2017年广东省深圳市中考数学二模试卷含答案
广东省深圳市南山区2017年中考数学二模试卷(含解析)

2017年广东省深圳市南山区中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个数中,最大的数是()A.﹣2 B.C.0 D.62.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+13.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×1084.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35° B.30° C.25° D.20°6.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.下列说法正确的是()①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体;③﹣27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=82分, =82分,S2甲=245,S2=190,那么成绩较为整齐的是乙班.乙A.1个B.2个C.3个D.4个8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP 交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.510.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个11.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个12.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共4小题,每小题3分,共12分)13.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是.14.如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.15.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O 重合,则图中阴影部分的面积是.16.如图,已知点A是双曲线在第一象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是.三、解答题(本大题共7小题,共52分)17.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.18.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.19.黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.20.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.21.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)22.如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.23.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.2017年广东省深圳市南山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个数中,最大的数是()A.﹣2 B.C.0 D.6【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得6>>0>﹣2,故四个数中,最大的数是6.故选:D.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;4C:完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4.62亿用科学记数法表示为:4.62×108.故选:C.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;C、不是轴对称图形,是中心对称图形.故;错误D、是轴对称图形.是中心对称图形,故正确.故选D.5.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35° B.30° C.25° D.20°【考点】KW:等腰直角三角形;JA:平行线的性质.【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.6.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【考点】9A:二元一次方程组的应用.【分析】设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.【解答】解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,则2x+2y=16.故选C.7.下列说法正确的是()①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体;③﹣27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=82分, =82分,S2甲=245,S2=190,那么成绩较为整齐的是乙班.乙A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据题目中各个小题的说法可以判断其是否正确,从而可以解答本题.【解答】解:面积之比为1:2的两个相似三角形的周长之比是1:,故①错误,三视图相同的几何体是正方体或球体,故②错误,﹣27的立方根是﹣3,故③错误,对角线互相垂直且互相平分的四边形是菱形,故④错误,某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=82分, =82分,S2甲=245,S2乙=190,那么成绩较为整齐的是乙班,故⑤正确,故选A.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP 交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.9.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.11.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个【考点】SO:相似形综合题.【分析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF ∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误.【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;设AD=a,AB=b由△BAE∽△ADC,有.∵tan∠CAD==,故④错误,故选B.12.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣3x,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选(A).二、填空题(本大题共4小题,每小题3分,共12分)13.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是15 .【考点】4F:平方差公式.【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,a﹣b=5,∴原式=(a+b)(a﹣b)=15,故答案为:1514.如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.【考点】T1:锐角三角函数的定义.【分析】根据勾股定理求出BD的长,即BD′的长,根据三角函数的定义就可以求解.【解答】解:BD是边长为2的正方形的对角线,由勾股定理得,BD=BD′=2.∴tan∠BAD′===.故答案为:.15.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是﹣.【考点】MO:扇形面积的计算;PB:翻折变换(折叠问题).【分析】连接OM交AB于点C,连接OA、OB,根据题意OM⊥AB且OC=MC=,继而求出∠AOC=60°、AB=2AC=,然后根据S弓形ABM=S扇形OAB﹣S△AOB、S阴影=S半圆﹣2S弓形ABM计算可得答案.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=,在RT△AOC中,∵OA=1,OC=,∴cos∠AOC==,AC==∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB﹣S△AOB=﹣××=﹣,S阴影=S半圆﹣2S弓形ABM=π×12﹣2(﹣)=﹣.故答案为:﹣.16.如图,已知点A是双曲线在第一象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是﹣3.【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质;S9:相似三角形的判定与性质;T7:解直角三角形.【分析】根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出OC=OA,求出△OFC∽△AEO,相似比,求出面积比,求出△OFC的面积,即可得出答案.【解答】解:∵双曲线的图象关于原点对称,∴点A与点B关于原点对称,∴OA=OB,连接OC,如图所示,∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°,∴tan∠OAC==,∴OC=OA,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF,∴△OFC∽△AEO,相似比,∴面积比,∵点A在第一象限,设点A坐标为(a,b),∵点A在双曲线上,∴S△AEO=ab=,∴S△OFC=FC•OF=,∴设点C坐标为(x,y),∵点C在双曲线上,∴k=xy,∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=﹣,故答案为:﹣3.三、解答题(本大题共7小题,共52分)17.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.【考点】6D:分式的化简求值;C7:一元一次不等式的整数解.【分析】首先利用分式的混合运算法则将原式化简,然后解不等式,选择使得分式有意义的值代入求解即可求得答案.【解答】解:原式====∵不等式x≤2的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0代入.18.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式(﹣1)2016+2sin60°﹣|﹣|+π0的值是多少即可.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=219.黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图;W4:中位数.【分析】(1)根据B类的人数和所占的百分比即可求出总数;求出C的人数从而补全统计图;(2)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(3)用B的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,B3根据题意画出树形图,再根据概率公式列式计算即可.【解答】解:(1)共调查的中学生数是:60÷30%=200(人),C类的人数是:200﹣60﹣30﹣70=40(人),如图1:(2)本次抽样调查中,学习时间的中位数落在C等级内;(3)根据题意得:α=×360°=54°,(4)设甲班学生为A1,A2,乙班学生为B1,B2,B3,一共有20种等可能结果,其中2人来自不同班级共有12种,∴P(2人来自不同班级)==.20.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据函数图象找出点的坐标,结合点的坐标分段利用待定系数法求出函数解析式即可;(2)根据B种苗的数量不超过35棵,但不少于A种苗的数量可得出关于x的一元一次不等式组,解不等式组求出x的取值范围,再根据“所需费用为W=A种树苗的费用+B种树苗的费用”可得出W关于x的函数关系式,根据一次函数的性质即可解决最值问题.【解答】解:(1)设y与x的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元).21.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)【考点】T8:解直角三角形的应用.【分析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据直角三角形的性质得到AE=2.BE=2,求得AD=2+2,即可得到结论.【解答】解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+≈2.7千米.22.如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.【考点】ME:切线的判定与性质;M2:垂径定理;T7:解直角三角形.【分析】(1)只要证明∠DOC=∠DOE,利用等腰三角形的三线合一即可证明;(2)欲证明PC是⊙O的切线,只要证明∠OCP=90°即可;(3)设⊙O的半径为r,OD=x,则BD=2x,r=3x,易证得Rt△OCD∽Rt△OPC,根据相似三角形的性质得OC2=OD•OP,即(3x)2=x•(3x+9),解出x,即可得圆的半径;同理可得PC2=PD•PO=(PB+BD)•(PB+OB)=162,可计算出PC,然后在Rt△OCP中,根据正切的定义即可得到tan ∠P的值.【解答】(1)证明:连接OC,∴∠COB=2∠CAB,又∠POE=2∠CAB.∴∠COD=∠EOD,又∵OC=OE,∴∠ODC=∠ODE=90°,即CE⊥AB;(2)证明:∵CE⊥AB,∠P=∠E,∴∠P+∠PCD=∠E+∠PCD=90°,又∠OCD=∠E,∴∠OCD+∠PCD=∠PCO=90°,∴PC是⊙O的切线;(3)解:设⊙O的半径为r,OD=x,则BD=2x,r=3x,∵CD⊥OP,OC⊥PC,∴Rt△OCD∽Rt△OPC,∴OC2=OD•OP,即(3x)2=x•(3x+9),解之得x=,∴⊙O的半径r=,同理可得PC2=PD•PO=(PB+BD)•(PB+OB)=162,∴PC=9,在Rt△OCP中,tan∠P==.23.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.【考点】HF:二次函数综合题.【分析】(1)求出A、D两点坐标,利用待定系数法即可解决问题.(2)首先证明△FHG是等腰直角三角形,构建二次函数利用函数性质解决问题即可;(3)求得直线AM的解析式为y=2x+2,根据直线l垂直于直线AM,设直线l的解析式为y=﹣x+b,得到直线l的解析式为y=﹣x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),设R(1,a),根据勾股定理列方程即可得到结论.【解答】解:(1)把C(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,∴抛物线的解析式为:y=﹣x2+2x+3,(2)令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,3),∵点D和点C关于抛物线的对称轴对称,∴D(1,2),AD的解析式y=x+1,∴OA=OE=1,∴∠EAO=45°,∵FH∥AB,∴∠FHA=∠EAO=45°,∵FG⊥AH,∴△FGH是等腰直角三角形,设点F坐标(m,﹣m2+2m+3),∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),∴FH=﹣m2+m+2,∴△FGH的周长=(﹣m2+m+2)+2×(﹣m2+m+2)=﹣(1+)(m﹣)2+∴△FGH的周长最大值为;(3)∵抛物线y=﹣x2+2x+3的定点坐标为(1,4),∴直线AM的解析式为y=2x+2,∵直线l垂直于直线AM,∴设直线l的解析式为y=﹣x+b,∵与坐标轴交于P、Q两点,∴直线l的解析式为y=﹣x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),设R(1,a),∴PR2=(﹣1)2+(a﹣b)2,QR2=(2b﹣1)2+a2,PQ2=b2+(2b)2=5b2,∵△PQR是以PQ为斜边的等腰直角三角形,∴PR2=QR2,即(﹣1)2+(a﹣b)2=QR2=(2b﹣1)2+a2,∴﹣2a=3b﹣4,①∴PR2+QR2=PQ2,即(﹣1)2+(a﹣b)2+(2b﹣1)2+a2=5b2,∴2a2﹣2ab﹣4b+2=0,②联立①②解得:,,∴直线l的解析式为y=﹣x+或y=﹣x+2.。
广东省深圳市2017年中考数学二模试卷(解析版)

广东省深圳市2017年中考数学二模试卷(解析版)一、选择题1.﹣的倒数是()A. ﹣B.C. ﹣3D. 32.人民网北京1月24日电(记者杨迪)财政部23日公布了2016年财政收支数据,全国一股公共预算收入159600亿元,将159600亿元用科学记数法表示为()A. 1.596×105元B. 1.596×1013元C. 15.96×1013元D. 0.1596×106元3.下列四个图案中,具有一个共有的性质,那么下面四个数中,满足上述共有性质的一个是()A. 228B. 707C. 808D. 6094.下列运算正确的是()A. 8a﹣a=8B. (﹣a)4=a4C. a3•a2=a6D. (a﹣b)2=a2﹣b25.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A. B. C. D.6.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是()A. 168元B. 300元C. 60元D. 400元7.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”,例如:M(1,1),N(﹣2,﹣2)都是“平衡点”,当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A. 0≤m≤1B. ﹣1≤m≤0C. ﹣3≤m≤3D. ﹣3≤m≤18.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A. 140°B. 130°C. 120°D. 110°9.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A. B. C. D.10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为36,则PD+PE+PF=()A. 12B. 8C. 4D. 311.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QO,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B. C. D.12.如图,▱ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论::①DE平分∠ADC;②E是BC的中点;③AD=2CD;④梯形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有()A. 4B. 3C. 2D. 1二、填空题13.分解因式:2a2﹣8=________.14.若x2y m与2x n y6是同类项,则m+n=________.15.如图,在平面直角坐标系中,A,B两点分别在x轴和y轴上,OA=1,OB= ,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为________.16.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E,F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________.三、解答题17.计算:(﹣)﹣2﹣|﹣|+2sin60°+(π﹣4)0.18.先化简,再求值:÷(﹣),其中x= ﹣1.19.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表根据图表中提供的信息,解答下列问题:(1)m=________,n=________,p=________;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.20.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.21.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?22.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.23.如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.(1)求抛物线的表达式;(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ与△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.答案解析部分一、<b >选择题</b>1.【答案】C2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】D二、<b >填空题</b>13.【答案】2(a+2)(a﹣2)14.【答案】815.【答案】16.【答案】﹣2三、<b >解答题</b>17.【答案】解:原式=4﹣+ +1=5.18.【答案】解:原式= ÷[ ﹣]= ÷= •= ,当x= ﹣1时,原式= =19.【答案】(1)200;80;30(2)解:如图所示:(3)解:2000×40%=800(人),答:估计该校2000名学生中有800名学生最喜欢跳大绳.20.【答案】(1)证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形;(2)解:过点P作PH⊥AD于H,如图所示:∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°,∴AB∥PH,∵AB=6,∴AH=PH=3,∵AD=8,∴DH=AD﹣AH=8﹣3=5,在Rt△PHD中,∠PHD=90°.∴tan∠ADP= = .21.【答案】(1)解:设孔明同学测试成绩为x分,平时成绩为y分,依题意得:解之得:,答:孔明同学测试成绩为90分,平时成绩为95分;(2)解:由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)解:设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥75答:他的测试成绩应该至少为75分.22.【答案】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC= AB(3)解:连接MA,MB,∵点M是的中点,∴= ,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴= .∴BM2=MN•MC.又∵AB是⊙O的直径,= ,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.23.【答案】(1)解:∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3(2)解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4).将D点向下平移1个单位,得到点M,连结AM交对称轴于F,作DE∥FM交对称轴于E点,如图1所示.∵EF∥DM,DE∥FM,∴四边形EFMD是平行四边形,∴DE=FM,EF=DM=1,DE+FB=FM+FA=AM.由勾股定理,得AM= = = ,BD= = = ,四边形BDEF周长的最小值=BD+DE+EF+FB=BD+EF+(DE+FB)=BD+EF+AM= +1+ ;设AM的解析式为y=mx+n,将A(﹣3,0),M(0,2)代入,解得m= ,n=2,则AM的解析式为y=x+2,当x=﹣1时,y= ,即F(﹣1,),由EF=1,得E(﹣1,).故四边形BDEF的周长最小时,点E的坐标为(﹣1,),点F坐标为(﹣1,),四边形BDEF周长的最小值是+1+ ;(3)解:点P在对称轴左侧,当△PCQ∽△ACH时,∠PCQ=∠ACH.过点A作CA的垂线交PC与点F,作FN⊥x轴与点N.则AF∥PQ,∴△CPQ∽△CFA,∴= =2.∵∠CAF=90°,∴∠NAF+∠CAH=90°,∠NFA+∠NAF=90°,∴∠BFA=∠CAH.又∵∠FNA=∠AHC=90°,∴△FNA∽△AHC,∴= = = ,即= = .∴AN=2,FN=1.∴F(﹣5,1).设直线CF的解析式为y=kx+b,将点C和点F的坐标代入得:,解得:k= ,b= .∴直线CF的解析式为y= x+ .将y= x+ 与y=﹣x2﹣2x+3联立得:解得:或(舍去).∴P(﹣,).∴满足条件的点P的坐标为(﹣,).。
2017年(深圳版)中考模拟考试数学试题(含答案)

2017年深圳市初中毕业生学业考试数学模拟试题本试卷分选择题和非选择题两部分,共三大题23小题,满分100分,考试用时90分钟第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.20171-的相反数是( )A .2017B .﹣2017C .D .﹣ 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093、下列运算正确的是( )A 、63222a a a =⋅B 、2226)3(b a ab =C 、22=÷ab abcD 、b a ba b a 22243=+4.下面四个手机应用图标中是中心对称图形的是( )A .B .C .D .5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元 C.80元 D .60元 6.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( ) A .4,5 B .5,4C .4,4D .5,57.如图所示,向一个半径为R 、容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )A .B .C .D .8.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( )A .8B .6C .4D .29.已知6是关于x 的方程x 2﹣7mx+24n=0的一个根,并且这个方程的两个根恰好是菱形ABCD 两条对角线的长,则菱形ABCD 的周长为( )A .20B .24C .32D .5610.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4 11.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C 落在斜边上的点C 处,折痕为BD ,如图②,再将②沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图③,若折痕DE 的长是cm ,则BC 的长是( )A .3cmB .4cmC .5cmD .6cm12.如图,在圆心角为90°的扇形OAB 中,半径OA=4cm ,C 为弧AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为( )cm 2.A .4π﹣2﹣2 B .4π﹣2 C .2π+2﹣2 D .2π+2第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)13.分解因式:x x x 1512323--=__________________.14.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是 .15.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则△DEF 的周长为(用含a 的式子表示).16.如图,双曲线y=(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB∥x 轴,点A 的坐标为(2,3),求△OAC 的面积是_________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:20170﹣|﹣|+1)31(--+2sin45°.18.先化简,再求值:(﹣x+1)÷,其中x=﹣2.19.某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)被调查的学生人数为 ;(2)把折线统计图补充完整;(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?20、如图7,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为45°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB、CD的高度。
深圳市宝安区2017届中考数学二模试卷含答案解析

年广东省深圳市宝安区中考数学二模试卷7 9B.4.下列运算正确的是(A.2a•a =2a B.(3ab)=6a b2 3 6 22 2 254,64,82,对于这组数据,以下说法正确的是(A.x=3 B.x=﹣1C.x =3,x =1D.x =3,x =﹣11 2 1 29.若方程mx+ny=6 的两个解是,则m,n 的值为(A.B.C.D.使B D=A B,连接A D,依据此图可求得tan75°的值为(B.2+D.A.B.2 C.D.二、填空题(本大题共小题,每小题分,共分)431232(2)根据以上信息,补全频数分布直方图;1300元/只(1)请问今年A型智能手表每只售价多少元?;G (3)在(2)的条件下,如图3,点M是⊙G优弧上的一个动点(不包括A、23.(9分)如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且O C=3O A.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线B C于点D,连接PC.(1)求抛物线的解析式;请说明理由.2017年广东省深圳市宝安区中考数学二模试卷参考答案与试题解析1.﹣5的倒数是(A.5 B.﹣5 C.【考点】17:倒数.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣.故选:D.7 9【解答】解:3.4亿=3.4×108.故选:B.中1≤|a|<10,确定a与n的值是解题的关键.B.4.下列运算正确的是(A.2a a=2a B.(3ab)=6a b2 3 6 22 2 2(C)2abc与ab不是同类项,故C 错误;故选(D)。
2017年广东省深圳市中考数学试卷含解析

2017年广东省深圳市中考数学)含解析(试卷.年广东省深圳市中考数学试卷2017一、选择题1.(3分)﹣2的绝对值是().D.﹣2 B.2 C A.﹣2.(3分)图中立体图形的主视图是().C DA.. B .3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000)用科学记数法表示为(765510.82×.8.2××.8.210 10 D.B82×10 CA4.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是().CD.A . B.5.(3分)下列选项中,哪个不可以得到l∥l?()21∠4=180°3+5 D.∠∠3 B1=∠2 .∠2=∠C.∠3=.∠A)分)不等式组的解集为((6.3页)27页(共2第3x<.﹣1<<﹣1或x>3 DCA.x>﹣1 B.x<3 .x7.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个)月卖出x双,列出方程(2x=330﹣10%)x=330 C.(1)1+10%)x=330A.10%x=330 B.(1﹣10%D.(为圆心,大于ABB为半径作弧,连分)如图,已知线段3AB,分别以A、8.(接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,)的度数为(求∠BCM.70° D.50° C.60° A.40°B)(3分)下列哪一个是假命题( 9.360°A.五边形外角和为B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)2﹣4x+2017y=x对称轴为直线x=2D.抛物线10.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数().方差D.众数 C A.平均数 B.中位数11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,.m 的高度是()AB10mDE20mCD已知斜坡的长度为,的长为,则树第3页(共27页)40D.30 A..20 B.30 C,并AQ,DP交于点O,12.(3分)如图,正方形ABCD 的边长是3BP=CQ,连接2=OE?OP;DP;②OAE,BC交于点F,,连接AE,下列结论:①AQ⊥分别与边CD);④当S=SBP=1时,tan∠ OAE=,其中正确结论的个数是(③OECF△AOD四边形4.1 B.2 C.3 DA.二、填空题3.(3分)因式分解:a ﹣4a= 13.个白球,除了颜色外全部1.14(3分)在一个不透明的袋子里,有2个黑球和. 1黑1白的概率是相同,任意摸两个球,摸到满足分配律,结合律,交换律,已i(3分)阅读理解:引入新数i,新数15.2.)= ,那么(=﹣11+i)?(1﹣i知i∠MPN=90°,MPN,,BC=4,Rt△∠ABC=90°,Rt316.(分)如图,在△ABC中,AB=3.时,PE=2PFAP= ,当于点交,于点交上,在点PACPMABEPNBCF 274第页(共页)三、解答题2﹣|﹣2|﹣2cos45°+(﹣1)5分)计算:+.17.(.﹣18.(6分)先化简,再求值:+)÷1(,其中x=类学生坐公交车、B(19.7分)深圳市某学校抽样调查,A类学生骑共享单车,,根据调查结果绘制了不完整的统C私家车等,类学生步行,D类学生(其它)计图.频率频数类型x30A0.1518B0.40Cm yDn;1y= ,)学生共x= 人,()补全条形统计图;(2人.人,骑共享单车的有3)若该校共有2000(275第页(共页)厘米.分)一个矩形周长为56.(820(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.y=(x>0)交于A(2,421.(8分)如图,一次函数y=kx+b与反比例函数),.DC,,与x轴,y轴分别交于点,B(a1)y=(x>y=kx+b的表达式和反比例函数0)的表达式;)直接写出一次函数(1.AD=BC2)求证:(是M上任意AB于点H,点9分)如图,线段AB是⊙O的直径,弦CD⊥22.(.CH=4一点,AH=2,(1)求⊙O的半径r的长度;;CMD)求sin∠(2(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,的值.求HE?HF2+bx+2经过点A(﹣1,0),B(4,(23.9分)如图,抛物线y=ax0),交y轴于;C点(1)求抛物线的解析式(用一般式表示);=S?若存在请直使为Dy轴右侧抛物线上一点,是否存在点DS)点(2ABDABC△△第6页(共27页)坐标;若不存在请说明理由;接给出点D(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.页)27页(共7第年广东省深圳市中考数学试卷2017参考答案与试题解析一、选择题1.(3分)﹣2的绝对值是().D.﹣ A.﹣2 B.2 C【分析】根据绝对值的定义,可直接得出﹣2的绝对值..2|=2|﹣【解答】解:.故选B【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)图中立体图形的主视图是()..B . CAD.根据主视图是从正面看的图形解答.【分析】【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间..A 故选本题考查了学生的思考能力和对几何体三种视图的空间想象能力.【点评】3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000)用科学记数法表示为(页)27页(共8第7655108210× D. B.82×10 C.8.2×A.8.2×10n的形式,其中1≤|a|<10,a【分析】科学记数法的表示形式为×10n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.6.×108200000用科学记数法表示为:8.2【解答】解:将故选:C.n的10此题考查科学记数法的表示方法.科学记数法的表示形式为【点评】a×形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是().CD.A. B .【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;、是中心对称图形,不是轴对称图形,选项不符合题意;C、是中心对称图形,也是轴对称图形,选项符合题意.D.D故选【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)下列选项中,哪个不可以得到l∥l?()21第9页(共27页)∠4=180°D.∠3+C.∠3=∠5 1=A.∠∠2 B.∠2=∠3分别根据平行线的判定定理对各选项进行逐一判断即可.【分析】,故本选项错误;ll∥、∵∠1=∠2,∴【解答】解:A21,故本选项错误;∥l∠3,∴lB、∵∠2=21,故本选项正确;∥l∠5不能判定lC、∠3=21,故本选项错误.∥l3+∠4=180°,∴l、∵∠D21.C故选本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关【点评】键.分)不等式组.(3的解集为()63x<D.﹣1<>3<C.x<﹣1或x3 B.Ax>﹣1 .x分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大【分析】小小大中间找、大大小小无解了确定不等式组的解集.,>﹣12x3﹣<5,得:x【解答】解:解不等式,3x<1x解不等式﹣2<,得:,3<x<1∴不等式组的解集为﹣.D故选:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基【点评】础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 2710第页(共页)7.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个)双,列出方程(月卖出x2x=330)(1﹣10%).(1﹣10%x=330 C..D.(1+10%)x=330A10%x=330 B【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得.)x=330(1+10%.故选D【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.为圆心,大于ABB为半径作弧,连AB3分)如图,已知线段,分别以A、8.(接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,)求∠BCM的度数为(.70°DC.60° BA.40°.50°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,,AC=BC∴∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°. 11第27页(共页).B故选【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)2﹣4x+2017对称轴为直线D.抛物线y=xx=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;2不符合题意;4x+2017y=x﹣对称轴为直线x=2是真命题,故DD、抛物线.故选:C【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数().方差 D.众数 B.中位数 CA.平均数【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了..B故选【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.第12页(共27页)11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,.)mAB的高度是( CD的长度为20m,DE的长为10m,则树已知斜坡40.30 D B.30 C.A.20【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.中,△CDE【解答】解:在Rt,DE=10m∵CD=20m,,DCE=∴sin∠=∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,,BC==20=∴m×0∴AB=BC?sin60°=2=30m..故选B【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键. 13第页(共27页)12.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并2=OE?OP;OA⊥DP;②,E,连接AE,下列结论:①AQ分别与边CD,BC交于点F),其中正确结论的个数是(时,tan∠ OAE=;④当③S=SBP=1OECFAOD四边形△4.3 D.2 C.A.1 B【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似22≠OE?OP;故②错误;根据全,得到OAOD≠OE三角形的性质得到AO=OD?OP,由等三角形的性质得到CF=BE,DF=CE,于是得到S﹣S=S﹣S,即S=S AOD△DCE△ADF△△△DFODOFQO=,;故③正确;根据相似三角形的性质得到QE=BE=,求得,OECF四边形OE=,由三角函数的定义即可得到结论.是正方形,解:∵四边形ABCD【解答】∠ABC=90°,DAB=∴AD=BC,∠∵BP=CQ,,∴AP=BQ,ABQ中,与△在△DAP,ABQ∴△DAP≌△,QP=∠∴∠∵∠Q+∠QAB=90°,∠QAB=90°,P+∴∠∴∠AOP=90°,;⊥DPAQ∴第14页(共27页)故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,,∴2=OD?OP,AO∴∵AE>AB,,AD∴AE>,OE∴OD≠2≠OE?OP;故②错误;OA∴,与△BPE中在△CQF,≌△BPE∴△CQF∴CF=BE,,DF=CE∴,与△DCE中,在△ADF,DCE∴△ADF≌△∴S﹣S=S﹣S,DOF△DCE△ADF△△DFO即S=S;故③正确;OECF四边形△AOD,AB=3∵BP=1,,∴AP=4∵△PBE∽△DAP,∴,QE=,BE=∴,∴,∽△PADQOE∵△,∴第页(共1527页),OE=QO=,∴QO=∴AO=5﹣,OAE=∠=∴,故④正确,tan.C故选本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正【点评】方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题3a+2)(a﹣4a= 2313.(分)因式分解:a﹣a)(.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.23.)﹣2)=a(a+2(解:【解答】aa﹣4a=a(a﹣4).2))(a﹣a故答案为:(a+2【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部白的概率是1黑.1相同,任意摸两个球,摸到【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.解:依题意画树状图得:【解答】种情况,41白的有黑∵共有6种等可能的结果,所摸到的球恰好为1.1黑白的概率是:=1∴所摸到的球恰好为第16页(共27页).故答案为:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可【点评】以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状所求情况数与总情况图法适合两步或两步以上完成的事件.解题时注意:概率=数之比.满足分配律,结合律,交换律,已(3分)阅读理解:引入新数i,新数i15.2.)i2 = 知i=﹣1,那么(1+i)?(1﹣根据定义即可求出答案.【分析】2=2)﹣(﹣﹣i1=1=1【解答】解:由题意可知:原式2故答案为:本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基【点评】础题型.∠MPN=90°,MPN,,Rt△∠ABC=90°,Rt△ABC中,AB=3,BC=4316.(分)如图,在.3 PE=2PF时,AP= PN交BC于点F,当交点P在AC上,PMAB于点E,,==2∽△.由△QPERPF,推出,PQ⊥AB于QPR⊥BC于R【分析】如图作,PQ=4x5,设4:BC:AC=3::QP,,由可得PQ=2PR=2BQPQ∥BC可得AQ::AP=AB即可解决问题.xBQ=2x,可得2x+3x=3,求出,则AQ=3xAP=5x,.BC于R⊥,于⊥解:如图作【解答】PQABQPR 2717第页(共页)∠BRP=90°,∠QBR=∵∠PQB=是矩形,∴四边形PQBR,∴∠QPR=90°=∠MPN,∠RPF∴∠QPE=,∽△RPF∴△QPE,=∴=2,PQ=2PR=2BQ∴,BC∵PQ∥,AP=5x,,BQ=2x:5,设PQ=4x,则AQ=3x4QP∴AQ::AP=AB:BC:AC=3:,∴2x+3x=3,∴x=.AP=5x=3∴.故答案为3本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等【点评】知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题2﹣|5分)计算:+.17.()﹣2cos45°﹣2|+(﹣1,cos45°=<,分别计算2,所以【分析】因为,|=22|=2﹣﹣后相加即可.2﹣,【解答】解:)(﹣﹣2cos45°﹣2|+1|+页(共18第27页),×=2+1+2﹣﹣2+1+2,﹣﹣=2.=3本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,【点评】属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.(分)先化简,再求值:18.1.(6+)÷,其中x=﹣根据分式的运算法则即可求出答案.【分析】时,1【解答】解:当x=﹣×=原式=3x+21=﹣本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题【点评】属于基础题型.类学生坐公交车、7(分)深圳市某学校抽样调查,A类学生骑共享单车,B19.,根据调查结果绘制了不完整的统私家车等,C类学生步行,D类学生(其它)计图.频率频数类型xA300.15B180.40Cm ynD;0.2 0.25 (1)学生共120 人,x= ,y=)补全条形统计图;(2人.500 2000)若该校共有人,骑共享单车的有 3(第19页(共27页)类学生坐公交车、私家车的人数以及频率,求出总人数,B1)根据【分析】(再根据频数与频率的关系一一解决即可;的值,画出条形图即可;n2)求出m、()用样本估计总体的思想即可解决问题;3(人,==120解:【解答】(1)由题意总人数,×0.4=48x==0.25,m=120,0.4y=1﹣0.25﹣﹣0.15=0.2,0.2=24n=120×)条形图如图所示,(2人,2000)×0.25=5003(页)27页(共20第.500故答案为【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是=记住频率,频率之和为1,属于中考常考题型.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x=10(舍去),x=18,2128﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,2,即x﹣28x+200=02﹣4×200=784﹣800<则△=280,原方程无解,平方厘米的矩形.200故不能围成一个面积为【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.y=(x>0)交于A(与反比例函数(21.8分)如图,一次函数y=kx+b2,4),B (a,1),与x轴,y轴分别交于点C,D.页)27页(共21第)的表达式;>0y=((1)直接写出一次函数y=kx+b的表达式和反比例函数x.AD=BC(2)求证:【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待的解析式;AB定系数法求出直线(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.y=中,得,m=2×,4)代入4=8,(【解答】解:1)将点A(2y=,∴反比例函数的解析式为y=中,得,a=8,a,1)代入将点B(,1)B(8,∴中,得,)代入y=kx+b8,14(2,),B(将点A,,∴﹣x+5∴一次函数解析式为y=;﹣x+5的解析式为y=,(2)∵直线AB,),5),D(0∴C(10,0如图,过点A作AE⊥y 轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,AD=△ADE中,根据勾股定理得,Rt在=, 2722第页(共页),BC=Rt△BCF中,根据勾股定理得,=在.∴AD=BC【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.是,点MAB于点H是⊙9分)如图,线段ABO的直径,弦CD⊥上任意22.(一点,AH=2,CH=4.(1)求⊙O的半径r的长度;;CMD)求sin∠(2(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,的值.求HE?HF中,利用勾股定理即可解决问题;COH△1)在Rt【分析】(即可;∠COACOA)只要证明∠CMD=△,求出sin2(,推出HE?HF=HM?HN,又=HM?HN=AH?HB,推)由△(3EHM∽△NHF,推出出HE?HF=AH?HB,由此即可解决问题..1中,连接OC)如图(【解答】解:1第23页(共27页),CD∵AB⊥∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,222,)﹣2+(r∴r=4.r=5∴(2)如图1中,连接OD.是直径,,AB∵AB⊥CD,=∴=AOC=∠COD∴∠,,CODCMD=∠∵∠,COA∴∠CMD=∠.COA=CMD=sin∴sin∠∠=.AM2中,连接(3)如图∵AB是直径,∴∠AMB=90°,∠ABM=90°,∴∠MAB+∠ABM=90°,E+∵∠,E=∠MAB∴∠∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHF∴△EHM∽△NHF,,∴=∴HE?HF=HM?HN,∵HM?HN=AH?HB,.=16﹣102)∴HE?HF=AH?HB=2?(页)27页(共24第本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、【点评】相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.2轴于,交y,B(40)9(分)如图,抛物线y=ax1+bx+2经过点A(﹣,0),23.;点C;1)求抛物线的解析式(用一般式表示)(?若存在请直使SS=D(2)点为y轴右侧抛物线上一点,是否存在点D ABDABC△△坐标;若不存在请说明理由;接给出点D的长.,求BE绕点BCB顺时针旋转45°,与抛物线交于另一点E(3)将直线的坐标,利用待定系数法可求得抛物线解析式;A、B1【分析】()由点的纵坐标,代入抛物线解Dx2()由条件可求得点D到轴的距离,即可求得点坐标;析式可求得D页(共第2527页)(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得的长.BE【解答】解:2+bx+2经过点A(﹣1,0),B(4,0)1()∵抛物线y=ax,,解得∴,2+x+2﹣x;∴抛物线解析式为y=(2)由题意可知C(0,2),A(﹣1,0),B (4,0),,,OC=2∴AB=5AB?OC=×5×∴S2=5=,ABC△,SS=∵ABD△ABC△,×∴S5==ABD△,(x,y)设D5|y|=×|y|=∴AB?,解得|y|=3,2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2当y=3,时,由﹣x;3)2+x+2=﹣3,解得x=﹣2(舍去)或x=5y=当﹣3,此时时,由﹣xD点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,=2,∴AC=BC==,222,∴AC=AB+BC∴△ABC为直角三角形,即BC ⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,第26页(共27页)由题意可知∠FBC=45°,∴∠CFB=45°,,∴CF=BC=2,即∴,=,解得=FM=6,即,=,解得OM=2=,,0)),且B(46∴F(2,,则可得,设直线BE解析式为y=kx+m,解得,﹣BE解析式为y=3x+12∴直线和抛物线解析式可得,联立直线BE,解得或,,﹣3)E∴(5.∴BE==本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定【点评】理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性)2中注意待定系数法的应用,)在(在质、方程思想及分类讨论思想等知识.(1的解析式是)中由条件求得直线BE3中求得D点的纵坐标是解题的关键,在(解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.2727第页(共页)。
2017年广东省深圳市坪山区中考数学二模试卷

2017年广东省深圳市坪山区中考数学二模试卷一、选择题1.﹣3的负倒数( )A. 3B. ﹣3C. 13 D. ﹣ 132.2016年10月28日,随着深圳地铁7,9号线的相继开通,深圳地铁日均客流量达到470万人次,则470万用科学记数法表示为( )A. 47×104B. 47×105C. 4.7×105D. 4.7×106 3.下列图形中,是中心对称但不是轴对称图形的是( )A. B. C. D.4.不等式组 {2x +1≤3x >−3 的解集在数轴上表示正确的是( )A.B.C. D.5.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A. 75°B. 60°C. 45°D. 30° 6.一个多边形的内角和是720°,这个多边形的边数是( )A. 3B. 4C. 5D. 6 7.一元二次方程2x 2﹣3x+1=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套服装,则根据题意可得方程为()A. 160x + 400−160(1+20%)x=18 B. 160x+ 400(1+20%)x=18C. 160x + 400−16020%x=18 D. 400x+ 400−160(1+20%)x=189.如图,A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线做匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是()A. B. C. D.10.如图,平行四边形ABCD中,E是AD上的一点,且AE= 13AD,对角线AC,BD交于点O,EC交BD于F,BE交AC于G,如果平行四边形ABCD的面积为S,那么,△GEF的面积为()A. 110S B. 115S C. 120S D. 130S11.定义:若点P(a,b)在函数y= 1x的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y= 1x 的一个“派生函数”.例如:点(2,12)在函数y= 1x的图象上,则函数y=2x2+ 12x称为函数y= 1x 的一个“派生函数”.现给出以下两个命题:①存在函数y= 1x的一个“派生函数”,其图象的对称轴在y轴的右侧②函数y= 1x的所有“派生函数”,的图象都经过同一点,下列判断正确的是()A. 命题①与命题②都是真命题B. 命题①与命题②都是假命题C. 命题①是假命题,命题②是真命题D. 命题①是真命题,命题②是假命题12.已知抛物线y=k(x+1)(x﹣3k)与x轴交于点A、B,与y轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题13.因式分解:2x2﹣18=________.14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作OĈ交AB̂于点C,若OA=2,则阴影部分的面积为________.15.我们把分子为1的分数叫做理想分数,如12,13,14,…,任何一个理想分数都可以写成两个不同理想分数的和,如12= 13+ 16,13= 14+ 112,14= 15+ 120,…,根据对上述式子的观察,请你思考:如果理想分数1n = 1a+ 1b(n是不小于2的整数,且a<b),那么b﹣a=________.(用含n的式子表示)16.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为________.三、解答题17.根据要求计算下列问题:(1)计算(﹣13)﹣2﹣2cos45°+(π−3.142)0+ 12√8+(﹣1)2017(2)先化简,再求值aa−1−3a−1a2−1,其中a= √2−1.18.某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至⋅多⋅有一名女生的概率.19.如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.(1)比较∠BAD和∠DAC的大小.(2)求sin∠BAD.20.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?21.如图,已知一次函数y= 32x﹣3与反比例函数y= kx的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为________,k的值为________;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y= kx的图象,当y≥﹣2时,请直接写出自变量x的取值范围.22.如图所示,Rt△ABC中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圆,D是CB延长线上一点,且BD=1,连接DA,点P是射线DA上的动点.(1)求证DA是⊙O的切线;(2)DP的长度为多少时,∠BPC的度数最大,最大度数是多少?请说明理由.(3)P运动的过程中,(PB+PC)的值能否达到最小,若能,求出这个最小值,若不能,说明理由.23.如图,顶点为(1,4)的抛物线y=ax2+bx+c与直线y= 12x+n交于点A(2,2),直线y= 12x+n与y轴交于点B与x轴交于点C(1)求n的值及抛物线的解析式(2)P为抛物线上的点,点P关于直线AB的对称轴点在x轴上,求点P的坐标(3)点D为x轴上方抛物线上的一点,点E为轴上一点,以A、B、E、D为顶点的四边为平行四边形时,直接写出点E的坐标.答案解析部分一、<b >选择题1.【答案】C【解析】【解答】解:根据负倒数的定义可得-3的负倒数为1。
2017年广东省深圳市龙岗区中考数学第二次模拟试卷(解析版)

2017年广东省深圳市龙岗区中考数学第二次模拟试卷一、选择题。
(共10题;共30分)1、空气的密度为0.00129g/cm3, 0.00129这个数用科学记数法可表示为()A、0.129×10﹣2B、1.29×10﹣2C、1.29×10﹣3D、12.9×10﹣12、下列事件发生的概率为0的是()A、射击运动员只射击1次,就命中靶心B、任取一个实数x,都有|x|≥0C、画一个三角形,使其三边的长分别为8cm,6cm,2cmD、抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为63、已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是A、①②都有实数解B、①无实数解,②有实数解C、①有实数解,②无实数解D、①②都无实数解4、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )A、图象关于直线x=1对称B、函数y=ax2+bx+c(a≠0)的最小值是﹣4C、﹣1和3是方程ax2+bx+c(a≠0)=0的两个根D、当x<1时,y随x的增大而增大5、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A、B、C、5D、46、如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论错误的是()A、沿AE所在直线折叠后,△ACE和△ADE重合B、沿AD所在直线折叠后,△ACE和△ADE重合C、以A为旋转中心,把△ACE逆时针旋转90°后与△ADB重合D、以A为旋转中心,把△ACE逆时针旋转270°后与△ADB重合7、如图,AB是⊙O的直径,弦CD⊥AB,∠COB=60°,CD=2,则阴影部分图形的()A、4πB、2πC、πD、8、古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,下列属于三角数的是……………………… ( )A 、55B 、60C 、65D 、759、如图,在平行四边形ABCD 中,AD=7,CE 平分∠BCD 交AD 边于点E ,且AE=4,则AB 的长为( )A 、4B 、3C 、D 、210、已知二次函数y=﹣ x 2﹣3x ﹣ ,设自变量的值分别为x1 , x2 , x3 , 且﹣3<x 1<x 2<x 3 , 则对应的函数值y 1 , y 2 , y 3的大小关系是( ) A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 2>y 3>y 1 D 、y 2<y 3<y 1二、填空题(共6题;共12分)11、分解因式:x 2﹣9=________. 12、若不等式组的解集是﹣1<x <1,则(a+b )2009=________13、不等式组 的最大整数解为________.14、在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,AC=6,BC=8,CD=________.15、如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为________.16、如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上,正方形ADEF的面积为4,且BF=2AF,则k 值为________ .三、解答题(共7题;共58分)17、化简,再求代数式的值:,其中.18、已知关于x的不等式组(a≠0)求该不等式组的解集.19、有一则广告称“有80%的人使用本公司的产品”,你对该则广告的宣传有何看法?20、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.21、如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在弧BD上,连接DE,AE,连接CE 并延长交AB于点F,∠AED=∠ACF.(1)求证:CF⊥AB;(2)若CD=4,CB=4 ,cos∠ACF= ,求EF的长.22、如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=________s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.23、平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.答案解析部分一、选择题。
广东省深圳市龙华区2017年中考数学二模试卷及参考答案

21. 如图,在平面直角坐标系内,已知直线l1经过原点O 及A(2,2 )两点,将直线l1向右平移4个单位后得到直线l2 , 直线l2与x 轴交于点B.
(1) 求直线l2的函数表达式; (2) 作∠AOB 的平分线交直线l2于点C,连接AC.求证:四边形OACB是菱形; (3) 设点P 是直线l2上一点,以P 为圆心,PB 为半径作⊙P,当⊙P 与直线l1相切时,请求出圆心P 点的坐标. 22. 如图1,已知二次函数y=x2+bx+c的图象与x 轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,顶点为D,对 称轴为直线l.
3. 下列图形均是一些科技创新公司标志图,其中既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
பைடு நூலகம்
4. 据报道,深圳今年4 月2 日至4 月8 日每天的最高气温变化如图所示.则关于这七天的最高气温的数据,下列判断中
错误的是( )
A . 平均数是26 B . 众数是26 C . 中位数是27 D . 方差是 5. 已知三角形三边的长分别为1、2、x,则x的取值范围在数轴上表示为( )
(1)
求该二次函数的表达式;
(2) 若点E 是对称轴l 右侧抛物线上一点,且S△ADE=2S△AOC,求点E 的坐标; (3) 如图2,连接DC 并延长交x 轴于点F,设P 为线段BF 上一动点(不与B、F 重合),过点P 作PQ∥BD 交直线BC 于点 Q,将直线PQ 绕点P 沿顺时针方向旋转45°后,所得的直线交DF 于点R,连接QR.请直接写出当△PQR 与△PFR 相似时 点P 的坐标.
A . 70° B . 110° C . 125° D . 130° 8. 如图,已知五边形ABCDE 是⊙O 的内接正五边形,且⊙O 的半径为1.则图中阴影部分的面积是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省深圳市中考数学二模试卷含答案
一、选择题(本大题共12小题,每小题3分,共36分)
1.(3分)﹣的倒数是()
A.﹣B.C.﹣3 D.3
2.(3分)人民网北京1月24日电(记者杨迪)财政部23日公布了2016年财政收支数据,全国一股公共预算收入159600亿元,将159600亿元用科学记数法表示为()
A.1.596×105元B.1.596×1013元C.15.96×1013元D.0.1596×106元3.(3分)下列四个图案中,具有一个共有的性质,
那么下面四个数中,满足上述共有性质的一个是()
A.228 B.707 C.808 D.609
4.(3分)下列运算正确的是()
A.8a﹣a=8 B.(﹣a)4=a4 C.a3?a2=a6 D.(a﹣b)2=a2﹣b2
5.(3分)如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积
为奇数的概率是()
A.B.C.D.
6.(3分)一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是()
A.168元B.300元C.60元D.400元
7.(3分)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”,例如:M(1,1),N(﹣2,﹣2)都是“平衡点”,当﹣1≤x
≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()
A.0≤m≤1 B.﹣1≤m≤0 C.﹣3≤m≤3 D.﹣3≤m≤1
8.(3分)如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()
A.140°B.130°C.120°D.110°
9.(3分)如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()
A. B.C.
D.
10.(3分)如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为36,则PD+PE+PF=()
A.12 B.8 C.4 D.3
11.(3分)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QO,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()
A.B. C.
D.
12.(3分)如图,?ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论::①DE平分∠ADC;②E是BC的中点;③AD=2CD;④梯形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有()
A.4 B.3 C.2 D.1
二、填空题(本大题共4小题,每小题3分,共12分)
13.(3分)分解因式:2a2﹣8=.
14.(3分)若x2y m与2x n y6是同类项,则m+n=.
15.(3分)如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为.
16.(3分)如图,一次函数y=kx+b的图象l与坐标轴分别交于点E,F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=.
三、解答题(本大题共7小题,共52分)
17.(5分)计算:(﹣)﹣2﹣|﹣|+2sin60°+(π﹣4)0.
18.(6分)先化简,再求值:÷(﹣),其中x=﹣1.19.(7分)我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四
种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:
学生最喜欢的活动项目的人数统计表
项目学生数(名)百分比
丢沙包2010%
打篮球60p%
跳大绳n40%
踢毽球4020%
根据图表中提供的信息,解答下列问题:
(1)m=,n=,p=;
(2)请根据以上信息直接补全条形统计图;
(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.
20.(8分)如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF ⊥AD于F,连接BF交AE于P,连接PD.
(1)求证:四边形ABEF是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.
21.(8分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考
核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
22.(9分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN?MC的值.。