Sampling
sampling 的缩写形式

sampling 的缩写形式
Sampling的缩写是SPL。
Sampling是指在音频处理中对信号进行采样的过程,即将连续的模拟信号转换为离散的数字信号,便于数字信号的处理和存储。
在音频制
作中,通常采用CD音质的44.1kHz采样率,即每秒采集44100个样本点,用来描述声音的波形。
而采用的采样位数为16位,这意味着每一次采样可以将信号的幅度量化为65,536个离散的值之一。
SPL是Sound Pressure Level的缩写,也就是声压级的意思。
声压级是指声音的强度,通常用分贝(dB)来表示。
在音频制作中,通常需
要控制音量的大小,这是通过调节电子音量控制器来实现的。
随着声
音的增大,SPL也会随之增加。
当SPL达到一定水平时,会对人的听
觉系统产生危害,因此必须加强对音量控制的管理,以保护听觉健康。
抽样名词解释

抽样名词解释抽样(Sampling)是指在研究或调查中,根据一定的方法和原则,从总体中选择少部分样本进行观察、测量或评估,并用样本结果推断总体特征的过程。
在研究或调查过程中,如果直接对总体进行全面观察或测量,将会非常耗时、耗力、耗资。
因此,通过抽样可以通过观察或测量样本的特征,推断总体的特征,从而在节约时间和资源的前提下,得到总体的相关信息。
抽样是科学研究中的重要方法之一,它在极大程度上减少了数据收集和分析的复杂性,并且能够提供总体特征的可靠估计。
以下是一些常见的抽样名词及其解释:1. 简单随机抽样(Simple Random Sampling):是最基本的抽样方法,指在总体中的每个个体都有等概率地被选入样本的抽样方法。
2. 分层抽样(Stratified Sampling):将总体分为不同层次,并在每个层次中进行简单随机抽样的方法,以保证样本能够充分代表总体的各个层次。
3. 系统抽样(Systematic Sampling):按照一定的顺序和间隔,从总体中选择样本的方法。
例如,每隔一定间隔选取一个样本。
4. 整群抽样(Cluster Sampling):将总体划分为若干个互不重叠的群组,然后随机选择部分群组作为样本,并对选中的群组进行全面观察或测量。
5. 方便抽样(Convenience Sampling):根据研究者方便的要素对样本进行选择,不符合随机性要求,降低了样本的代表性,主要用于初步调查或探索性研究。
6. 特殊抽样(Purposive Sampling):根据研究者需要的特殊要素对样本进行选择,例如选择具有特定特征的个体或群体。
7. 集群抽样(Multistage Sampling):将总体分为若干层次的群组,先抽取群组作为初步样本,然后再从每个选中的群组中随机抽取个体作为最终样本。
8. 集中抽样(Quota Sampling):根据特定的目标,对样本人群按比例或数量设定配额,以确保样本能够代表总体特征。
经济学Sampling抽样技术统计学专业课

▪ CHAPTER 5 Cluster Sampling with Equal Probabilities
➢ 5.1 Notation for Cluster Sampling ➢ 5.2 One-Stage Cluster Sampling ➢ 5.3 Two-Stage Cluster Sampling ➢ 5.4 Using Weights in Cluster Samples ➢ 5.5 Designing a Cluster Sample ➢ 5.6 Systematic Sampling ➢ 5.7 Models for Cluster Sampling*
*Condescension:1. voluntary descent from one's rank or dignity in relations with an inferior; 2.The act of condescending or an instance of it. 3.Patronizingly superior behavior or attitude.
▪ 1.1 A Sampling Controversy
▪ Shere Hite's book “Women and Love: A Cultural Revolution in progress” (1987):
➢ 84% of women are "not satisfied emotionally with their relationships" (p804).
➢ 84% of women report forms of condescension from the men in their love relationships (p809).
sampling_range样本区间_解释说明

sampling range样本区间解释说明1. 引言1.1 概述样本区间是统计学中一个重要的概念,它在数据分析和研究中扮演着关键角色。
在进行调查或实验时,我们往往无法完全观察或测量整个总体,而只能从中选择一部分样本进行分析。
因此,为了推断总体参数的真实值,并对结果做出合理的解释,我们需要使用样本区间来估计总体参数的范围。
样本区间也被称为置信区间。
1.2 文章结构本文将首先介绍样本区间的定义和重要性,然后探讨样本区间与抽样误差之间的关系。
接下来,将详细介绍确定样本区间的方法,包括随机抽样、系统抽样和分层抽样等技术。
接着, 我们还将讨论样本区间对结果的影响方面:如何通过调节样本数量和大小来改变置信水平和精确度;以及不同样本分布如何影响样本区间大小和稳定性。
最后,在文章结论部分,我们将总结主要观点和研究结果,并提出未来可能的研究方向。
1.3 目的本文的目的是为读者提供关于样本区间的综合理解,以帮助他们在实际应用中正确地使用和解释样本区间。
通过阐述样本区间的定义、重要性、确定方法以及其对结果的影响,我们将为读者提供一个全面而清晰的概念框架,使他们能够更好地理解和利用样本区间进行数据分析和研究。
2. 样本区间的定义:2.1 什么是样本区间:样本区间指的是根据样本数据得出的一个估计范围,用于推断总体参数的未知真值。
简而言之,它是用来描述总体参数可能存在的范围。
通过抽取一部分个体作为样本,我们可以在不了解全部个体情况下对总体参数进行估计。
而样本区间就是通过计算方法,给出了这个估计结果的上界和下界。
通常使用置信区间表示样本区间,置信度衡量了该区间包含真实参数值的程度。
2.2 样本区间的重要性:样本区间在统计学中起到至关重要的作用。
它不仅可以帮助我们获得总体参数的近似值,还可以为研究者提供决策依据和推断结论。
通过对样本数据进行分析并建立置信区间,我们能够在一定程度上揭示总体特征、规律或变化趋势,并给出合理有力的统计结论。
Sampling

Sampling
5. Typical-case sampling: Choose a case in which a program/instruction has been implemented to show this case is indeed average 6. Stratified purposeful sampling: Divide samples into subgroups and then select cases within each subgroup 7. Critical-case sampling: Study a very important, critical case and the effect should be representative: “if it happens there, it will happen anywhere.”
5
Sampling
2. Systematic sampling: Select every nth name from the
list; so need to estimate the needed sample size →Pro: not every member f members are arranged in a specific pattern (e.g., choose the last name with A in
A. Probability sampling
B. Nonprobability (Purposeful) sampling C. Convenience sampling
3
Sampling
A. Probability sampling:
1. Simple random sampling
抽样调查法名词解释

抽样调查法名词解释抽样调查法是一种研究方法,通过从一个总体中选择一部分样本数据来研究总体的一个特征或者性质。
以下是相关名词的解释:1. 总体(Population):指研究的对象的全体,比如一个国家的全部人口,或者某个群体中的所有个体。
2. 样本(Sample):从总体中选取的一部分观察对象,用于代表整个总体。
3. 抽样(Sampling):从总体中选取样本的过程,可以是随机抽样或者非随机抽样。
4. 简单随机抽样(Simple Random Sampling):从总体中以等概率无放回地选取样本的方法,确保每个个体都有相同的概率被选中。
5. 系统抽样(Systematic Sampling):按照一定的规律从总体中选取样本,例如每隔一定距离选取一个样本。
6. 分层抽样(Stratified Sampling):将总体分成若干层,然后在每一层中进行简单随机抽样,以保证样本能够代表每一层的特征。
7. 整群抽样(Cluster Sampling):将总体分成若干群,然后随机选择其中的一些群进行抽样,适用于样本容易分组的情况。
8. 多阶段抽样(Multistage Sampling):将总体划分成多个阶段,先抽取较大的单元(群或区域),再依次在较大单元内抽取较小的单元(个体或家庭),直至抽取样本。
9. 抽样误差(Sampling Error):由于样本选择的随机性,样本与总体之间存在差异,从而导致样本结果与总体真实情况之间的误差。
10. 抽样框(Sampling Frame):包含全部个体的列表或者数据库,是进行抽样的依据。
11. 抽样率(Sampling Rate):样本量与总体量之间的比值,用于决定抽样的精度及成本。
12. 大样本方差(Large-sample Variance):对于大样本调查,通过样本数据的方差来估计总体方差。
抽样调查法是一种常用的研究方法,可以通过对样本的观察和分析来推断总体的特征。
Sampling-抽样检验

Confidence Intervals
• Interval estimate is an estimation of the extent of sampling error
– The estimation of the interval in which an unknown population characteristic is judged to lie, for a given level of confidence
Standard or Tolerable Error
• Indication of sample error
• Standard error decreases as sample size increases
• The higher the allowable error, the lower the sample size
• Not representative
Nonprobability Sampling
• Types of non-probability designs:
– Covenience – Snowball – Judgement – Quota
Probability Sampling
• Can calculate the likelihood that any given population element will be included because the final sample elements are selected objectively by a specific process • Reliability of sample results can be calculated; sampling error can be calculated • Each member of the population has a known, non-zero chance of being included in a sample
抽样检验 Sampling Inspection

a
Pa=1- a
ß 10
1 2 3 4 (送驗批百分不良率) LTPD
(1)允收品質水準AQL(Acceptable Quality Level) :
乃指消費者滿 意的送驗批所含有的最大不良率.即生產者之 產品,其平均不良率小于或等于此AQL時,應判定為合格而允收之, 通常訂定允收機率為95%時之不良率為AQL. (Pa =1 - a )
P
np
pa
0
0
1 .0
0 .0 1
1 .0
1 .0 0 0
0 .0 2
2 .0
0 .9 9 6
0 .0 3
3 .0
0 .9 4 7
0 .0 4
4 .0
0 .6 2 9
0 .0 5
5 .0
0 .4 4 0
0 .0 6
6 .0
0 .2 8 5
0 .0 7
7 .0
0 .1 7 3
0 .0 8
8 .0
0 .1 0 0
抽樣計劃的分類
由于各種產品品質特性不同,故有不同的產品判定基準,通常這些
基準可分為計量值與計數值.因為計數值與計量數據各有其不 同的分配理論,因此抽樣計劃也分別設計.計數值抽樣以超幾何 分配,二項式分配,或卜式分配為原理;計量值抽樣是以常態分 配 為依據.
抽樣檢驗的方式: (1) 不良個數計數抽樣檢驗方式 (2)缺點數計數值抽樣檢驗方式 (3)標準差已知之計量值抽樣檢驗方式 (4)標準差未知之計量值抽樣檢驗方式 抽樣檢驗形式: (1)單次抽樣形式 (2)雙次抽樣方式 從批量為N中隨機抽取第一次樣本n1件,其中不良數為d1,則 d1<=c1時為合格 d1>=r1時判定該批產品為不合格 c1<d1<r1時作第二次抽樣
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sampling Plans
Stratified Random Sampling:
Population strata which may have a different distribution of variable. Strata must be known, non-overlapping and together they comprise the entire population. Examples: Measuring Heights: Stratify on Gender Strata are Male, Female Clinical study: stratify on stage of cancer Measuring Income: Stratify on education or years of experience
For blood screening, pool the samples from x individuals and test for rare disease. If the test is negative for disease then all x blood draws are negative. If the test is positive then test all x individually.
Sampling Plans
Composite Sampling:
Sample n units at random Form a composite of n/k units for k composite-samples; mix well Take the measurement on each of the k composite-samples For binary outcome (positive or negative; success or failure; yes or no, etc) with rare probability of one of the two possible outcomes then forming composites can save a lot of testing.
Sampling and Measurement Error
Two sources of “error”:
The variability of the sample statistic around the population parameter – standard deviation. The variability of the measurement itself due to the instrument we are using.
Gorilla Weights Average of Four Ave of 25 weights
425
475
525
Sample Size, Statistical Precision, and Statistical Power Increasing the sample size decreases the standard error of your estimate. Example: Estimating the population mean:
Sampling Plans
Decisions are often based on our analysis of a sample. How we conduct a sample is very important.
Minimize bias Representative sample Sufficient size.
ห้องสมุดไป่ตู้
Sample Size, Statistical Precision, and Statistical Power Increasing the sample size increases the precision of the sample estimate If we take a large sample then the sample mean is closer (in distribution) to the population mean
Sampling Plans
SRS uses basic statistics; estimates and standard error estimates need to be adjusted for the other sampling methods
For Simple Random Sampling and estimating the population mean:
Sampling Methods
Sampling Plans
Systematic Sampling
Population has N units, plan to sample n units and N/n = k. Line-up all N units Randomly select a number between 1 and k (call it j) Select the jth unit and every kth unit after that Each unit has an equally likely chance of being selected
Measuring the same unit repeatedly.
Sampling and Measurement Error
Minimizing the variation:
To get a more precise estimate of the population parameter take a larger sample. (i.e., more individual sampling units) To obtain a more precise measurement, measure the same individual sampling unit multiple times (replicates) and take the average.
Sampling Plans
Reasons for using different sampling plans:
Simple random sampling (SRS) ensures that all samples of size n are equally likely to be selected – units are selected independently – can use standard statistics Stratified random sampling ensures that each of the strata are represented in the sample and we can construct the sample to either minimize variability of the estimator or to minimize cost Composite sampling can save costs making sampling more efficient but you lose information about the individual sampling units. Systematic sampling is a convenient sampling method for items coming off a line – ensures that items from the beginning, middle and end of production are sampled
Point Estimate:
xsrs
∑x =
n
95% Confidence Interval:
s xsrs ± t ⋅ n
Sample Size, Statistical Precision, and Statistical Power Standard Error is 95% Margin of error is where t has n-1 df and is for 95% Width of confidence interval is
Designing a Statistically Sound Sampling Plan
Presented by: Steven Walfish President, Statistical Outsourcing Services steven@
REALITY Accept H0 H0 is False & HA is True Correct Decision Type II error with Probability β (Depends on true value of μ) Type I error with Correct Decision Probability α with Probability 1-β (we get to specify α) (1-β is called Power) H0 is True
⋅ xh
N
With variance (standard error squared):
1 2 s ( xst ) = 2 N
2 sh ∑ N h (N h − nh ) n h
Note that you need to know how many units are in each strata (Nh).
Sampling Plans
Simple Random Sample
Each sampling unit has an equal probability of being sampled with each selection. Can perform simple random sampling if: Enumerate every unit of the population Randomly select n of the numbers and the sample consists of the units with those IDs One way to do this is to use a random number table or random number generator