国内典型大跨径连续梁施工情况调查表
大跨径连续梁悬浇施工质量控制措施的分析与探讨

以 7号块 控 制挂 篮 刚度 , l 3号 为合 拢 段 , 合 拢 段 长
2 m。
作者简介 :龚晓攀 ( 1 9 7 8 . 0 4一) , 男, 大专 , 路桥 工程 师 , 从事 高速公路监理 工作 。E — m a i l : g o n g x i a o p a n @1 6 3 . t o m .
龚晓攀
( 广东华路交通科技有 限公 司 , 广州 5 1 0 4 2 0 ) 摘要 : 结合 佛开高速公路扩建 工程施工 , 从挂 篮的设计 和挂篮的操作 、 模板 、 混凝 土施工 、 预应力张拉 、 施工监 测 等方面对如何控制 大跨 径连续梁挂篮施工 质量 进行 了分析 , 并介绍 了具体 的质量控制措施 。
三 向预应 力 管道 布置 , 比较 复 杂 , 纵 向预应 管道 线
佛 开高 速公路 扩 建 项 目大跨 径 连续 梁 特 大 桥
数 量多 , 特选 择两 个 检测 单 位 ( 华 南 理 工 大学 和 同 济 大学 ) 对连 续梁 桥进 行 全过 程监 测 。
连 续梁 施工 中 , 监 测 控 制 至关 重 要 , 做 好 监 测 的关键 是 明确 监测 的 目的 、 方法 、 频率 、 数据分析 、 效 果 判定 等 。
长4 6 . 6 k m, 由原 四车道 扩 建 为 八 车 道 。全线 共 有 特大 、 大桥 1 3 1 4 9 r n / 1 6座 , 其 中 5座 特 大 桥采 用 连 续梁 挂篮 悬 浇 施 工 。九 江 特 大 桥 为 先 行 工 程 , 于
挂 篮是 悬 臂 浇 筑 砼 的施 工 平 台 , 挂 篮 结 构 应
中国大跨度桥梁现状

桥梁建设的回顾和展望改革开放以来,我国社会主义现代化建设和各项事业取得了世人瞩目的成就,公路交通的大发展和西部地区的大开发为公路桥梁建设带来了良好的机遇。
十年来,我国大跨径桥梁的建设进入了一个最辉煌的时期,在中华大地上建设了一大批结构新颖、技术复杂、设计和施工难度大、现代化品位和科技含量高的大跨径斜拉桥、悬索桥、拱桥、PC连续刚构桥,积累了丰富的桥梁设计和施工经验,我国公路桥梁建设水平已跻身于国际先进行列。
现综述大跨径桥梁建设和发展情况。
斜拉桥斜拉桥作为一种拉索体系,比梁式桥有更大的跨越能力。
由于拉索的自锚特性而不需要悬索桥那样巨大锚碇,加之斜拉桥有良好的力学性能和经济指标,已成为大跨度桥梁最主要桥型,在跨径200~800m的范围内占据着优势,在跨径800~1100m特大跨径桥梁角逐竞争中,斜拉桥将扮演重要角色。
斜拉桥由索塔、主梁、斜拉索组成,选择不同的结构外形和材料可以组合成多彩多姿、新颖别致的各种形式。
索塔型式有A型、倒Y型、H型、独柱,材料有钢、混凝土的。
主梁有混凝土梁、钢箱梁、结合梁、混合式梁。
斜拉索布置有单索面、平行双索面、斜索面,拉索材料有热挤PE防护平行钢丝索、PE 外套防护钢绞线索。
现代斜拉桥可以追溯到1956年瑞典建成的主跨182.6米斯特伦松德桥。
历经半个世纪,斜拉桥技术得到空前发展,世界已建成主跨200米以上的斜拉桥有200余座,其中跨径大于400m有40余座。
尤其20世纪90年代以后在世界上建成的著名的斜拉桥有法国诺曼底斜拉桥(主跨856米),南京长江二桥钢箱梁斜拉桥(主跨628米)、福建青州闽江结合梁斜拉桥(主跨605米)、挪威斯卡恩圣特混凝土梁斜拉桥(主跨530米),1999年日本建成的世界最大跨度多多罗大桥(主跨890米),是斜拉桥跨径的一个重大突破,是世界斜拉桥建设史上的一个里程碑。
(表一)表一:世界大跨度斜拉桥我国自1975年四川云阳建成第一座主跨为76米的斜拉桥,二十多年过去了,这种在二次大战后复兴的桥型,在中国改革开放的形势下,得到了充分的发展和推广,至今已建成各种类型斜拉桥100多座,其中跨径大于200米的有52座。
大跨径连续桥梁施工技术探究

大跨径连续桥梁施工技术探究一、大跨径连续桥梁的技术特点大跨径连续桥梁一般指跨度在100米以上的桥梁,其技术特点主要表现在结构形式、施工难度和安全要求等方面。
1. 结构形式:大跨径连续桥梁的结构形式一般采用钢筋混凝土连续梁或钢桁梁,较短跨度的桥梁多为简支梁或连续刚构梁。
这些结构形式在工程实践中被证明具有较好的承载能力和变形性能,能够满足大跨度桥梁对于承载和变形的要求。
2. 施工难度:由于大跨径连续桥梁跨度较大、结构复杂,所以其施工难度较大。
首先是梁体施工的难度,由于梁体体积大、重量重,需要采用大型起重设备进行梁体吊装,同时对于梁体的预应力张拉、模板支撑等工序也需要高度的施工技术水平。
其次是梁体的整体拼装难度,梁体的拼装需要保证拼缝的准确度和施工质量,在条件限制下提高施工效率。
再次是梁体的预应力施工,对于梁体的预应力张拉、锚固等工序需要保证预应力的准确性和安全性,确保梁体的受力性能。
3. 安全要求:大跨径连续桥梁作为重要的交通设施,其安全性要求极高。
在施工过程中需要保证梁体的承载能力、变形性能和耐久性能,同时需要保证施工的安全性和施工人员的安全。
大跨径连续桥梁的施工工艺主要包括梁体制作、梁体吊装、梁体拼装、预应力施工等工序。
1. 梁体制作:梁体制作是大跨径连续桥梁施工的首要工序,包括混凝土梁体的浇筑、预应力筋的设置、模板拆除等工序。
在梁体制作过程中需要保证梁体的质量和几何尺寸,严格控制混凝土的配合比和浇筑质量。
同时需要保证梁体的预应力筋张拉和锚固工序的准确性,提高梁体的受力性能。
2. 梁体吊装:梁体吊装是大跨径连续桥梁施工的关键环节,需要采用大型起重设备进行梁体的吊装作业。
在梁体吊装过程中需要保证梁体的稳定性和安全性,严格控制吊装工艺,确保梁体的准确安装到设计位置。
3. 梁体拼装:梁体的拼装是大跨径连续桥梁施工的重要工序,需要保证梁体的拼缝的准确度和施工质量,并且需要在条件限制下提高施工效率。
在梁体拼装过程中需要保证梁体的几何尺寸和受力性能。
QC成果降低大跨度连续梁钢筋与预应力管道碰撞率-徐盐四分部

要因确认六:监测仪器未配备自动记录仪器
确认方法
确认内容 确认过程
确认结果
确认结论
现场调查
责任人
XXX
完成时间
监测仪器是否配备电脑自动记录仪器。
2016.10.11
2016年10月11日,组员霍俊强通过现场调查,发现监测仪器已配备 电脑自动记录仪器,符合要求。
监测仪器已配备电脑自动记录仪器 监测仪器未配备自动记录仪器不是要因。
不准确
确认
达标
安排技术人员对每类 同批次钢筋下料长度 进行交底,现场严格
盯控。
50#、 51#墩 0#块
霍俊强
2016. 10.19
2
采用BIM技术,
对结构进行建
空间位 置关系 复杂
模,展示钢筋 与钢筋、钢筋 与模板的空间 位置关系,提
前调整钢筋间
减少钢 筋与预 应力筋 相互碰
撞
距,避免碰撞
1、与广联达BIM团队 一起,认真分析图纸, 对整个结构进行建模, 建立钢筋、预应力筋 模型,进行碰撞试验
降低大跨度连续梁钢筋与预应力管道碰撞率
发 表 人:XXX 单 位:中铁十局三建公司 小组名称:中铁十局三建公司徐盐铁路四分部QC小组 发表日期:二0一七年六月
目录
一、工程概况 二、QC小组概况 三、选题理由 四、现状调查 五、设定目标 六、原因分析
七、要因确定 八、制定对策 九、对策实施 十、效果检查 十一、巩固措施 十二、总结与今后打算
要因确认一:人员未经过培训
确认方法 查阅资料
责任人
XX
确认内容
作业人员是否经过培训。
确认过程
2016年10月11日,组员 王强查阅各连续梁施工班 组培训记录,作业人员培 训覆盖率及考核合格率 均为100%。
大跨径连续梁桥设计施工关键问题研究

组合 I中 最 大 主压 、 主拉应力分 别为 l 4 . 7 3 M P a和
0. 48 M Pa 。
组合 Ⅱ中 最 大 主 压 、 主拉应力 分别为 1 4 . 7 9 M P a和
一
栏 +1 2 . 5 m行 车道 + 0 . 5 i n防撞护栏 ; 车辆荷 载等级 : 公路
1 3 1
( a ) 组合 I 应 力包络 图
( b) 组合 Ⅱ应力包络图 图 1 主 梁应 力 包络 图
( a )组合 I 主应力
( b ) 组 合 Ⅱ主应力
图 2 主 梁主 应 力
4 连续 梁上部 施 工关键 技术
4 . 1 悬臂 浇 筑 临 时墩 锚 固
5 9 5 0 5 9 6 0
5 3 4 0 5 3 3 0
求 。总体 计算 采用桥梁博士进行计算 。 边界 条件 的处理 : 施工 阶段边跨 现浇段 支承按单 向竖 向
刚性 支撑处理 , 中墩 按竖 向双 向 刚性 支 承处理 ; 成桥及 运 营 阶段 各墩按竖向双向刚性支承处理 。 荷载组合考虑两种 工 况 : 组合 I 为恒 载 +汽 车 ; 组合 Ⅱ 为恒 载 +汽车 +升温 +降温 。
( 8 0 . 1 1 +1 3 0+ 8 0 . 1 1 ) m 预应力 混凝 土变 截 面连续 箱 梁 ; 桥 面宽度 : 全宽 3 0m, 横 向布置 为 0 . 5 m 防撞 护栏 +1 2 . 5 m行
车道 + 0 . 5 m 防撞 护 栏 + 3 . 0 m 中 央 分 隔 带 +0 . 5 m 防 撞 护
总 体静 力 分 析 , 对该 桥 施 工 阶 段 、 运 营 阶段 进 行 了计 算 。 并 在 此 基 础 上 , 研 究 了 大跨 连 续 粱桥 施 工 中应 注 意
“ 桥梁跨中下挠问题”

序言20世纪90年代以来,预应力砼连续梁桥和连续刚构桥在我国发展迅速,形势喜人。
据不完全统计,目前我国已建成和在建跨径在200m以上的连续刚构桥近20余座,跨径在100m~200m之间的连续梁桥和刚构桥100余座。
表1所列的世界L≥240m的特大跨径连续梁桥中,中国占有了很大的比例。
因此认真总结这些工程实践的经验,针对目前大跨梁桥普遍存在的“腹板开裂”、“跨中下挠”和“非荷载裂缝增长”等质量问题进行深入的研究,力求从源头上寻找相关问题的有效解决方法是当务之急。
本文以苏通长江大桥268m辅航道桥为例,从分析大跨梁桥施工过程中初始状态对砼徐变的影响出发,提出“两个图式的恒载零弯矩”、“临时斜拉索合拢”和“合拢后箱梁预压重”等新的措施替代无效的“挠度预抬高法”。
希望引起同行们的争鸣。
§1 桥面线形控制的新要求(一)问题的提出1、历史的回顾:自1995年建成1060m一联、主跨245m的黄石长江大桥以来,国内很多大跨径梁桥在预计通车三年后(1000天),跨中仍然出现持续下挠的现象。
如表1中所示14#桥跨中下挠已达32cm,3#桥跨中下挠已达20cm。
据不完全统计分析,徐变下挠的年平均速率(f)与跨径L有关,如:L=100~160m f=0.5~1(cm/年)L=100~220m f=1~2(cm/年)L=220~270m f=2~3(cm/年)应当指出,全国大跨径梁桥普遍出现持续下挠而且时间长达十年仍未稳定的严峻事实,值得中国桥梁工程师的认真反思。
在设计规范关于砼收缩徐变对下挠的影响程度及其长期性的估计严重不足而尚未修改的情况下,在特大跨径中仍继续沿用“挠度预抬高法”是到了该终止的时候。
表1 世界预应力砼连续刚构桥(L≥240m)一览表22、苏通大桥辅桥连续刚构的特点:对于跨中设在双坡竖曲线范围内的大跨连续梁桥,其跨中下挠只相当于增大竖曲线的半径R而已,在外观上不会出现突变。
但苏通大桥辅航道桥处于1.5%的单坡上,如果跨中在建造时产生过大的抬高、运营后又发生过大的下挠,两者都将破坏全桥线型的平顺,影响高速行车的舒适性。
大跨径连续刚构桥梁常见问题与对策的研究

径连 续刚构桥 粱在施 工过程 中常遇 的 问题 , 并对此提 出 了相 关的对 策。 关键 词 : 大跨 径连续 刚构桥 梁 ; 问题 ; 策 对
1常 见 害 病 一 半立方抛 物线 和二次抛物线 。采用二次抛物线 身大多为柔性墩 ,常见的有双肢薄壁墩和空心 J U 段的梁高减小 , 4 减小 了结构 薄壁墩。 双肢薄壁墩常用于墩身不高的情况, 墩 经过对国内已建成的大跨径连续 刚构 桥梁 可 以使箱梁 I  ̄ 8 但对克服该 区段 的主拉应力不利 。 身较 高常采用空心薄壁墩。分析大跨径连续刚 的来 看 , 通过调查 , 国已成的大跨径连续 刚构 自重 , 我 设计合适可靠 的竖 向预应力 。箱梁施加竖 构 桥墩身开裂的原因 , 由于混凝土的收缩、 均是 桥梁中 , 的病害主要有 以下几种情况 : 中 出现 跨 内外 而造 挠 度过大 ; 箱梁腹板 、 底板产生裂缝 ; 墩顶 梁 向预应力的主要 目的是克服主拉应力 ,竖向预 日照温差 、 温差 的影 响 , 成表面开裂 。 应力的有效性 , 对箱梁腹板的受力影响很大 竖 为 了减 小混凝 土的收缩 , 增强混凝土的抗裂性 , 段 开裂 ; 桥墩墩身裂缝。 2裂缝形成的原因 向预应力常采用精轧螺纹粗钢筋或钢绞线 。 设计 与施工 中除 了配置足 够的受力钢筋外 , 尚 增加纵 向预应力下弯束。由于竖 向预应力 应在主筋 的外表 面设置 防裂钢筋 网片 ,同时在 目 , 国大跨径预应力混凝土连续梁桥 前 我 适 裂缝形成 的原因 , 主要有 以下几方面 : 在主桥总 的施工质量很难完全达到设计要求 , 当增设 混凝土 中加人—定的抗 裂防水膨胀剂。 4 4跨 中挠度过大预防 体设计 中, 比例 、 跨径 箱梁截面尺寸的拟定不合 腹板下弯束 ,对克服腹板 内的主拉应力和剪应 理; 结构设 计抗弯剪能力不足 ; 对有预应力钢束 力有利 ,同时下弯 束应弯至截 面高度 的 2 , 3以 很多大跨径连续 刚构桥梁虽然在 主梁 的设 在 提 引起的附 力估计不足 ;对温度应力 的重视不 下。 中跨跨 中及悬臂中部设置横隔板 , 高箱 计 中没有足够的预拱度 ,但在建成通车—段时 Ⅱ 够; 施工质量 不好 , 中包括 : 其 混凝 土浇筑 与养 梁畸变 刚度 , 而提高箱梁受力的整体性 。 从 间后 , 跨中均 出现不同程度 的下挠 , 箱梁 这不但 生不好 、预应力钢柬的保护层厚度达不到谢 } . 适 当增加边跨 现浇段的底板和腹 板厚度 , 给行车带 来麻烦 , 而且 会使结构 开裂 、 坏 , 破 给 要求、支架与模板变形过大、预 应力 张拉力 不 并设置 足够 的防崩钢筋 。由于受力和锚固的需 结构带来安全隐患 。 因此 , 设计与施工 中可以 在 要, 边跨底板预应力束在边跨现浇段 向顶板方 采取 以下措施 : 足、 灌浆不及时或其它质量问题等 。 2 l腹板剁象 原因 逢 蜥 向弯 曲, 且该处钢柬竖 弯曲线半径较小 。 钢束弯 适当增加梁高, 提高结构的承载能力。高、 腹板偏薄 ; 了竖弯束 ; 向预应力筋作 曲产生 的附 加径 向力使预应力管道下缘混凝土 跨比是影响主梁受力的主要参数,适当增加梁 取消 竖 用不如初期设计期待的好 ; 施工粗糙 , 未达设计 承受径 向荷载 的作用 ,底板因受过大的径向力 高 , 以提高结构的承载能力 。 可 要求 。 而容易产生崩裂。 梁高 , 可增加 主梁的刚度 , 改善主梁应力状 2 . 中底板纵 向裂缝原因分析 2跨 合拢段 的混凝土标号提高半级或一级 。由 况 。 根据设计经验 , 国内早期连续刚构箱梁根部 底 板厚度偏薄 ; 向普通钢筋配设不强 ; 横 张 于连续刚构桥往往具有跨度 大,施工过程存在 梁高一般为中跨 长度 的 1 6 I8 / ,/ ,近期 设计的 1,1 - 拉 进行孑道灌浆 。 L 结构体 系转换 的特 点。合拢段不但是结构最薄 连续刚构桥 ,箱梁根部梁高— 般为中跨长度的 2 3顶板纵向裂缝原因分析 弱的部 分, 而且该部分为后浇混凝土。 箱梁合拢 11 -11 。 ,6 -/7 主梁截面箱宽与翼板宽不当 , 向预应力 段混凝 土的浇 注 , 横 使得结构 由原来的静定结构 设置 足够的施工预拱度。混凝土的收缩徐 钢束设置不合理;横向预应力钢束张拉时间不 转换成 了超静定结构 ,同时 由于合拢温度的影 变对挠度的影响较大, 而根据 目 前的理论, 较难 当, 造成横向预应力分布不均匀; 箱梁温度应力 响 , 使得该部分的应力状况相对 较为复杂 , 高 准确计算 , 提 因此适当加大跨中预拱度, 以抵消箱 计算与实际清况不符。 混凝土的等级 , 以提高结构的抗裂效应。 可 梁 的后期下挠 。 3后期主梁下挠过大的原 因分 析 合理确定箱宽与悬臂翼缘 宽的比例,合理 增加底板预应力束, 并采用分批张拉, 部分 后期主梁下挠过大 的原因主要有 以下几个 设置横向预应力钢束 ,使顶板 在各种 工况情况 底板预应力束可滞后 1 年左右的时间, 待混凝 方面 :当前大型预应力混凝土连续刚构桥梁一 下不出现引起开裂的拉应力。适 当加强桥 面铺 土完成一定的收缩 、 变后再张拉。 徐 般采用泵送混凝土浇筑 , 混凝土强度高 、 水灰 比 装钢筋 , 如混凝 土桥面 , 则应注意设置混凝士桥 在中跨底板适当设置体外备用钢束, 待需 较大 , 各种添 加剂触 水剂 、 早强剂 、 凝剂) , 面变形纵 向缝 的位置。 缓 多 根据计算分析 , 合理设置 要时进行 张拉。 对 混凝土的收缩徐变特性有较大的影响 ,尤其 箱 梁桥面板横 向预应力钢束 张拉 锚固程 序 , 分 延长 混凝土 的加载龄期 , 减少徐变对结构 是 对混凝 土后期徐变的影响。加 载龄期对 混凝 批 张拉横 向预应力钢束 ,使横 向预应力分布趋 的影 响 , 如工期 容许 , 要求纵 向预应力的张拉龄 土的徐变有较大影响。预应力度 的大小对 混凝 于均匀 。 期不 少于 7 o d 土的徐变有影响。 混凝土徐变变形加大 , 预应力 4 2墩顶 0 梁段裂缝预 防 # 在施工中要控制混凝土的坍落度最好在 进一步减小 了预 通过分析 , 这些裂缝的产生主要是 由于温 1 厘米以下, 8 并且尽可能的延长混凝土的加载 应力度 , 从而导致 主梁下挠变形值加大。 度内力、 主梁预加应力及混凝土收缩引起 的。 为 龄期, 并加强施工控制, 保证主梁设汁线形。 4设计与施 工对策 了防止裂缝的产生 , 计与施工 中可 以采取 以 设 5结束语 从对连续阿 桥出现 问题的原 因进行分析 下措施 : 构 虽然 连续 刚构桥不 论在设计方面还是在施 的结果来看 , 其实这些问题在早期并不影响结 箱梁 梁段的横 隔板 的厚度不宜太厚 , 应 工方面, 都有较为成熟的经验, 而且在国内建成 构的整体安全, 但随着时间的推移, 会逐渐降低 尽 可能与顶板 、 的刚度匹配 , 腹板 以改善箱梁 。 较多 , 由于 目 对连续刚构桥梁认识的局限 社 但 前 结构 的耐久性 。针对 大跨径连续 刚构桥 问题 出 梁段的受力状况。 性, 很多大跨径连续刚构桥均出现了不同程度 现的特点,在设计与施工中可以采取相应的有 由于主墩墩顶弯矩较大, 而墩、 梁交接处为 的病 害。 如何克服和尽量减少病害的产生, 目 是 效措施 , 来克服和尽量减少问题的产生。 2 次施工的分 点, 使得该处受力不利 。因此箱 前在设计与施工过程中急需解决的问题。 4 箱梁裂缝 的预防 1 梁 梁段 的竖 向预应力 可延伸至墩顶 以下 5 ~ 参 考 文献 根据现有桥梁问题 的产生 ,箱梁的裂缝主 lr, O 以改善墩 、 e 梁交接处的受力。 『江 滂 . 1 】 大跨馒 连 续刚构桥 施工 关键技 术研 究 要出现在腹板、 底板和顶板 , 板裂缝 多出现在 腹 设置足够 的底板钢筋,必要时设置临时预 【】 济大学,06 D同 20. 1-  ̄ 7 1 之间 , 47 底板裂缝多 出现在跨 中部位及边 应力 。在箱粱 梁段 的内、 外主筋的表面设置 【 陈浩. 高墩 连续 刚构桥 的稳定性 分析【l 2 】 大跨 D 跨现浇段。分析原因 , 主要是腹板 内的剪应力 、 防裂 钢筋 网片, 同时箱梁 梁段的混凝土中可 西南交通大学 。 o. 2 7 o 主拉应力 和局部拉应力场作用的结果 。针对 这 加入抗混凝 土开 裂的杜拉纤维或钢纤维 ,以提 【杨 军 , 预 应力混凝 土葙梁桥常见结构裂 2 】 李坚. 些情况, 在设计与施工中可以采取 以下措施 : 高结构 的抗裂性能。 缝分析与设计对策田 海公路, 9. 上 17 9 选择合适的箱梁下缘曲线 。大跨径连续 刚 4 3桥墩墩身裂缝预防 f詹建辉 , . 大跨度连 续刚构主梁下挠及 4 ] 陈卉 特 构桥多采用变截面箱粱, 底板下缘曲线常采用 根据大跨径连续刚构桥的受力特| ,其墩 箱梁裂缝成因分 析切 冲外公路, 0. 25 0
[QC]提高大跨度连续梁线型质量 [详细]
![[QC]提高大跨度连续梁线型质量 [详细]](https://img.taocdn.com/s3/m/c1db54dfa45177232e60a2a2.png)
提高大跨度连续梁线型质量QC成果报告浙建集团·浙江省大成建设集团有限公司浙江大成龙游一桥项目QC小组20XX年3月提高大跨度连续梁线型质量浙江省大成建设集团有限公司浙江大成龙游一桥项目QC小组一、工程概况衢州绿色产业集聚区龙游湖镇至童家跨衢江大桥应急工程桥头江大桥6~9#联上部结构为72+120XX2m三跨对称的预应力砼变截面连续箱梁,单箱单室。
连续箱采用悬臂挂篮施工,各单“T”箱梁除0号块外,分为15对梁段,从0#块侧开始至合拢段,梁段纵向分段长度为5×3m+4×3.5m+6×4m,节段混凝土介于45.7~67.1m3,重量介于118.9~174.5t。
0#块长12m,313.5m3混凝土,重量为815.1t;边跨现浇段长10.84m,边跨现浇段133.2m3混凝土,重量为346.3t;中边跨合拢段长度均为2m,22.8m3混凝土,重量为59.3t;梁段最大重量为1#节段,重1745KN;挂篮自重以不超过800KN考虑,箱梁混凝土采用C50。
箱梁梁高为根部梁高7.0m,各单“T”箱梁高从1#块的6.428m以2次抛物线方程变化至合拢段的3.0m,箱梁梁高方程为:H=(4/57.252)x2+3.0m,0≤x≤57.25;箱梁底板方程为:h=(3.16/55.52)x2+2.7m,0≤x≤55.5;x指距抛物线起点的距离。
边跨现浇段为等高箱梁,梁高3.0m。
箱梁顶板宽15.4m,底板宽8.0m,翼缘板悬臂长3.7m,底板厚度从合拢段到0#块横隔板处以30~90cm渐变。
腹板厚度采用三个厚度,不同厚度之间设置一个节段作为渐变段,即1~4#节段腹板厚度为90cm,6~10#节段腹板厚度为70cm,12~15#节段腹板厚度为50cm。
除0#块设两道90cm厚的横隔板、边跨端部设2m厚的横隔板、中跨跨中设置0.3m厚的横隔板外,箱梁其他部位均不设横隔板。
箱梁1#~14#块采用挂篮悬臂浇筑施工,现浇段采用支架现浇。