性能。
土壤通气性影响多种生物的生命活动,各种有机物质转化的化
学过程,根际呼吸,种子萌发,土壤病虫害的发生。
土壤通气产生的机制:
(一)、土壤空气扩散(Soil air diffusion) 指某种气体成分由于分压梯度与大气不同而产生的移动。它是 土壤空气与大气间进行交换的主要因素,原理服从气体扩散 公式: F=-D· dc/dx F:单位时间气体扩散通过单位面积的数量; Dc/dx:气体浓度梯度或气体分压梯度; D:扩散系数,负号表示其从气体分压高向低扩散。
2、土壤水分调节:
减少土壤水分的损失;增加作物对降雨,灌溉水及土壤中 原有贮水的有效利用,同时包括对多余水分的排除等, 措施如下: (1)控制地表径流,增加土壤水分入渗;

合理耕翻:创造疏松的耕作层,保持土壤适当的透水性 以吸收更多的降雨和减少地表径流损失。 等高种植,建立水平梯田:改造地形,平整土地,减少 水土流失,梯田层层蓄水,坎地节节拦蓄 改良表土质地结构:增加土壤孔隙度,使蓄墒能力增强。
第二节
一、土壤热来源与平衡
土壤热状况
(一)土壤热来源
1、太阳辐射(solar radiation) 与所处的纬度有关,随纬度的提高,接受辐射减少;

土壤水分、空气、热量(1)

害、渍害。因此必须排除土壤多余的水分,主要包括排除地表 积水、降低过高的地下水和除去土壤上层滞水。
2.土壤空气调节
• 对于一般旱作来说,发生通气不良、供氧不足的情况 很少。土壤通气不良主要发生在那些质地粘重、通气 孔隙度不足10%、气体交换缓慢的粘质土壤上。对于 此类土壤可采取合理耕作结合增施有机肥料,以改善 土壤结构、增加土壤通气孔隙。土体中水分过多不仅 空气容量减少,而且阻碍土壤空气与大气的气体交换, 这是地势低洼、地下水位高的易涝地区土壤通气性差 的主要原因,对此应加强土壤水分管理,建立完整的 排水系统,降低地下水位,及时排除渍涝。至于那些 主要是由降(灌)水量大而造成的土壤过湿、表土板结而 影响通气的,则应及时中耕、松土,破除地结皮等, 土壤通气性就会大大改善。
壤水的收人大于支出,则土壤水分含量增加;反之,土壤水的支出
大于收入,则土壤水分含量降低。在农业生产实践中,土壤水分平 衡的作用主要表现为:
①计算作物日耗水量 例如,某玉米地在6月15日灌水前根层土壤 含水量厚度为70mm,然后灌水55mm。6月25日测定同一根层的含 水量厚度为81mm,假设灌水后的这段时间内无降雨过程,也没有 土壤水分的深层渗漏,则在此期间玉米的日耗水量为:
• (1)土水势 • (2)土壤水吸力 • (3)土壤水分特征曲线
(1)土水势 土水势(soil water potential)表示土壤水分在土—水平衡体系 中所具有的能态。通常用水势(ψw)表示。由于土壤水分受到各 种吸力的作用,有时还存在附加压力,所以其水势必然与参 比系统不同,两者之差为土水势的量度。通常规定纯水池参 比系统的水势能为零,因此,土水势一般为负值,它主要由 以下几个分势组成。 基质势(matric potential) 通常用ψm表示。对于非饱和土壤 而言,由于基质吸力对水分的吸持,完成这一过程需要环境 对它做功,所以基质势为负值;而饱和的土壤水不受基质吸 持,故其基质势为零。

土壤水分、空气和热量

园林植物生长与环境
土壤水分、空气和热量
1.1土壤水分

1、吸湿水(紧束缚水)


2、膜状水(松束缚水)
的 类
3、毛管水

4、重力水和地下水土壤ຫໍສະໝຸດ 分、空气和热量1.1土壤水分
1.土粒2.吸湿水 3.膜状水4.移动的毛管水 5.空气孔隙
土壤水分、空气和热量
1.2土壤空气
气体 近地表大气
土壤空气与大气组成差异
O2(%) 20.94
CO2(%) 0.03
N2 (%) 78.05
其它气体(%) 0.98
土壤空气 18.0~20.03 0.15~0.65 78.8~80.24
0.98
1、土壤空气中O2的含量低于大气,而CO2含量高于大气。 2、土壤空气中的水汽含量高于大气。 3、土壤空气中又是含有少量还原性气体。
土壤水分、空气和热量
1.3土壤热量状况
土壤水分、空气和热量
1.3土壤热量状况
图6-5 干燥土壤热传导示意图
图6-6 湿润土壤热传导示意图
园林植物生长与环境

土壤和空气的热量交换方式和热特性

第一节土壤和空气的热量交换方式和热特性一、土壤和空气的热量交换方式在土壤和空气中,存在着多种形式的热量过程。

除分子热传导、辐射和对流这三种方式外,还存在着平流、乱流和因水的相变而引起的热量转移形式。

这些过程对土壤和空气层热状况的形成起着决定性作用。

(一)分子热传导以分子运动来传递热量的过程称为分子热传导。

在土壤层中,热量交换是由分子热传导形式来完成的。

分子热传导过程强弱对土壤层内热状况的形成有着重要意义。

但在空气中,由于空气是热的不良导体,其分子导热率很小,因而由传导方式进行的热量转移比其他方式要少得多,在多数情况下是可忽略不计的。

(二)辐射地面和大气层之间的辐射热交换是始终存在的。

地面一方面吸收太阳辐射和大气逆辐射,同时也向大气放出长波辐射。

白天当地面吸收的辐射超过放出的热量时,地面被加热增温,并通过辐射或其他方式把热量传送到大气层和土壤下层使之增温;夜间地面放出的长波辐射超过吸收的大气逆辐射,结果使得地面损失热量,导致地面温度下降,此时土壤深层和大气就反过来以各种方式向地面输送热量,以维持地表温度不致下降太多,结果使得土壤深层和大气层的温度也发生下降。

(三)对流1、对流的概念空气在铅直方向上的大规模升降运动。

2、对流的种类对流按产生的原因可分为两类:(1)热力对流(自由对流)发生在低层气温剧烈增高或高层空气冷却时,上下层气温差异加大,造成低层空气密度较小,高层空气密度较大的不稳定状态,因而很容易产生对流。

(2)动力对流(强迫对流)空气水平流动时遇到山脉等障碍物时被迫抬升或因其它外力作用强迫时发生的。

对流使上下层空气混合,并发生热量交换。

对流的空气升降速度有时可达10m/s以上,高度可达对流层顶部附近。

一般在夏季及午后对流较强,冬季及清晨较弱。

(四)平流大范围的空气水平运动称为平流。

冬季大规模冷空气南下,可使气温急剧下降,在24小时内甚至气温可下降十几度;夏季海洋上暖湿空气北上,可使它影响地区的气温升高。

土壤水分平衡、土壤空气的运动、土壤热量与土壤热性质

其土壤含水量的变化应等于其来水水增加,负值表示减少。

田间土壤水分收支示意图P 下渗水 D 降水灌溉 I上行水 U根据田间土壤水分示意图,可列出土壤水分平衡的数学表达式:P+l+U=E+T+R+In+D+△W式中:△W 表示计算时段末与时段初土体储水量之差(mm);公式中左侧为水分进入量;而右侧则为水分支出量。

当△W 为零时,说明,土层中水分无增无减,即收支平衡。

植物冠层截流 ln蒸腾、蒸发ET 径流损失 R动,并不断地与大气进行交换。

如果土壤空气和大气不进行交换,土壤空气中的氧气可能会在12~40h消耗殆尽。

土壤空气运动的方式有两种:对流和扩散。

(一)对流定义:是指土壤与大气间由总压力梯度推动的气体的整体流动,也称为质流。

土壤与大气间的对流总是由高压区流向低压区。

低压对流方向:高压总压力梯度的产生:气压变化、温度梯度、表面风力、降雨或灌溉、翻耕。

土壤空气对流方程式:q v = -(k /η) ▽pq v—空气的容积对流量(单位时间通过单位横截面积的空气容积);k —通气孔隙透气率;η —土壤空气的粘度;▽p —土壤空气压力的三维梯度。

空气对流量随着土壤透气率和气压梯度的增大而增大。

(二)扩散定义:在大气和土壤之间CO2和O2浓度的不同形成分压梯度,驱使土壤从大气中吸收O2,同时排出CO2的气体扩散作用,称为土壤呼吸。

是土壤与大气交换的主要机制。

扩散过程气相扩散液相扩散通过充气孔隙扩散保持着大气和土壤间的气体交流作用通过不同厚度水膜的扩散(二)扩散这两种扩散过程都可以用费克(Fick)定律表示:qd = - Ddc/dxqd — 扩散通量(单位时间通过单位面积扩散的质量);“-”— 表示方向D — 在该介质中扩散系数(其量纲为面积/时间);dc/dx — 浓度梯度对于气体来说,其浓度梯度常用分压梯度表示:qd = - (D/B) (dp/dx )B — 偏压与浓度的比扩散系数D值的大小取决于土壤性质,通气孔隙状况及其影响因素(质地、结构、松紧程度、土壤含水量等)(一)土壤热量来源太阳辐射能:土壤热量的最根本来源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表 6-4 土壤不同组成分的导热率(焦耳/厘米·秒·度)
土壤组成分 石英
湿砂粒 干砂粒
泥炭 腐殖质 土壤水 土壤空气
导热率 4.427×10-2 1.674×10-2 1.674×10-3 6.276×10-4 1.255×10-2 5.021×10-3 2.092×10-4
(三)土壤的热扩散率
I+H之和为投入地面的太阳总短波辐射,又称为环球辐射
(二)影响地面辐射平衡的因素
1、太阳的辐射强度
日照角越大 ,坡度越大,地面接受的太阳辐射越多。
在中纬度地区,南坡坡地每增加一度,约相当于纬度南移100 公里所产生的影响。
同样,在中纬度地区,南坡比北坡接受的辐射能多,土温也 比北坡高。坡度越陡,坡向的温差越大。坡向的这种差异具有 巨大的生态意义和农业意义。
四、土壤热性质
(一)土壤热容量(soil heat capacity,soil thermal capacity)
土壤热容量是指单位质量(重量)或容积的土壤每升高(或
降低)1℃所需要(或放出的)热量。
C代表质量(重量)热容量(mass heat capacity),单位是Jg-1℃-1。 Cv代表容积热容量(volume heat capacity) ,单位是(Jcm-3℃-1)。
2、地面的反射率
太阳的入射角越大,反射率越低,反之越大。土壤的颜色、 粗糙程度、含水状况,植被及其他覆盖物等都影响反射率。
3、地面有效辐射
影响地面有效辐射的因子有:
(1)云雾、水汽和风:它们能强烈吸收和反射地 面发出的长波辐射,使大气逆辐射增大,因而使地面 有效辐射减少;
(2)海拔高度:空气密度、水汽、尘埃随海拔高 度增加而减少,大气逆辐射相应减少,有效辐射增大;
要注意C和CV之间的换算,对于均质的土壤而言∶
CV= r·C
(1)
有些书上用
CV=р·C
(2)
来表示是不正确的,р表示土壤容重, 应用下式表示
C=CsMs + CwMw + CaMa
(3)
式中Cs, Cw, Ca分别表示土壤固相、液相和气相的质量热 容量;Ms, Mw, Ma分别表示单位质量土壤中固相、液相和气 相所占的质量(比例)。 如果用容积热容量表示
(5)
在式(5)中,Vw=θv(土壤容积含水量),根据式(1)
Cvs= rs·Cs
(6)
rs=MS/VS= ρ/VS
Vs= ρ /rs
(7)
将(6)、(7)代入式(5)得
Cv=ρCs + Cvw·θv
(8)
一般情况下,水的热容量可以4.18J.cm3/℃,当有机质含量不 高时,固相物质的质量热容量可以近似取0.85J/g/℃,则式(8) 可变为∶
请注意矿物质、有机质、水的两种热容量值。
土壤的容积热容量(Cv)可用下式表示: Cv = mCv·Vm + oCv·Vo + wCv·Vw+aCv·Va
因空气的热容量很小,可忽容不计,故土壤热容量可简化为:
Cv = 1.9Vm + 2.5Vo + 4.2Vw (Jcm-3 C-1)
不同土壤组分的热容量 6-3 土壤不同组分的热容量
导热率:heat conductivity,thermal conductivity
在单位厚度(1厘米)土层,温差为1℃时,每秒 钟经单位断面(1厘米2)通过的热量焦耳数()。 其单位是J.cm-2.s-1.℃-1。
=Q /AT或 Qd (t1t2)/d AT (t1t2)
当土壤干燥缺水时,土粒间的土壤孔隙 被空气占领,导热率就小。当土壤湿润时, 土粒间的孔隙被水分占领,导热率增大。
土壤组成物质
粗石英砂 高岭石 石灰
Fe2O3 Al2O3 腐殖质 土壤空气 土壤水分
重量热容量
( Jg-1c-1)
0.745 0.975 0.895 0.682 0.908 1.996 1.004 4.184
容积热容量
(Jcm -3c-1)
2.163 2.410 2.435
- - 2.515 1.255 × 10-3 4.184
③土壤中CO2浓度对植物生长的影响也有待进一步研究。 现有的研究表明,某一特定植物对CO2浓度有一最佳值, 过高或过低都会引起根系生长衰退。过高浓度CO2往往 伴随缺O2而造成不良后果,但一定浓度CO2对植物生长 也有促进作用,而且CO2造成的土壤溶液的微酸性也有 利于有些土壤养分的释放.
二、 土壤空气的运动
四、土壤的组成和性质对土壤温度的影响
土壤颜色深的,吸收的辐射热量多,红色、黄色的次 之,浅色的土壤吸收的辐射热量小而反射率较高。在极端情况 下,土壤颜色的差异可以使不同土壤在同一时间的土表温度相 差2-4℃,
第四节 土壤水、气、热的相互关系 及其调节
一、土壤水、气、热的相互关系
二、土壤水气热的调节
★耕作和施肥
★灌溉和排水 ★混交、间种 ★地面覆盖、应用土面增温剂
本章重点:
概念:土壤呼吸、土壤通气性、土壤热容量、 土壤导热率 1、土壤空气的组成有何特点? 2、土壤通气性对土壤肥力有何影响? 3、如何调节土壤的通气性 4、土壤水、气、热的关系,如何调节土壤 水、气、热?
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
一、土壤温度的季节或月变化
二、土壤温度的日变化
二、土壤温度的日变化
三、土壤温度的空间变化
1、海拔高度对土壤温度的影响
在山区随着高度的增加,土温还是比平地的土温低。
2、坡向与坡度对土壤温度的影响
①坡地接受的太阳辐射因坡向和坡度而不同; ②不同的坡向和坡度上,土壤蒸发强度不一样,土壤 水和植物覆盖度有差异,土温高低及变幅也就迥然不同。南坡 的土壤温度和水分状况可以促进早发、早熟。
第一节 土壤空气
一、土壤空气的组成
土壤孔隙中的气体称为土壤空气。土壤空气 和大气组成有很大差异。
土壤空气与大气组成的比较(容积%)
气体
O2
CO2
N2 其它气体
近地表 空气
20.94
0.03
78.05
0.98
土壤 空气
18.0~20.03 0.15~0.65 78.8~80.24
0.98
土壤空气和近地面大气空气组成的差异
(一)、土壤空气的对流
对流,又称质流,驱动力是总气压梯度, 它使气流冲从高压区向低压区运动。
P/t2/x2
(二) 土壤空气扩散 土壤中气体分子 因浓度梯度或分压不同而产生的移动。
土壤中气体扩散过程也 可用Fick第一定律表示。
q
Ds
dc dx
土壤
(三)近地表气体流动 气体流动是由于受气温、 气压的变化、刮风、降雨、耕作、灌溉等作用影响而 引起的,仅对表层10cm左右的土壤空气更新起到某些 作用,因而它不是大气与土壤空气交换的主要方式。
(3)地表特征:起伏、粗糙的地表比平滑表面辐 射面大,有效辐射也大;
(4)地面覆盖:导热性差的物体如秸杆、草皮、 残枝落叶等覆盖地面时,可减少地面的有效辐射。
三、土壤的热量平衡
土壤热量收支平衡可用下式表示: S = Q P LE + R
S为土壤在单位时间内实际获得或失掉的热量; Q为辐射平衡; P为土壤与大气层之间的湍流交换量; L为水分蒸发、蒸腾或水汽凝结而造成的热量损失 或增加; R为土面与土壤下层之间的热交换量。
Cv=CvsVs + CvwVw + CvaVa
(4)
式中Vs, Vw, Va分别表示单位容积土壤中固相、液相和气 相所占的比例,Cvs, Cvw, Cva分别表示土壤中固相、液相和气 相的容积热容量(比例)。
在式(4)中,由于气体的热容量Cv很小,相对可以忽略, 于是式(壤空气中的CO2含量高于大气 2.土壤空气中的O2含量低于大气 3.土壤空气中的水汽含量一般高于大气 4.土壤空气中含有较高量的还原性气体(CH4等)
土壤空气组成不是固定不变的。
土壤剖面CO2和O2体积含量分布示意图
注意:
①土壤空气对植物生长的影响,有许多过程和因素需进 一步研究。如土壤微生物需O2有一个很宽的范围。 ②仅仅一个空气容量指标并不能肯定土壤是否能满足植 物和微生物对氧的需求。
土壤热扩散率 是指在标准
状况下,在土层垂直方向上每厘 米距离内,1℃的温度梯度下, 每秒流入1cm2土壤断面面积的热 量,使单位体积(1cm3)土壤所 发生的温度变化。其大小等于土 壤导热率/容积热容量之比值。
D (厘米 2/秒 )
Cv
上式中:为土壤导热率,
Cv为土壤容积热容量。
第三节 土壤温度(Soil temperature)
Cv=0.85ρ+ 4.18·θv
(9)
由式(9)可以看出,
土壤热容量随土壤容重和含 水量的增加而增大,对于一定土 壤而其固相物质容重变化很小, 而其含水量则变化很大,故水分 对土壤热容量影响最大。砂土含 水量一般比粘土小,而空气含量 较高,所以其热容量一般较低。
(二)土壤导热率
导热性:
土壤具有对所吸热量传导到邻近土层性质,称为 导热性。导热性大小用导热率表示。
(四)土壤气体交换速率的指标 ● 土壤呼吸强度 ●土壤中的氧扩散率
第二节 土壤热量
土壤中的热状况指土体中的热量分 布及其动态变化。
一、土壤热平衡 (一)土壤热来源与土壤吸热性
太阳辐射
土壤热来源
相关文档
最新文档