等差数列及其性质

合集下载

等差数列的性质与公式

等差数列的性质与公式

等差数列的性质与公式等差数列是数列中相邻两项之间的差值保持恒定的数列。

在数学中,等差数列是一种常见的数学模型,具有许多重要的性质和应用。

本文将介绍等差数列的性质与公式,并探讨其在代数、几何等领域中的应用。

一、等差数列的定义等差数列可以用下列形式表示:a,a + d,a + 2d,a + 3d,...其中,a是首项,d是公差。

首项代表数列中的第一个数,公差代表相邻两项之间的差值。

二、等差数列的性质1. 通项公式等差数列的第n项可以用通项公式表示:an = a + (n-1)d其中,an代表等差数列的第n项,a是首项,d是公差。

2. 求和公式等差数列的前n项和可以用求和公式表示:Sn = (n/2)(a + an)其中,Sn代表等差数列的前n项和,a是首项,an是第n项,n代表项数。

3. 公差与项数的关系对于等差数列,项数与公差的关系可以表示为:n = (an - a)/d + 1其中,n代表项数,a是首项,an是第n项,d是公差。

4. 等差中项等差数列中的中项可以表示为:a + (n-1)(d/2)其中,a是首项,n代表项数,d是公差。

5. 等差数列的性质等差数列具有以下性质:(1) 等差数列的任意三项成等差数列;(2) 等差数列对任意项数取整后仍为等差数列;(3) 等差数列的倒序也为等差数列;(4) 等差数列的前n项和等于后n项和。

三、等差数列的应用等差数列在数学中具有广泛的应用,特别是在代数和几何领域中。

1. 代数应用(1) 等差数列可用于解决各种代数问题,如数列的推导、求和等问题。

(2) 等差数列可用于建立各种代数方程,进而解决实际问题。

2. 几何应用(1) 等差数列可用于几何问题,如等差中项问题、等差数列构成的图形问题等。

(2) 等差数列可用于建立几何方程,求解各种几何问题。

3. 统计应用(1) 等差数列可用于统计学中的各种模型建立与应用。

(2) 等差数列可用于数理统计、经济学等领域的数据分析。

等差数列的性质

等差数列的性质

等差数列的性质等差数列是指数列中相邻两项之差保持不变的数列。

在数学中,等差数列具有许多重要的性质和特点。

本文将从等差数列的定义、通项公式、前n项和以及应用等方面进行论述,以帮助读者全面了解等差数列的性质。

一、等差数列的定义等差数列是指在数列中,任意两个相邻的项之间的差保持不变。

设等差数列的首项为a₁,公差为d,那么数列的通项可以表示为:aₙ = a₁ + (n-1)d,其中n为项数。

二、通项公式等差数列的通项公式是指通过数列的首项和公差,可以求得任意一项的数值。

对于等差数列来说,通项公式可以表示为:aₙ = a₁ + (n-1)d。

三、前n项和等差数列的前n项和是指数列中前n个项的和。

使用等差数列的前n项和可以快速计算出数列的和。

对于等差数列来说,前n项和的公式可以表示为:Sₙ = (n/2)(a₁ + aₙ),其中Sₙ表示前n项和。

四、等差数列的性质1. 共线性:等差数列的图像上的点都在一条直线上,这是等差数列的一个重要特点。

2. 等差性:数列中相邻两项之差保持不变,即每一项与它的前一项之差等于公差d。

这个性质使得等差数列的计算更加简便。

3. 对称性:等差数列以其中间的项为对称轴,对称轴两边的元素之和相等。

4. 递推性:等差数列的每一项可以通过前一项的值加上公差得到。

五、等差数列的应用等差数列广泛应用于数学和实际生活中。

以下是一些常见的等差数列应用场景:1. 增长和衰减问题:等差数列可以应用于描述某一变量的增长或衰减过程,如财富的积累、人口的增长等。

2. 等距离问题:等差数列可以应用于描绘等距离问题,比如车辆在匀速行驶时的位置变化、航空飞行中的高度变化等。

3. 资金管理问题:等差数列可以应用于资金管理问题中,如每月存入固定金额的储蓄计划、还款计划等。

4. 数字排列问题:等差数列可以应用于数字排列问题中,如排队的位置、打印机打印的顺序等。

总结:等差数列作为一种常见的数列形式,在数学和实际生活中都发挥着重要作用。

等差数列的性质和应用

等差数列的性质和应用

等差数列的性质和应用等差数列是数学中常见的一种数列,它具有一些独特的性质和广泛的应用。

本文将探讨等差数列的性质、相关公式以及它在实际生活中的应用。

一、等差数列的定义和性质等差数列是指数列中的相邻两项之差保持不变。

具体来说,对于一个数列a1, a2, a3, ..., an,如果它满足 a2 - a1 = a3 - a2 = ... = an - an-1 = d,其中d是常数,那么这个数列就是等差数列。

其中,d被称为等差数列的公差。

等差数列的性质如下:1. 常数差:等差数列的相邻两项之差是一个常数,即公差。

2. 通项公式:等差数列可以用一个通项公式来表示。

通项公式的一般形式是an = a1 + (n - 1)d,其中an是数列的第n项,a1是数列的首项,d是公差。

3. 项数和求和公式:等差数列前n项和的求和公式是Sn = (n/2)(a1+ an),其中Sn是前n项和。

4. 对称性:等差数列中的任意两个项,以中间项为对称轴,其差相等。

二、几个经典的等差数列应用等差数列在数学中有着广泛的应用,下面列举几个经典的应用。

1. 数学题中的应用:等差数列经常出现在数学题目中,尤其是在初中和高中的代数题和数列题中。

通过理解等差数列的性质和公式,可以帮助我们解答相关的问题。

例如:已知等差数列前6项的和为45,首项为2,公差为3,求这个数列的第10项。

我们可以使用等差数列的前n项和求和公式来解决这个问题,将数值代入公式计算即可。

2. 经济学中的应用:等差数列在经济学中的应用比较常见,特别是在描述递增或递减的趋势时。

例如,某公司在过去几年里的年度营业额呈等差数列递增,通过观察前几年的营业额,我们可以推测未来几年的营业额,并作出相应的经营策略。

3. 物理学中的应用:等差数列在物理学中也有一定的应用。

例如,在描述速度随时间变化的问题时,如果速度每单位时间都以相同的增量或减量发生变化,那么我们可以将这个问题建模成等差数列,从而利用等差数列的性质进行求解。

等差数列的概念与性质

等差数列的概念与性质

等差数列的概念与性质等差数列是数学中常见且重要的数列之一。

它是由一系列数字按照相同公差递增或递减而形成的。

本文将介绍等差数列的概念、性质及其在数学和实际生活中的应用。

一、概念等差数列指的是一个数列,其每一项与前一项之差都相等。

公差(d)是其中相邻两项之差。

如果一个等差数列的首项为a₁,公差为d,则数列的通项公式可表示为:aₙ = a₁ + (n-1) * d其中,aₙ为第n项。

二、性质1. 公差与项数的关系:对于等差数列,任意相邻两项之差都等于公差。

所以,如果已知等差数列的首项和末项,以及项数,则可以求得公差的值。

公差(d)可以表示为:d = (aₙ - a₁) / (n - 1)2. 求和公式:等差数列的前n项和可以通过求和公式来计算。

对于一个等差数列的前n项和(Sₙ),其计算公式为:Sₙ = (n/2) * (a₁ + aₙ)3. 通项公式的推导:根据等差数列的性质,可以通过推导得出通项公式。

首先,我们知道第n项与首项之间的差距是(n-1)倍的公差,即aₙ = a₁ + (n-1) * d。

经过整理后,可以得到通项公式。

三、应用等差数列在数学和实际生活中有广泛的应用。

1. 数学中的应用:等差数列是数学中重要的概念,并在其他数学领域中得到应用。

例如,在数列和级数中,等差数列的求和公式能够准确计算出前n项的和。

此外,在微积分中,等差数列和等差级数的概念与计算也起到重要的作用。

2. 实际生活中的应用:等差数列在实际生活中的应用较为广泛。

例如,通过分析连续几年的销售数据,可以判断某个产品的销售趋势是否呈现等差数列的规律。

通过识别这样的规律,商家可以对产品定价、库存管理等方面做出更准确的决策。

此外,等差数列还可以应用于金融领域,例如利率的计算、投资回报预测等。

总结:等差数列是数学中的重要概念,其性质包括公差与项数的关系、求和公式以及通项公式的推导。

在数学中,等差数列的应用涉及到数列与级数、微积分等方面。

等差数列的性质及应用

等差数列的性质及应用

等差数列的性质及应用等差数列是指数列中相邻项之间的差值保持不变的数列。

它是数学中常见且重要的数列类型之一,在数学及其他领域都有着广泛的应用。

本文将探讨等差数列的性质及其在实际问题中的应用。

一、等差数列的定义与性质1. 定义:等差数列可以定义为一个数列,其中每一项与它的前一项之差等于一个常数d,称为等差数列的公差。

2. 通项公式:假设等差数列的首项为a₁,公差为d,则第n项可以表示为an = a₁ + (n-1)d。

3. 求和公式:假设等差数列的首项为a₁,末项为an,项数为n,则等差数列的和可以表示为Sn = (a₁ + an) * n / 2。

二、等差数列的应用1. 数学问题中的应用:等差数列在数学问题中经常出现。

例如,找出等差数列中的特定项、求等差数列的和等都可以通过等差数列的性质与公式进行解决。

2. 自然科学中的应用:等差数列在自然科学中也有着广泛的应用。

例如,物理学中的匀速直线运动、化学中的反应速率等都可以建立在等差数列的基础上,通过分析数值变化的规律来求解实际问题。

3. 经济学与金融学中的应用:等差数列在经济学与金融学中也有着重要的应用。

例如,研究某种商品价格的变化、计算贷款利息等都可以运用等差数列的概念。

三、实际问题中的等差数列应用举例1. 降雨量分析:假设某地区每年的降雨量以等差数列的形式增长,首年降雨量为100毫米,公差为10毫米。

求第5年的降雨量。

解答:根据等差数列的通项公式,第5年的降雨量可以表示为a₅ = a₁ + (5-1)d = 100 + 4*10 = 140毫米。

2. 平均成绩计算:某学生连续4次数学考试的成绩构成等差数列,首次考试得了80分,公差为4分。

求这4次考试的平均分。

解答:根据等差数列的求和公式,这4次考试的总分为S₄ = (80 +a₄) * 4 / 2,其中a₄为最后一次考试的成绩。

平均分可以表示为S₄ / 4,即(80 + a₄) * 2。

由此可得,平均分为(80 + a₄) * 2 / 4。

等差数列及性质

等差数列及性质

等差数列及性质一、知识梳理:1.等差数列的定义(1)前提条件:①从第2项起.②每一项与它的前一项的差等于同一个常数.(2)结论:这个数列是等差数列.(3)相关概念:这个常数叫做等差数列的公差,常用字母d表示.2.等差中项(1)前提:三个数a,A,b成等差数列.(2)结论:A叫做a,b的等差中项.(3)满足的关系式:2A=a+b.34.等差数列通项公式的推广5.等差数列的性质(1){a n}是公差为d的等差数列,若正整数m,n,p,q满足m+n=p+q,则:a m+a n=a p+a q.特别地,当m+n=2k(m,n,k∈N*)时,a m+a n=2a k.(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1+a n =a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.(5).等差数列的图象由a n=d n+(a1-d),可知其图像是直线上的一些等间隔的点,其中是该直线的斜率.(6).等差数列的单调性:对于a n=d n+(a1-d),(1)当d>0时,{a n}为;(2)当d<0时,{a n}为;(3)当d=0时,{a n}为.二、题型探究:探究一:等差数列的通项公式及其应用例1.(1)已知等差数列{a n}:3,7,11,15,….①135,4m+19(m∈N*)是{a n}中的项吗?试说明理由.②若a p,a q(p,q∈N*)是数列{a n}中的项,则2a p+3a q是数列{a n}中的项吗?并说明你的理由.(2)在等差数列{a n}中,已知a5=10,a12=31,则首项a1=________,公差d=________.1.(1)若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q =________.(2)已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?探究二:等差数列的判定例2.(1)已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2且x ∈N *)确定.①求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;②当x 1=12时,求x 2 015.(2)已知1b +c ,1c +a ,1a +b 成等差数列,证明:a 2,b 2,c 2也成等差数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列;(3)通项公式法:a n =an +b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.2.(1)判断下列数列是否为等差数列:①在数列{a n }中a n =3n +2; ②在数列{a n }中a n =n 2+n .(2)已知c n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2,则数列{c n }________等差数列(填“是”或“不是”).(3)已知数列{a n }满足a 1=2,a n +1=2a n a n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.探究三:等差中项的应用例3.一个等差数列由三个数组成,三个数的和为9,三个数的平方和为35,求这三个数.[互动探究]若将题中的三个数改为四个数成等差数列,且四个数之和为26,第二个数与第三个数之积为40,求这四个数.三个数或四个数成等差数列的设法当三个数或四个数成等差数列且和为定值时,方法一:可设出首项a1和公差d,列方程组求解.方法二:采用对称的设法,三个数时,设为a-d,a,a+d;四个数时,可设为a-3d,a-d,a+d,a+3d.3.(1)方程x2-6x+1=0的两根的等差中项为()A.1 B.2C.3 D.4(2)已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.探究四:等差数列性质的应用例4.在等差数列{a n}中:(1)若a5=a,a10=b,求a15;(2)若a3+a8=m,求a5+a6.(3)若a1+a2+…+a5=30,a6+a7+…+a10=80,求a11+a12+…+a15.(1)利用等差数列的通项公式列关于a1和d的方程组,求出a1和d,进而解决问题是处理等差数列问题的最基本方法.(2)巧妙地利用等差数列的性质,可以大大简化解题过程.4.(1)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 101<0 C .a 3+a 99=0 D .a 51=51(2)若x ≠y ,且两个数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 1-a 2b 1-b 2等于( )A .1 B.23C.34D.43探究五:等差数列的综合问题例5.在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的根,求数列{a n }的通项公式.例6.在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列{a n }的通项公式;(3)若λa n +1a n +1≥λ对任意n ≥2的整数恒成立,求实数λ的取值范围.5.(1)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n ,则a n =________.(2)已知数列{a n }满足(a n +1-a n )(a n +1+a n )=16,且a 1=1,a n >0.①求证:数列{a 2n }为等差数列; ②求a n .例7.已知等差数列{a n }的首项为a 1,公差为d ,且a 11=-26,a 51=54,求a 14的值.你能判断该数列从第几项开始为正数吗?[解] 由等差数列通项公式a n =a 1+(n -1)d ,列方程组⎩⎪⎨⎪⎧a 1+10d =-26,a 1+50d =54,解得⎩⎪⎨⎪⎧a 1=-46,d =2.∴a 14=-46+13×2=-20.∴a n =-46+(n -1)×2=2n -48. 令a n ≥0,得2n -48≥0⇒n ≥24, ∴从第25项开始,各项为正数.[错因与防范] (1)忽略了对“从第几项开始为正数”的理解,误认为n =24也满足条件.(2)由通项公式计算时,易把公式写成a n =a 1+nd ,导致结果错误.(3)等差数列通项公式中有a 1,a n ,n ,d 四个量,知三求一,一定要准确应用公式.7.(1)首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是________. (2)一个等差数列的首项为125,公差d >0,从第10项起每一项都大于1,求公差d 的范围.例8.(本题满分12分)两个等差数列5,8,11,…和3,7,11,…都有100项,那么它们共有多少相同的项?[解] 设已知的两数列的所有相同的项构成的新数列为{c n },c 1=11.2分 又等差数列5,8,11,…的通项公式为a n =3n +2,4分 等差数列3,7,11,…的通项公式为b n =4n -1.6分 所以数列{c n }为等差数列,且公差d =12,①8分 所以c n =11+(n -1)×12=12n -1.10分又a 100=302,b 100=399,c n =12n -1≤302,②得n ≤2514,可见已知两数列共有25个相同的项.12分[规范与警示] (1)解题过程中①处易出现令3n +2=4n -1,解得n =3的错误,这实际上是混淆了两个n 的取值而导致的错误,也是常犯错误,解题过程中②处易出现c n =12n -1≤399,导致错误.这是对题意不理解造成的,两个数列的公共项应以较小的为基准求解.(2)在解决数列的问题时弄清公式中各量的含义,不同的数列中同一量的意义是相同的,但是并不一定对应.如本例中项数n 在数列{a n }和数列{b n }中的意义,当项相同时,对应的序号n 不一定相同.巩固练习:1.(2015·汉口高二检测)下列说法中正确的是( )A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2a ,2b ,2c 成等差数列2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +13.(2014·高考重庆卷)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8C .10 D .144.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37C .100 D .-37 5.(2014·高考辽宁卷)设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0B .d >0C .a 1d <0 D .a 1d >0 6.(2015·泰安高二检测)在等差数列{a n }中,a 3,a 10是方程x 2-3x -5=0的根,则a 5+a 8=________.7.(2015·河北省石家庄市月考)在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为________.8.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.9.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.10.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.11.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求{a n }的通项公式.12.已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式.备选:《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共为4升,则第5节的容积为________升.巩固练习答案:1.解析:选C.因为a ,b ,c 成等差数列,则2b =a +c , 所以2b +4=a +c +4,即2(b +2)=(a +2)+(c +2), 所以a +2,b +2,c +2成等差数列.2.解析:选D.设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.解析:选B.法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 4.解析:选C.设c n =a n +b n ,由于{a n },{b n }都是等差数列,则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100,c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0.∴c 37=100,即a 37+b 37=100.5.解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0.6.解析:由已知得a 3+a 10=3.又数列{a n }为等差数列,∴a 5+a 8=a 3+a 10=3. 答案:37.解析:由等差数列的性质可知,a 3+a 5+a 7+a 9+a 11=(a 3+a 11)+(a 5+a 9)+a 7=5a 7=100,∴a 7=20.∴3a 9-a 13=2a 9+a 9-a 13=(a 5+a 13)+a 9-a 13=a 5+a 9=2a 7=40.答案:408.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn=n ,所以a n =n 2.答案:n 29.解析:由于三边长构成公差为4的等差数列,故可设三边长分别为x -4,x ,x +4. 由一个内角为120°,知其必是最长边x +4所对的角. 由余弦定理得,(x +4)2=x 2+(x -4)2-2x (x -4)·cos 120°, ∴2x 2-20x =0,∴x =0(舍去)或x =10, ∴S △ABC =12×(10-4)×10×sin 120°=15 3.答案:15 310.解:(1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧a 1+4d =-1a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5d =1. (2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧a 1+a 1+5d =12a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1d =2.∴a n =1+(n -1)×2=2n -1,∴a 9=2×9-1=17.11.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3. ∵a 1,a 2,a 3成等差数列,可设a 1=a 2-d ,a 3=a 2+d ,∴a 2=1. 由⎝⎛⎭⎫121-d+12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2. 当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3;当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5. 12.解:(1)证明:b n +1-b n =1a n +1-2-1a n -2=1(4-4a n)-2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.又b 1=1a 1-2=12,∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知b n =12+(n -1)×12=12n .∵b n =1a n -2,∴a n =1b n +2=2n +2.∴数列{a n }的通项公式为a n =2n+2.备选:解析:设自上而下各节的容积构成的等差数列为 a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9.则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=4a 1+6d =3,a 7+a 8+a 9=3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,故a 5=a 1+4d =6766. 答案:67667(1)解析:a n =24+(n -1)d ,由题意知,⎩⎪⎨⎪⎧a 10<0,a 9≥0,即⎩⎪⎨⎪⎧24+9d <0,24+8d ≥0,解得-3≤d <-83.答案:⎣⎡⎭⎫-3,-83 (2)解:设等差数列为{a n },由d >0,知a 1<a 2<…<a 9<a 10<a 11…,依题意,有⎩⎪⎨⎪⎧1<a 10<a 11<…,a 1<a 2<…<a 9≤1,即⎩⎪⎨⎪⎧a 10>1a 9≤1⇔⎩⎨⎧125+(10-1)d >1,125+(9-1)d ≤1,解得875<d ≤325,即公差d 的取值范围是⎝⎛⎦⎤875,325.。

等差数列性质公式总结

等差数列性质公式总结

等差数列性质公式总结等差数列,是指数列中的每一项都与它的前一项之差保持相等的数列。

等差数列具有许多性质和公式,本文将对这些性质和公式进行总结。

以下是对等差数列性质公式的详细总结:一、基本概念与公式1. 等差数列:数列中的每一项都与它的前一项之差相等,这个差值称为公差d。

记作a1, a2, a3, ...,其中a1为首项,d为公差,则等差数列的通项公式为an = a1 + (n-1)d。

2. 前n项和公式:等差数列的前n项和Sn = (a1 + an) * n / 2 或Sn = (2a1 + (n-1)d) * n / 2。

3. 首项与末项的关系:an = a1 + (n-1)d。

4. 公差与项数的关系:d = (an - a1) / (n-1)。

5. 首项与末项的平均值:(a1 + an) / 2 = a[(n+1) / 2],其中a是中项的下标。

6. 首项与末项的乘积:a1 * an = a[m + (n-m)/2] * a[m - (n-m)/2],其中m为项数之和。

7. 通项求和:已知a1,an和n,求等差数列的每一项之和Sn。

Sn = (a1 + an) * n / 2。

二、相邻项间的关系8. 任意两项的平均值:(an + a(n+1)) / 2 = a[(n+2) / 2]。

9. 任意三项的关系:a(n-1) + a(n+1) = 2an。

10. 任意四项的关系:a(n-2) + a(n-1) + a(n+1) + a(n+2) = 2(an + an+1)。

11. 连续奇(偶)数项之和:an + a(n-2) + ... + a3 + a1 =(n+1)a[(n+1)/2]。

12. 连续奇(偶)数项之和:an + a(n-2) + ... + a4 + a2 = na[n/2]。

13. 间隔和公式:a1 + a3 + a5 + ... + a(2n-1) = n^2。

14. 间隔和公式:a2 + a4 + a6 + ... + a(2n) = n(n+1)。

等差数列的性质总结

等差数列的性质总结

等差数列的性质总结等差数列是数学中常见的一种数列。

在等差数列中,每个项之间的差均相等,这个差值称为公差。

等差数列具有许多特性和性质,下面将对其进行总结。

首先,等差数列的通项公式为an = a1 + (n-1)d,其中an为第n个项,a1为第一个项,d为公差。

这个公式可以帮助我们快速计算等差数列中任意项的值。

其次,等差数列的前n项和公式为Sn = (n/2)(a1 +an),其中Sn为前n项的和。

这个公式可以在求等差数列前n项和时很方便地使用。

等差数列的性质还包括以下几个方面:1. 等差数列中任意三项的中项等于它们的平均数。

对于等差数列中的第m项和第n项,它们的中间项为am+n/2。

例如,对于数列1, 4, 7, 10, 13,中项7 = (1 + 13) / 2 = 7。

2. 等差数列中两项之和等于它们的对称项之和。

对于等差数列中的第m项和第n项,它们的和等于第(m+n)/2项和第(m+n)/2+1项的和。

例如,对于数列1, 4, 7, 10, 13,2+7 = 1+13 = 14。

3. 等差数列中的任意项等于它们的对称项之和的平均数。

对于等差数列中的第m项和第n项,它们的平均数等于第(m+n)/2项。

例如,对于数列1, 4, 7, 10, 13,(2+7)/2 = (1+13)/2 = 7。

4. 等差数列的奇数项和等于偶数项和的一半加上第一个项。

对于等差数列中的第m项和第n项,其中n为奇数,它们的和等于第(n+1)/2项的和加上第一个项。

例如,对于数列1, 4, 7, 10, 13,1+7+13=(3+1)/2 +1 = 11。

5. 等差数列的特殊求和公式。

对于等差数列中的第一个项和公差为1的情况,前n项和等于n(n+1)/2。

例如,数列1, 2, 3, 4, 5的和为5(5+1)/2 = 15。

最后,等差数列广泛应用于数学和实际生活中。

在数学中,等差数列常用于推导与证明其他数学公式和理论。

在实际生活中,等差数列可以用来表示一些具有规律性的变化,如时间序列、成绩排名等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列及其性质1.等差数列的定义如果一个数列______________________________________,那么这个数列就叫做等差数列,这个常数叫做等差数列的________,通常用字母______表示. 2.等差数列的判定(1)定义法:a n -a n -1=d (n ≥2);(2)等差中项法:2a n +1=a n +a n +2. 3.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是________________. 4.等差中项如果________,那么A 叫做a 与b 的等差中项. 5.等差数列的常用性质(1)通项公式的推广:a n =a m +________,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则__________________. (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为________. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为________的等差数列.(6)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (7)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.练习1 已知等差数列前10项的和为30,前20项的和为70,求前30项的和(8) 等差数列{}n a 中,当项数是偶数2n 时,,S S nd -=奇偶1n n S a S a +=奇偶当项数是奇数12-n 时,-S S a =奇中偶, 1S n S n =-奇偶6 .等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =__________或S n =____________. 7. 等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d2n . 数列{a n }是等差数列⇔S n =An 2+Bn ,(A 、B 为常数).8 .等差数列的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最____值;若a 1<0,d >0,则S n 存在最_____值.练习2 等差数列{}n a ,1791,25S S a ==问前多少项的和最大?练习3 等差数列{}n a ,前项和为0,0,12,13123<>=S S a S n , (1),求公差d 的取值范围,(2),问前多少项的和最大练习 4 {}n a 是等差数列,首项0,0,020042003200420031<>+>a a a a a ,求使前n 项和0>n S 成立的最大自然数n 的值9 等差数列{}{}n n b a ,的前项和分别为n n B A ,,则1212)12()12(--=--=n n nn nn B A b n a n b a练习5 设{}{}n n b a ,是两等差数列,其前n 项好为n n T S ,若3413-+=n n T S nn ,求nn b a ,同类型题 1 设等差数列{}{},n n a b 的前项和为,n n S T ,若对任意的正整数n,都有n nS T =2343n n --,则935748a ab b b b +=++____________同类型题2已知两等差数列{}{}315+2n n n n n n nnA a n a bB n b +和的前n 项和分别为A ,B 且=,则使得为整数的n 个数为 ( )A 0B 1C 2D 3练习6 项数是奇数项的等差数列,奇数项的和为44,偶数项的和为33,求该数列的中间项。

10 题型题型一等差数列的判定或证明例1已知数列{a n }中,a 1=35,a n =2-1a n -1 (n ≥2,n ∈N *),数列{b n }满足b n =1a n -1 (n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.总结:证明或判断一个数列为等差数列,通常有两种方法:(1)定义法:a n +1-a n =d ;(2)等差中项法:2a n +1=a n +a n +2.就本例而言,所用方法为定义法.(1)证明∵a n =2-1a n -1 (n ≥2,n ∈N *),b n =1a n -1.∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52.∴数列{b n }是以-52为首项,1为公差的等差数列.(2)解由(1)知,b n =n -72, 则a n =1+1b n 1+22n -7, 设函数f (x )=1+22x -7,易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. ∴当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.练习1 已知数列{a n }的前n 项和为S n ,且满足S n =S n -12S n -1+1(n ≥2),a 1=2.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求a n 的表达式.(1)证明由S n =S n -12S n -1+1,得1S n =2S n -1+1S n -1=1S n -1+2,∴1S n -1S n -1=2,∴⎩⎨⎧⎭⎬⎫1S n 是以1S 1即12为首项,以2为公差的等差数列.(2)解由(1)知1S n =12+(n -1)×2=2n -32, ∴S n =12n -32,∴当n ≥2时,a n =S n -S n -1=12n -32-12n -72=-2⎝⎛2n -32⎝⎛⎭⎫2n -72;当n =1时,a 1=2不适合a n , 故a n=⎩⎨⎧2(n =1)-2⎝⎛⎭⎫2n -32⎝⎛⎭⎫2n -72 (n ≥2).题型二 等差数列的基本量的计算例2设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.总结: (1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.解(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8. 所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)方法一∵S 5S 6+15=0, ∴(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0. 因为关于a 1的一元二次方程有解,所以Δ=81d 2-8(10d 2+1)=d 2-8≥0, 解得d ≤-22或d ≥2 2.方法二∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0. 故(4a 1+9d )2=d 2-8.所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2. 练习2 已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3, 解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35可得2k -k 2=-35,即k 2-2k -35=0解得k =7或k =-5.又k ∈N *,故k =7. 题型三 等差数列的前n 项和及综合应用例3 (1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;(2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.总结: 求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项;②利用性质求出其正负转折项,便可求得和的最值;③将等差数列的前n 项和S n =An 2+Bn (A 、B 为常数)看做二次函数,根据二次函数的性质求最值.解(1)方法一∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝⎛⎭⎫-53=130.方法二同方法一求得d =-53. ∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-562+1256=-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三同方法一得d =-53. 又由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值.且最大值为S 12=S 13=130. (2)∵a n =4n -25,a n +1=4(n +1)-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21. 所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令⎩⎪⎨⎪⎧a n =4n -25<0, ①a n +1=4(n +1)-25≥0, ②由①得n <614;由②得n ≥514,所以n =6.即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列,而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n=⎩⎨⎧21n +n (n -1)2×(-4) (n ≤6)66+3(n -6)+(n -6)(n -7)2×4 (n ≥7)=⎩⎪⎨⎪⎧-2n 2+23n (n ≤6),2n 2-23n +132 (n ≥7). 练习3 设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 009=0. (1)求S n 的最小值及此时n 的值; (2)求n 的取值集合,使a n ≥S n .解方法一(1)设公差为d ,则由S 2 009=0⇒2 009a 1+2 009×2 0082d =0⇒a 1+1 004d =0,d =-11 004a 1,a 1+a n =2 009-n 1 004a 1,∴S n =n 2(a 1+a n )=n 2·2 009-n 1 004a 1=a12 008(2 009n -n 2) ∵a 1<0,n ∈N *,∴当n =1 004或1 005时,S n 取最小值1 0052a 1.(2)a n =1 005-n 1 004a 1. S n ≤a n ⇔a12 008(2 009n -n 2)≤1 005-n 1 004a 1.∵a 1<0,∴n 2-2 011n +2 010≤0,即(n -1)(n -2 010)≤0,解得:1≤n ≤2 010. 故所求n 的取值集合为{n |1≤n ≤2 010,n ∈N *}. 练习4 设等差数列{a n }的前n 项和S n =m ,前m 项和S m =n (m ≠n ), 求它的前m +n 项的和S m +n .解 方法一设{a n }的公差为d , 则由S n =m ,S m =n , 得⎩⎨⎧S n=na 1+n (n -1)2d =m , ①S m=ma 1+m (m -1)2d =n . ②②-①得(m -n )a 1+(m -n )(m +n -1)2·d =n -m ,∵m ≠n ,∴a 1+m +n -12d =-1. ∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d =(m +n )⎝⎛⎭⎫a 1+m +n -12d =-(m +n ).方法二设S n =An 2+Bn (n ∈N *),则⎩⎪⎨⎪⎧Am 2+Bm =n , ③An 2+Bn =m . ④③-④得A(m2-n2)+B(m-n)=n-m. ∵m≠n,∴A(m+n)+B=-1,=-(m+n).∴A(m+n)2+B(m+n)=-(m+n),∴S m+n。

相关文档
最新文档