压电陶瓷材料及应用
压电陶瓷分类及应用

压电陶瓷分类及应用
压电陶瓷是一种具有压电效应的陶瓷材料。
压电效应是指在外加机械应力或电场作用下,压电陶瓷会发生尺寸变化或极化现象,从而产生电荷分布。
根据压电陶瓷材料的组成和性质,可以将其分为几种不同的分类。
一、根据压电性能可将压电陶瓷分为高压电效应陶瓷和低压电效应陶瓷。
高压电效应陶瓷具有较高的压电系数和较大的震荡频率,适用于高频和高精度的应用,如声子滤波器、超声波发生器、压电换能器等。
低压电效应陶瓷的压电系数较低,主要用于压电传感器、压电陶瓷振动器、电子器件的稳定和控制等应用。
二、根据晶体结构的不同,压电陶瓷可以分为三类:酸性压电陶瓷、硼酸盐压电陶瓷和锆钛酸钾压电陶瓷。
酸性压电陶瓷是指以三方晶系的负电性轴为基础,具有良好的机械和电性能。
硼酸盐压电陶瓷主要以硼酸盐基质为主,具有较高的压电系数和介电常数。
锆钛酸钾压电陶瓷是一类常用的压电陶瓷材料,具有较高的压电系数和压电耦合因子,在声波传感器和应用中得到广泛应用。
三、根据应用领域的不同,压电陶瓷可以分为多种类型。
在声学领域,压电陶瓷广泛应用于扬声器、电麦克风、声波发生器、声子滤波器等装置中。
在控制领域,压电陶瓷用于压电陶瓷驱动器、压电陶瓷换向器、压电陶瓷伺服控制系统等。
在传感领域,压电陶瓷被应用于压力传感器、加速度传感器、应力传感器等。
在医疗领域,压电陶瓷用于超声波显像设备、超声刀、超声治疗仪等医疗器械中。
压电陶瓷材料以其优越的压电性能和物理特性,在电子、声学、控制等领域中具有广泛的应用前景。
随着科学技术的发展,压电陶瓷材料的研究和应用将更加深入和广泛。
压电陶瓷及其应用培训资料

超声波发生器
利用压电陶瓷的逆压电效应产生超声波,广泛应用于无损检测、医疗成像等领域 。
麦克风
利用压电陶瓷的压电效应,将声音转化为电信号,用于语音识别、录音等场合。
振动控制
振动隔离
通过控制压电陶瓷的形变,实现精密 仪器的振动隔离,提高测量精度。
振动主动控制
利用压电陶瓷的逆压电效应产生反作 用力,对结构振动进行主动控制,提 高结构的稳定性。
易于加工和集成
压电陶瓷可以通过微加工 技术进行加工和集成,实 现小型化和高精度。
压电陶瓷的发展历程
早期发展
20世纪初,科学家开始研 究压电陶瓷,并逐渐应用 于声呐、无线电等领域。
中期发展
随着科技的发展,压电陶 瓷在传感器、换能器等领 域的应用逐渐增多,性能 也不断提高。
近期发展
随着新材料和加工技术的 发展,压电陶瓷在微纳尺 度、智能传感器等领域的 应用越来越广泛。
电子听诊器
压电陶瓷在电子听诊器中作为传感器,将心跳或呼吸产生的 机械振动转换为电信号,用于医学诊断。
电子听诊器具有操作简便、准确度高、可重复性好等优点, 广泛应用于临床医学和家庭保健领域。
05
压电陶瓷的未来展望
新材料与新工艺的发展
新型压电陶瓷材料
随着科技的不断进步,新型压电陶瓷材料如纳米压电陶瓷、高温压电陶瓷等将不断涌现,为压电陶瓷 的应用提供更多可能性。
压电陶瓷及其应用培 训资料
目录
• 压电陶瓷简介 • 压电陶瓷的工作原理 • 压电陶瓷的应用领域 • 压电陶瓷的应用实例 • 压电陶瓷的未来展望
01
压电陶瓷简介
压电效应与压电陶瓷
压电效应
某些材料在受到外部压力时会产生电 场,这种现象称为压电效应。利用压 电效应制作的陶瓷称为压电陶瓷。
压电陶瓷的工作原理与应用

压电陶瓷的工作原理与应用1. 什么是压电陶瓷?压电陶瓷是一种具有压电效应的陶瓷材料,具有特殊的物理性质。
当施加压力或电场时,压电陶瓷会发生正比例的形变或电荷分布变化。
其工作原理基于压电效应,即通过施加压力或电场激发压电陶瓷产生形变或电荷分布的变化。
压电陶瓷材料主要由氧化物和复合材料组成,具有稳定的物理和化学性质。
2. 压电陶瓷的工作原理压电陶瓷的工作原理基于压电效应,分为压电效应和逆压电效应两种模式。
2.1 压电效应压电效应是指当施加机械应力于压电陶瓷时,会在材料内产生电荷分离。
这种电荷分离是由于晶格结构的变化所引起的。
压电效应的量级与施加的压力成正比。
压电效应是压电陶瓷实现能量转换、传感和控制的基础。
2.2 逆压电效应逆压电效应是指当施加电压于压电陶瓷时,会导致陶瓷的形变。
施加电压使得陶瓷内部的电荷重分布,进而引起形变。
逆压电效应可以通过改变施加的电压来精确控制压电陶瓷的形变,因此广泛应用于执行器和传感器等领域。
3. 压电陶瓷的应用压电陶瓷由于其独特的物理性质和工作原理,在众多领域中有着广泛的应用。
3.1 压电陶瓷传感器压电陶瓷传感器是利用压电效应对外界压力或应力进行测量的传感器。
通过安装压电陶瓷传感器可以实现对力、质量、压力等物理量的测量和检测。
压电陶瓷传感器广泛应用于工业自动化、航空航天等领域中。
3.2 压电陶瓷应用于超声波技术压电陶瓷在超声波技术中起到重要的作用。
通过施加交变电场,压电陶瓷可以产生超声波。
超声波技术在医学成像、材料检测和土木工程中有着广泛的应用。
3.3 压电陶瓷控制器压电陶瓷控制器是通过施加电压控制陶瓷的形变的装置。
压电陶瓷控制器可以用于精确控制执行器、阀门等的位置和形变。
在精密仪器、机械控制等领域中被广泛应用。
3.4 压电陶瓷用于发电压电陶瓷可以通过压电效应转换机械能为电能。
将压电陶瓷放置在机械振动环境中,可以利用振动能量产生电能。
这种方法在一些低功率应用中具有潜力,如自动感应式无线传感器等。
压电陶瓷的应用及原理

压电陶瓷的应用及原理引言压电陶瓷是一种特殊的陶瓷材料,具有压电效应和逆压电效应。
其应用广泛,涉及到许多领域,如传感器、换能器、滤波器等。
本文将介绍压电陶瓷的应用及其原理。
压电效应原理压电效应是指将压力施加到压电陶瓷上时,会产生电荷的现象。
这是由于压电陶瓷的晶格结构造成的。
当通过施加压力使晶格略微变形时,晶格内的正负离子会发生位移,使整个陶瓷材料的两端产生电荷差。
这种电荷差可以通过外接电路来利用。
压电陶瓷的应用1. 压电传感器压电陶瓷可以用作压力传感器,用于测量、检测和监测各种参数,如力、压力、加速度等。
在汽车、航空航天、医疗设备等领域有着广泛的应用。
例如,将压电陶瓷安装在汽车刹车系统上,可以用来感知刹车力的大小,从而实现自动刹车或防抱死系统。
2. 压电换能器压电陶瓷还可以用作换能器,将电能转换为机械振动或声波能量。
这种转换是双向的,也可以将机械振动或声波能量转换为电能。
压电陶瓷的换能器应用广泛,如超声波清洗、超声波焊接、声纳等。
3. 压电陶瓷的滤波器由于压电陶瓷具有频率选择性和频率稳定性,它可以用作滤波器。
在通信、电子设备等领域中,使用压电陶瓷制造滤波器可以有效地去除杂散信号,提高信号的质量。
4. 压电陶瓷的振动传感器压电陶瓷也可以用作振动传感器,用于测量和监测结构物体的振动频率、幅度等参数。
在工程结构监测、地震监测等领域有着广泛的应用。
5. 压电陶瓷的声波传感器压电陶瓷还可以用作声波传感器,用于测量和检测声波信号。
在语音识别、声频分析等领域中有着重要的应用。
结论压电陶瓷作为一种特殊的陶瓷材料,具有压电效应和逆压电效应,被广泛用于各种领域。
通过压电效应原理,压电陶瓷可以实现电能和机械能之间的互换,从而应用于传感器、换能器、滤波器等设备中。
随着科技的不断发展,压电陶瓷的应用也将不断扩展,为各行业带来更多的便利和创新。
压电陶瓷用途

压电陶瓷用途压电陶瓷是一种特殊的陶瓷材料,具有压电效应。
它在应用领域有着广泛的用途。
本文将从几个方面介绍压电陶瓷的用途。
一、传感器领域压电陶瓷具有压电效应,当施加力或压力时,会产生电荷或电压。
因此,它在传感器领域有着重要的应用。
例如,压电陶瓷可以用于压力传感器,通过测量电荷或电压的变化来测量外界压力的大小。
此外,压电陶瓷还可以用于加速度传感器、力传感器、声音传感器等。
二、声学设备领域压电陶瓷在声学设备领域有着广泛的应用。
例如,压电陶瓷可以用于扬声器,通过施加电压来产生声音。
同时,它也可以用于麦克风,通过感应声音振动来产生电信号。
此外,压电陶瓷还可以用于超声波发生器、声纳等声学设备。
三、机械设备领域由于压电陶瓷具有压电效应和压电逆效应,可以将机械能转化为电能,也可以将电能转化为机械能。
因此,在机械设备领域有着广泛的应用。
例如,压电陶瓷可以用于振动器,通过施加电压来产生机械振动。
同时,它也可以用于马达或执行器,通过施加电压来实现精确的运动控制。
四、医疗设备领域压电陶瓷在医疗设备领域也有着重要的应用。
例如,压电陶瓷可以用于超声波医疗设备,通过施加电压来产生超声波,用于医学诊断和治疗。
此外,压电陶瓷还可以用于人工耳蜗,将声音转化为电信号,帮助聋哑人恢复听力。
五、电子设备领域压电陶瓷在电子设备领域也有着广泛的应用。
例如,压电陶瓷可以用于压电陶瓷滤波器,通过施加电压来改变其振动频率,实现信号的滤波和调谐。
此外,压电陶瓷还可以用于电子驱动器、电子开关等电子设备。
压电陶瓷具有广泛的应用领域,包括传感器、声学设备、机械设备、医疗设备以及电子设备等。
它的独特性能使其成为许多领域中不可或缺的材料。
随着科技的不断发展,相信压电陶瓷的应用领域还将不断拓展和深化。
压电陶瓷的原理和应用

压电陶瓷的原理和应用概述压电陶瓷是一种特殊的材料,它具有压电效应,能够将机械能转化为电能。
压电陶瓷在许多领域都有广泛的应用,如声音传感器、振动马达、压力传感器等。
本文将介绍压电陶瓷的原理和一些常见的应用。
压电效应原理压电效应是指当施加在压电材料上的压力或变形时,会在其表面产生电荷。
这种效应是由于压电材料的晶格结构具有非对称性导致的。
压电效应可以通过外电场和外压力来激活,也可以通过压电材料的自身应力来激活。
压电陶瓷的结构压电陶瓷通常由铁电陶瓷和铅酸铌酸铁锆陶瓷两种材料组成。
铁电陶瓷具有铁电性质,能够在外电场的作用下产生电荷。
而铅酸铌酸铁锆陶瓷则具有高压电效果。
常见应用声音传感器压电陶瓷在声音传感器方面有着广泛的应用。
它可以将声波转化为电信号,用于测量声音的频率和强度。
声音传感器常被应用于无线通讯设备、音频设备等。
振动马达压电陶瓷的振动性能使其成为振动马达的理想材料。
通过施加交变电场,压电陶瓷可以产生机械振动,用于实现各种振动设备,如手机震动、电动牙刷等。
压力传感器由于其压电效应,压电陶瓷可用于制造高灵敏度的压力传感器。
当施加压力时,压电陶瓷会产生电荷输出,用于测量压力的大小。
压力传感器广泛应用于工业自动化、机械设备等领域。
超声波产生器压电陶瓷可以将电能转化为超声波的机械能,因此被广泛应用于超声波产生器中。
通过控制电场的频率和强度,压电陶瓷可以产生高频率的超声波,用于医疗成像、清洗设备等。
光学设备压电陶瓷的机械性能和光学性能使其成为光学设备中的重要组成部分。
压电陶瓷可以用于调整光学元件的位置和形状,实现自动对焦、光阑调控等功能。
总结压电陶瓷凭借其独特的压电效应,在许多领域都有着重要的应用。
从声音传感器到光学设备,压电陶瓷都为这些设备的正常运行提供了关键的功能支持。
随着科学技术的不断发展,压电陶瓷的应用前景将会更加广阔。
压电生物陶瓷

压电生物陶瓷
压电生物陶瓷是一种特殊类型的陶瓷材料,具有压电效应。
压电效应是指某些材料在受到力或压力作用时可以产生电荷,或者在施加电场时可以发生形变或振动。
压电生物陶瓷通常是由钛酸锆钠(PZT)等压电陶瓷材料制成。
这些陶瓷材料在生物医学领域中具有广泛的应用,例如:
1. 超声成像:压电生物陶瓷可以用作超声探头中的压电晶体,将电能转换为声能,从而产生超声波。
这些超声波可以用于医学成像,如超声心动图和超声检查。
2. 聆听设备:压电生物陶瓷也可用于人工耳蜗和听力辅助设备中。
它们可以将声音信号转换为电信号,然后传输到听神经中,使听力受损的人能够感知声音。
3. 骨科修复:压电生物陶瓷可以用于骨科修复和骨折治疗。
它们可以作为骨植入物,通过施加电场刺激骨细胞的生长和修复,促进骨骼愈合。
4. 神经刺激:压电生物陶瓷可以用于神经刺激和神经调控。
通过施加电场刺激神经组织,它们可以用于治疗神经性疾病、缓解疼痛和恢复神经功能。
压电生物陶瓷的优点包括其稳定性、可靠性和生物相容性。
它们可以根据特定应用的需求进行制备和形状设计,并且在医学和生物领域中具有广泛的应用潜力。
压电陶瓷片有哪些应用?

压电陶瓷片有哪些应用?
压电陶瓷片是一种具有压电效应的陶瓷材料,当施加机械压力或电场时,可以产生电荷分离和电势差。
由于其特殊的性质,压电陶瓷片在许多领域有广泛的应用。
以下是一些常见的应用领域:
1. 声学设备:压电陶瓷片可以用于声学传感器和扬声器,用于声波的发射、接收和转换,如超声波传感器、麦克风、声纳等。
2. 振动和运动控制:压电陶瓷片可以将电能转换为机械振动能量,用于振动传感器、振动马达、精密定位装置和精密控制系统。
3. 气体点火器:压电陶瓷片可以产生高电压放电,用于点燃燃气、液化石油气等燃料,如燃气灶、燃气热水器等。
4. 压力传感器:压电陶瓷片可以将压力转换为电信号,用于测量和监测压力变化,如压力传感器、压力开关等。
5. 温度补偿器:压电陶瓷片的电性质随温度变化较小,可以用于温度补偿器,用于精确测量和控制温度。
6. 超声波清洗和焊接:压电陶瓷片可以产生高频超声波振动,用于清洗和焊接应用,如超声波清洗机、超声波焊接机等。
7. 医疗设备:压电陶瓷片可以用于医疗设备,如超声波成像、超声波治疗、超声波刀等。
此外,压电陶瓷片还在其他领域有一些应用,如流量计、压力控制器、电子锁、电子烟、汽车喇叭等。
由于其高效、可靠和精确的性能,压电陶瓷片在现代科技中扮演着重要的角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电陶瓷材料及应用一、概述1.1电介质电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。
国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。
美国MIT建立了以Hippel教授为首的绝缘研究室。
苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。
特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。
随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。
我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。
80年代初中国电工技术学会又建立了工程电介质专业委员会。
近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。
主要有:(1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。
(2)、化学功能陶瓷如各种传感器、化学泵等。
(3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。
(电介质物理——邓宏)功能陶瓷作为信息时代的支柱材料,以其独特的力、热、电、磁、光以及声学等功能性质,在各类信息的检测、转换、处理和存储中具有广泛的应用,是一类重要的、国际竞争极为激烈的高技术材料。
压电陶瓷作为重要的功能材料在电子材料领域占据相当大的比重。
(材料一)1.2压电材料的分类具有压电效应的材料称为压电材料。
自1880年Jacques Curie 和Pierre Curie发现压电效应以来,压电材料发展十分迅速。
利用压电材料构成的压电器件不仅广泛用于电子学的各个领域,而且已遍及日常生活。
例如,农村中家家户户屋檐下挂的小喇叭--压电陶瓷扬声器;医院里检查心脏、肝部的超声诊断仪上的探头--压电超声换能器;电子仪器内的各种压电滤波器;石油、化工用各种压电测压器、压电流量仪等等。
压电材料主要有压电晶体、陶瓷、压电薄膜、压电聚合物及复合压电材料等(如图1.1所示)。
图1.1 压电材料的分类压电单晶体是指按晶体空间点阵长程有序生长而成的晶体。
这种晶体结构无对称中心,因此具有压电性。
如水晶(石英晶体)、镓酸锂等。
压电陶瓷是经过直流高电压极化处理过后具有压电性的铁电陶瓷。
这些构成铁电陶瓷的晶粒的结构一般是不具有对称中心的,存在着与其它晶轴不同的极化轴,而且它们的原胞正负电荷重心不重合,即有固有电矩——自发极化(Ps)存在。
然而,铁电陶瓷是由许多细小晶粒聚集在一起构成的多晶体。
这些小晶粒在陶瓷烧结后,通常是无规则地排列的。
而且,各晶粒间自发极化方向杂乱,总的压电效应会互相抵消,因此在宏观上往往不呈现压电性能。
在外电场作用下,铁电陶瓷的自发极化强度可以发生转向,在外电场去除后还能保持着一定值——剩余极化(Pr),如图1.2所示,其中Ec为矫顽场,Psat为饱和极化强度(定义)。
利用铁电材料晶体结构中的这种特性,可以对烧成后的铁电陶瓷在一定的温度、时间条件下,用强直流电场处理,使之在沿电场方向显示出一定的净极化强度。
这一过程称为人工极化。
经过极化处理后,烧结的铁电陶瓷将由各向同性变成各向异性,并因此具有压电效应。
由此可见,陶瓷的压电效应来源于材料本身的铁电性。
因此,所有的压电陶瓷也都应是铁电陶瓷。
图1.2 铁电材料的电滞回线相比较而言,压电陶瓷压电性强、介电常数高、可以加工成任意形状,但机械品质因子较低、电损耗较大、稳定性差,因而适合于大功率换能器和宽带滤波器等应用,但对高频、高稳定应用不理想。
石英等压电单晶压电性弱,介电常数很低,受切割限制存在尺寸局限,但稳定性很高,机械品质因子高,多用来作标准品率控制的振子、高选择性(多属高频狭带通)的滤波器以及高频、高温超声换能器等。
压电薄膜是一种独特的高分子传感材料,能相对于压力或拉伸力的变化输出电压信号,因此是一种理想的动态应变片,压电薄膜元件通常由四部分组成:金属电极、加强电压信号压膜、引线和屏蔽层。
压电聚合物,如偏聚氟乙烯(PVDF)(薄膜)等,具有材质柔韧,低密度,低阻抗和高压电电压常数(g)等优点,为世人瞩目且发展十分迅速,现在水声超声测量、压力传感、引燃引爆等方面获得应用。
不足之处是压电应变常数(d)偏低,使之作为有源发射换能器受到很大的限制。
复合压电材料,是在有机聚合物基底材料中嵌入片状、棒状、杆状、或粉末状压电材料构成的。
至今已在水声、电声、超声、医学等领域得到广泛的应用。
如它制成的水声换能器,不仅具有高的静水压响应速率,而且耐冲击,不易受损且可用于不同的深度。
(材料一)1.3发展概况1942-1945年间发现钛酸钡(BaTiO3)具有异常高的介电常数,不久又发现它具有压电性,BaTiO3压电陶瓷的发现是压电材料的一个飞跃。
这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。
1947年美国用BaTiO3陶瓷制造留声机用拾音器,日本比美国晚用两年。
BaTiO3存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。
1954年美国B·贾菲等人发现了压电PbZrO3-PbTiO3(PZT)固溶体系统,这是一个划时代大事,使在BaTiO3时代不能制作的器件成为可能。
此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。
六十年代初,Smolensky等人对复合钙钛矿型化合物进行了系统的研究,提出可以用不同原子价的元素组合取代钙钛矿结构中的A-位和B-位离子,大大增加了钙钛矿型化合物的种类。
如Pb(Mg1/3Nb2/3)O3(PMN)、Pb(Ni1/3Nb2/3)O3(PNN)、Pb(Sb1/3Nb2/3)O3(PSN)等,这些新的二元系压电陶瓷不仅各有特色,而且陶瓷的烧结温度低,工艺重复性好,对压电材料的发展起了积极作用。
1965年,日本松下电气公司的H.Ouchi发表了把Pb(Mg1/3Nb2/3)O3作为第三组分加到PZT 陶瓷中制成的三元系压电陶瓷(简称PCM),发现它具有良好的压电性能。
1969年,我国压电与声光技术研究所研制成功把Pb(Mn1/3Sb2/3)O3作为第三组分加到PZT中的三元系压电陶瓷,性能比PZT和PCM优越。
经过10多年的深入研究和广泛应用,这种材料成为我国自成体系的、具有独特性能的、工艺稳定的三元系压电陶瓷,起名PMS。
PMS压电陶瓷和用它作换能器的压电晶体速率陀螺均先后获国家科委发明奖。
80年代,为了既能满足人类日益增长的物质文化生活需要,又能减少对环境的污染,保护人类赖以生存的生态环境,简化材料制备工艺,开始了非铅基铁电压电陶瓷的研究工作。
非铅基铁电压电陶瓷主要是以铌酸盐和钛酸盐为主的化合物。
虽然这类材料的目前压电性能还不如锆钛酸铅系,但是非铅基铁电压电陶瓷的研究开发已成为压电陶瓷材料领域的研究前沿之一。
二、压电陶瓷的压电机理与性能参数压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。
2.1极化的微观机理在电场的作用下,电介质内部沿电场方向感应出偶极矩,即在电介质表面出现束缚电荷的物理现象。
极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。
极化机理主要有三种。
(1)电子位移极化——在外电场作用下,构成原子外围的电子云相对于原子核发生位移,这种极化称为电子位移极化(电子极化),其。
极化率称为电子位移极化率e电子位移极化结论是:对于同族元素:e α由上到下增大,因:外层电子数增加,原子半径R 增大;对于同周期元素:不定,因为外层电子数虽然增加,但轨道半径可能减小;离子的电子位移极化率的变化规律与原子大致相同;离子半径大,极化率大;实测电子位移极化率与理论结果仍有差别,但研究发现,304/R e πεα值大,对极化贡献大;电子位移极化率与温度无关,因为,R 与T 无关;极化率为快极化:10-15 –10-16s ,该极化无损耗。
在光频下,只有电子极化,介质的光折射率为:(2)离子位移极化——离子晶体中正、负离子发生相对位移而形成的极化,称为离子(位移)极化(Ionic polarization)。
极化率用i α表示。
离子位移极化结论是:离子位移极化率与电子位移极化率几乎有相同的数量级,均在04πε(10-10)3≈10-40法·米2数量级;离子位移极化只可能在离子晶体中存在,液体或气体介质中不存在离子极化;离子位移极化只与离子晶体结构参数有关,与温度无关;离子位移极化建立或消除时间与离子晶格振动周期有相同数量级,10-12~10-13秒。
(3)取向极化——当极性分子受外电场作用时,偶极子就会产生转矩,由于偶极子与电场方向相同时具有最小位能,于是就电介质整体来看,偶极矩不再等于零,而出现沿电场方向的宏观偶极矩,这种极化现象称为偶极子转向极化,用d α表示。
KT d 320μα= 0μ是极性分子固有偶极矩~米库⋅-3010 (2)根据电介质分子参与极化运动的种类,把极化分成三类:电子位移极化e α;离子位移极化i α;偶极矩转向极化d α。
()EE N E N E p i i d i e ρρρρρ⋅+==-=++=001:,1εαεαεεαααα或电介质的总极化为: (3) 对于各向异性晶体,极化强度与电场存在有如下关系m ,n=1,2,3 (4)式中为极化率,或用电位移写成:(5)图PPt9微观机理图2.2压电性、铁电性与反铁电性2.2.1压电效应压电效应是1880年由JacquesCurie和PierreCurie发现的。
他们在研究热电性与晶体对称性的关系时,发现在一些无对称中心晶体的特定方向上施加压力时,相应的表面上出现正或负的电荷,而且电荷密度与压力大小成正比;同年,他们证实了这类晶体具有可逆的性质,即晶体的形状会受外加电场的作用发生微小的变化(如图2.1所示)。
图2.2 压电效应示意图(a)正压电效应;(b)逆压电效应(ⅰ收缩ⅱ膨胀)。