三角函数公式大全

合集下载

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀一、正弦函数(sine function)公式:1. 正弦函数的定义:在直角三角形中,正弦函数是对边与斜边之比,表示为sinθ。

2. 正弦函数的基本关系式:sinθ = 对边 / 斜边3. 弦函数的平方和恒等式:sin²θ + cos²θ = 1二、余弦函数(cosine function)公式:1. 余弦函数的定义:在直角三角形中,余弦函数是邻边与斜边之比,表示为cosθ。

2. 余弦函数的基本关系式:cosθ = 邻边 / 斜边3. 弦函数与余弦函数的关系:cosθ = sin(90° - θ)三、正切函数(tangent function)公式:1. 正切函数的定义:在直角三角形中,正切函数是对边与邻边之比,表示为tanθ。

2. 正切函数的基本关系式:tanθ = 对边 / 邻边3. 弦函数与正切函数的关系:tanθ = sinθ / cosθ四、余切函数(cotangent function)公式:1. 余切函数的定义:在直角三角形中,余切函数是邻边与对边之比,表示为cotθ。

2. 余切函数的基本关系式:cotθ = 邻边 / 对边3. 弦函数与余切函数的关系:cotθ = 1 / tanθ = cosθ / sinθ五、正割函数(secant function)公式:1. 正割函数的定义:在直角三角形中,正割函数是斜边与邻边之比,表示为secθ。

2. 正割函数的基本关系式:secθ = 斜边 / 邻边= 1 / cosθ六、余割函数(cosecant function)公式:1. 余割函数的定义:在直角三角形中,余割函数是斜边与对边之比,表示为cscθ。

2. 余割函数的基本关系式:cscθ = 斜边 / 对边= 1 / sinθ七、和差公式:1. 正弦函数和差公式:sin(θ±φ) = sinθcosφ ± cosθsinφ2. 余弦函数和差公式:cos(θ±φ) = cosθcosφ ∓ sinθsinφ3. 正切函数和差公式:tan(θ±φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)八、倍角公式:1. 正弦函数倍角公式:sin2θ = 2sinθcosθ2. 余弦函数倍角公式:cos2θ = cos²θ - sin²θ = 2cos²θ - 1= 1 - 2sin²θ3. 正切函数倍角公式:tan2θ = (2tanθ) / (1 - tan²θ)九、半角公式:1. 正弦函数半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 +cosθ)]十、和差化积公式:1. 正弦函数和差化积公式:sinθ ± sinφ = 2sin[(θ ±φ)/2]cos[(θ ∓ φ)/2]2. 余弦函数和差化积公式:cosθ + cosφ = 2cos[(θ +φ)/2]cos[(θ - φ)/2]3. 正切函数和差化积公式:tanθ ± tanφ = sin(θ ± φ) /cosθcosφ以上是三角函数的常用公式。

三角函数的公式大全

三角函数的公式大全

三角函数的公式大全1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)4、半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) 5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容18、三角函数记忆口诀三角函数是函数,象限符号坐标注。

三角函数公式大全

三角函数公式大全

三角函数公式大全1.三角函数的基本定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边- 余切函数:cotθ = 1/tanθ- 正割函数:secθ = 1/cosθ- 余割函数:cscθ = 1/sinθ2.三角函数的周期性:- 正弦函数的周期为2π:sin(θ+2π) = sinθ- 余弦函数的周期为2π:cos(θ+2π) = cosθ- 正切函数的周期为π:tan(θ+π) = tanθ3.三角函数的平方和差公式:- 正弦函数的平方和差公式:sin(A±B) = sinAcosB ± cosAsinB - 余弦函数的平方和差公式:cos(A±B) = cosAcosB ∓ sinAsinB - 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB)/(1 ∓tanAtanB)4.三角函数的倍角公式:- 正弦函数的倍角公式:sin2θ = 2sinθcosθ- 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ- 正切函数的倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)5.三角函数的半角公式:- 正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2)- 余弦函数的半角公式:cos(θ/2) = ±√((1 + cosθ)/2)- 正切函数的半角公式:tan(θ/2) = ±√((1 - cosθ)/(1 +cosθ))6.三角函数的和差化积公式:- 正弦函数的和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)- 余弦函数的和差化积公式:cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)- 正弦函数的差化积公式:sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)- 余弦函数的差化积公式:cosA - cosB = 2sin((A+B)/2)sin((A-B)/2)7.其他重要公式:- 三角函数的平方公式:sin²θ + cos²θ = 1- 三角函数的倒数公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ- 三角函数的和差化差公式:cos(A-B) = cosAcosB + sinAsinB,cos(A+B) = cosAcosB - sinAsinB这些是三角函数中一些重要的公式,对于理解和应用三角函数有很大的帮助。

三角函数公式大全

三角函数公式大全

三角函数十组诱导公式公式一公式二sin(2kπ+x)=sin x cos(2kπ+x)=cos x tan(2kπ+x)=tan x cot(2kπ+x)=cot x sec(2kπ+x)=sec x csc(2kπ+x)=csc x sin(π+x)=-sin x cos(π+x)=-cos x tan(π+x)=tan x cot(π+x)=cot x sec(π+x)=-sec x csc(π+x)=-csc x公式三公式四sin(-x)=-sin x cos(-x)=cos x tan(-x)=-tan x cot(-x)=-cot x sec(-x)=sec x csc(-x)=-csc x sin(π-x)=sin x cos(π-x)=-cos x tan(π-x)=-tan x cot(π-x)=-cot x sec(π-x)=-sec x csc(π-x)=csc x公式五公式六sin(x-π)=-sin x cos(x-π)=-cos x tan(x-π)=tan x cot(x-π)=cot x sec(x-π)=-sec x csc(x-π)=-csc x sin(2π-x)=-sin x cos(2π-x)=cos x tan(2π-x)=-tan x cot(2π-x)=-cot x sec(2π-x)=sec x csc(2π-x)=-csc x公式七公式八sin(π/2+x)=cosx cos(π/2+x)=−sinx tan(π/2+x)=-cotx cot(π/2+x)=-tanx sec(π/2+x)=-cscx csc(π/2+x)=secx sin(π/2-x)=cosx cos(π/2-x)=sinx tan(π/2-x)=cotx cot(π/2-x)=tanx sec(π/2-x)=cscx csc(π/2-x)=secx公式九公式十sin(3π/2+x)=-cosx cos(3π/2+x)=sinx tan(3π/2+x)=-cotx cot(3π/2+x)=-tanx sec(3π/2+x)=cscx csc(3π/2+x)=-secx sin(3π/2-x)=-cosx cos(3π/2-x)=-sinx tan(3π/2-x)=cotx cot(3π/2-x)=tanx sec(3π/2-x)=-cscx csc(3π/2-x)=-secx两角和差设A(cosα,sinα),B (cosβ,sinβ),O(0,0)∴=(cosα,sinα),=(cosβ,sinβ)∴·=|| || cos (α-β) =coα cosβ + sinα sinβ∴cos(α-β)=cosαcosβ+sinαsinβ取β=-β,可得cos(α+β)=cosαcosβ-sinαsinβ和差化积积化和差二倍角公式三倍角公式sin(3α)=3sinα-4sin3α=4sinα·sin(60°+α)sin(60°-α)cos(3α)=4cos3α-3cosα=4cosα·cos(60°+α)cos(60°-α)tan(3α)=(3tanα-tan3α)/(1-3tan²α)=ta nα·tan(π/3+α)tan(π/3-α)cot(3α)=(cot3α-3cotα)/(3cot²α-1)倍角公式根据欧拉公式(cosθ+isinθ)n=cosnθ+isinnθ将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式sin(nα)=ncos n-1α·sinα-Cn 3cos n-3α·sin3α+Cn5cos n-5α·sin5α-…cos(nα)=cos nα-Cn 2cos n-2α·sin2α+Cn4cos n-4α·sin4α-…半角公式sin(α/2)=±√[(1-cosα)/2]cos(α/2)=±√[(1+cosα)/2]tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotαcot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotαsec(α/2)=±√[(2secα/(secα+1)]csc(α/2)=±√[(2secα/(secα-1)]辅助角公式万能公式sinα=[2tan(α/2)]/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=[2tan(α/2)]/[1-tan²(α/2)]三角函数降幂公式sin²α=[1-cos(2α)]/2cos²α=[1+cos(2α)]/2tan²α=[1-cos(2α)]/[1+cos(2α)]三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·ta nα)泰勒展开式sin x = x-x3/3!+x5/5!-……+(-1)(k-1)(x(2k-1))/(2k-1)!+…… (-∞<x<∞)cos x = 1-x2/2!+x4/4!-……+(-1)k(x(2k))/(2k)!+…… (-∞<x<∞)arcsinx=x+x3/(2·3)+(1·3)x5/(2·4·5)+1·3·5(x7)/(2·4·6·7)……(2k+1)/(2k!!(2k+1))+……(|x|<1) (!!表示双阶乘) +(2k+1)!!·xarccosx=π/2-(x+x3/(2·3)+(1·3)x5/(2·4·5)+1·3·5(x7)/(2·4·6·7)……)(|x|<1)arctan x = x - x3/3 + x5/5 -……(x≤1)sinh x = x+x3/3!+x5/5!+……+(x(2k-1))/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x2/2!+x4/4!+……+(x(2k))/(2k)!+……(-∞<x<∞)arcsinh x =x - x3/(2·3) + (1·3)x5/(2·4·5) -1·3·5(x7)/(2·4·6·7)……(|x|<1)arctanh x = x + x3/3 + x5/5 + ……(|x|<1)导数y=sinx→y'=cosxy=cosx→y'=-sinxy=tanx→y'=1/cos²x =sec²xy=cotx→y'= -1/sin²x= - csc²xy=secx→y'=secxtanxy=cscx→y'=-cscxcotxy=arcsinx→y'=1/√(1-x²)y=arccosx→y'= -1/√(1-x²)y=arctanx→y'=1/(1+x²)y=arccotx→y'= -1/(1+x²)三角函数指数形式sinz=[e iz-e-iz]/(2i)cosz=[e iz+e-iz]/2tanx=[e iz-e-iz]/[ie iz+ie-iz]复数三角函数sin(a+bi)=sinacosbi+sinbicosa =sinachb+ishbcosacos(a-bi)=cosacosbi+sinbisina =cosachb+ishbsinatan(a+bi)=sin(a+bi)/cos(a+bi) cot(a+bi)=cos(a+bi)/sin(a+bi) sec(a+bi)=1/cos(a+bi)csc(a+bi)=1/sin(a+bi)正弦定理S=½absinC=½bcsinA=½acsinB余弦定理a² = b² + c²- 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosCcosC=(a² +b² -c²)/ 2abcosB=(a² +c² -b²)/ 2accosA=(c² +b² -a²)/ 2bc延伸定理:第一余弦定理a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A 正切定理(a+b)/(a-b) = tan[(A+B)/2]/tan[(A-B)/2]三角恒等式tanA+tanB+tanC=tanAtanBtanC (A+B+C=π)当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ 三角函数记忆口诀三角函数是函数,象限符号坐标注。

(完整版)常用的三角函数公式大全

(完整版)常用的三角函数公式大全

三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ]a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sh(a)=2e -e -aa ch(a)=2e e -aa + th(a)=)()(a ch a sh ch 2A-sh 2A=1sh2A=2shAchAch2A=ch 2A+sh 2A设α为任意角,2n π+α的三角函数值与α的三角函数值之间的关系:假设α为锐角时,先计算2n π+α的值,再确定符号,如果n 为偶数,则三角函数不变,否则转换函数,同时去掉2n π,例如 sin (2n π+α) cos (2n π+α) tan (2n π+α) cot (2n π+α)。

三角函数相关所有公式

三角函数相关所有公式

三角函数相关所有公式1.正弦函数公式:正弦函数表示为:y = sin(x)关系:sin(x) = y/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:奇函数,即sin(-x) = -sin(x)- 周期性:周期为2π,即sin(x+2π) = sin(x)2.余弦函数公式:余弦函数表示为:y = cos(x)关系:cos(x) = x/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:偶函数,即cos(-x) = cos(x)- 周期性:周期为2π,即cos(x+2π) = cos(x)3.正切函数公式:正切函数表示为:y = tan(x)关系:tan(x) = sin(x)/cos(x)性质:- 定义域:(-∞, +∞),且除去一些点使得tan(x)无定义(如x = π/2 + nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即tan(-x) = -tan(x)- 周期性:周期为π,即tan(x+π) = tan(x)4.余切函数公式:余切函数表示为:y = cot(x)关系:cot(x) = cos(x)/sin(x)性质:- 定义域:(-∞, +∞),且除去一些点使得cot(x)无定义(如x = nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即cot(-x) = -cot(x)- 周期性:周期为π,即cot(x+π) = cot(x)5.正弦函数和余弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))cot(x ± y) = (cot(x)cot(y) ∓ 1)/(cot(y) ± cot(x))6.正弦函数和余弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))7.正弦函数和余弦函数的半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)8.正弦函数和余弦函数的和积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这些是三角函数常见的公式,它们在数学和物理中有广泛的应用。

三角函数公式大全

三角函数公式大全

Trigonometric 1.诱导公式sin-a = - sinacos-a = cosasinπ/2 - a = cosacosπ/2 - a = sinasinπ/2 + a = cosacosπ/2 + a = - sinasinπ - a = sinacosπ - a = - cosasinπ + a = - sinacosπ + a = - cosa2.两角和与差的三角函数sina + b = sinacosb + cosαsinbcosa + b = cosacosb - sinasinbsina - b = sinacosb - cosasinbcosa - b = cosacosb + sinasinbtana + b = tana + tanb / 1 - tanatanbtana - b = tana - tanb / 1 + tanatanb3.和差化积公式sina + sinb = 2sina + b/2cosa - b/2sina - sinb = 2sina - b/2cosa + b/2cosa + cosb = 2cosa + b/2cosa - b/2cosa - cosb = - 2sina + b/2sina - b/24.积化和差公式sinasinb = - 1/2cosa + b - cosa - bcosacosb = 1/2cosa + b + cosa -bsinacosb = 1/2sina + b + sina - b5.二倍角公式sin2a = 2sinacosacos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = 1 – cos 2a/ 2cos2a = 1 + cos 2a/ 2tan a = 1 – cos 2a /sin 2a = sin 2a / 1 + cos 2a7.万能公式sina = 2tana/2 / 1+tan2a/2cosa = 1-tan2a/2 / 1+tan2a/2tana = 2tana/2 / 1-tan2a/2三角函数公式求助编辑百科名片三角函数是数学中属于初等函数中的超越函数的一类函数..它们的本质是任何角的集合与一个比值的集合的变量之间的映射..通常的三角函数是在平面直角坐标系中定义的..其定义城为整个实数城..另一种定义是在直角三角形中;但并不完全..现代数学把它们描述成无穷敖列的极限和微分方程的解;将其定义扩展到复数系..目录公式分类同角三角函数的基本关系平常针对不同条件的常用的两个公式一个特殊公式坡度公式锐角三角函数公式二倍角公式三倍角公式三倍角公式半角公式万能公式其他四倍角公式五倍角公式六倍角公式七倍角公式八倍角公式九倍角公式十倍角公式N倍角公式半角公式两角和公式三角和公式和差化积积化和差双曲函数三角函数的诱导公式六公式万能公式其它公式内容规律公式分类同角三角函数的基本关系平常针对不同条件的常用的两个公式一个特殊公式坡度公式锐角三角函数公式二倍角公式三倍角公式三倍角公式半角公式万能公式其他四倍角公式五倍角公式六倍角公式七倍角公式八倍角公式九倍角公式十倍角公式N倍角公式半角公式两角和公式三角和公式和差化积积化和差双曲函数三角函数的诱导公式六公式万能公式其它公式内容规律展开编辑本段公式分类同角三角函数的基本关系倒数关系:tanα ·cotα=1sinα ·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscα平方关系:平常针对不同条件的常用的两个公式一个特殊公式sina+sinθsina-sinθ=sina+θsina-θ证明:sina+sinθsina-sinθ=2 sinθ+a/2 cosa-θ/2 2 cosθ+a/2 sina-θ/2=sina+θsina-θ坡度公式我们通常把坡面的铅直高度h与水平高度l的比叫做坡度也叫坡比; 用字母i表示;即i=h / l;坡度的一般形式写成l : m形式;如i=1:5.如果把坡面与水平面的夹角记作a叫做坡角;那么i=h/l=tan a.锐角三角函数公式正弦:sinα=∠α的对边/∠α 的斜边余弦:cosα=∠α的邻边/∠α的斜边正切:tanα=∠α的对边/∠α的邻边余切:cotα=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦正切tan2A=2tanA/1-tan^2A三倍角公式三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sina+2a=sin2acosa+cos2asina=2sina1-sina+1-2sinasina=3sina-4sin^3acos3a=cos2a+a=cos2acosa-sin2asina=2cosa-1cosa-21-cos^acosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina3/4-sina=4sina√3/2-sina=4sinasin60°-sina=4sinasin60°+sinasin60°-sina=4sina2sin60+a/2cos60°-a/22sin60°-a/2cos60°-a/2=4sinasin60°+asin60°-acos3a=4cos^3a-3cosa=4cosacosa-3/4=4cosacosa-√3/2^2=4cosacosa-cos30°=4cosacosa+cos30°cosa-cos30°=4cosa2cosa+30°/2cosa-30°/2{-2sina+30°/2sina-30°/2}=-4cosasina+30°sina-30°=-4cosasin90°-60°-asin-90°+60°+a=-4cosacos60°-a-cos60°+a=4cosacos60°-acos60°+a上述两式相比可得tan3a=tanatan60°-atan60°+a现列出公式如下:sin2α=2sinαcosα tan2α=2tanα/1-tanα cos2α=cosα-sinα=2cosα-1=1-2sinα可别轻视这些字符;它们在数学学习中会起到重要作用;包括在一些图像问题和函数问题中三倍角公式sin3α=3sinα-4sinα=4sinα·sinπ/3+αsinπ/3-α cos3α=4cosα-3cosα=4cosα·cosπ/3+αcosπ/3-α tan3α=tanα-3+tanα^2/-1+3tanα^2=tan a · tanπ/3+a· tanπ/3-a半角公式sin^2α/2=1-cosα/2cos^2α/2=1+cosα/2tan^2α/2=1-cosα/1+cosαtanα/2=sinα/1+cosα=1-cosα/sinα万能公式sinα=2tanα/2/1+tanα/2cosα=1-tanα/2/1+tan^2α/2tanα=2tanα/2/1-tan&sα/2其他sinα+sinα+2π/n+sinα+2π2/n+sinα+2π3/n+……+sinα+2πn-1/n=0cosα+cosα+2π/n+cosα+2π2/n+cosα+2π3/n+……+cosα+2πn-1/n=0 以及sin^2α+sin^2α-2π/3+sin^2α+2π/3=3/2tanAtanBtanA+B+tanA+tanB-tanA+B=0四倍角公式sin4A=-4cosAsinA2sinA^2-1cos4A=1+-8cosA^2+8cosA^4tan4A=4tanA-4tanA^3/1-6tanA^2+tanA^4五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA5-10tanA^2+tanA^4/1-10tanA^2+5tanA^4六倍角公式sin6A=2cosAsinA2sinA+12sinA-1-3+4sinA^2cos6A=-1+2cosA16cosA^4-16cosA^2+1tan6A=-6tanA+20tanA^3-6tanA^5/-1+15tanA-15tanA^4+tanA^6七倍角公式sin7A=-sinA56sinA^2-112sinA^4-7+64sinA^6cos7A=cosA56cosA^2-112cosA^4+64cosA^6-7tan7A=tanA-7+35tanA^2-21tanA^4+tanA^6/-1+21tanA^2-35tanA^4+7tanA^6 八倍角公式sin8A=-8cosAsinA2sinA^2-1-8sinA^2+8sinA^4+1 cos8A=1+160cosA^4-256cosA^6+128cosA^8-32cosA^2tan8A=-8tanA-1+7tanA^2-7tanA^4+tanA^6/1-28tanA^2+70tanA^4-28tanA^6+tanA^ 8九倍角公式sin9A=sinA-3+4sinA^264sinA^6-96sinA^4+36sinA^2-3 cos9A=cosA-3+4cosA^264cosA^6-96cosA^4+36cosA^2-3tan9A=tanA9-84tanA^2+126tanA^4-36tanA^6+tanA^8/1-36tanA^2+126tanA^4-84ta nA^6+9tanA^8十倍角公式sin10A = 2cosAsinA4sinA^2+2sinA-14sinA^2-2sinA-1-20sinA^2+5+16sinA^4 cos10A = -1+2cosA^2256cosA^8-512cosA^6+304cosA^4-48cosA^2+1tan10A = -2tanA5-60tanA^2+126tanA^4-60tanA^6+5tanA^8/-1+45tanA^2-210tanA^4+210tan A^6-45tanA^8+tanA^10N倍角公式根据棣美弗定理;cosθ+ i sinθ^n = cosnθ+ i sinnθ为方便描述;令sinθ=s;cosθ=c考虑n为正整数的情形:cosnθ+ i sinnθ = c+ i s^n = Cn;0c^n + C n;2c^n-2i s^2 + Cn;4c^n- 4i s^4 + ... …+Cn;1c^n-1i s^1 + Cn;3c^n-3i s^3 + Cn;5c^n-5i s^5 + ... …=>比较两边的实部与虚部实部:cosnθ=Cn;0c^n + Cn;2c^n-2i s^2 + Cn;4c^n-4i s^4 + ... (i)虚部:isinnθ=Cn;1c^n-1i s^1 + Cn;3c^n-3i s^3 + Cn;5c^n-5i s^5 + ... …对所有的自然数n:1. cosnθ:公式中出现的s都是偶次方;而s^2=1-c^2平方关系;因此全部都可以改成以c 也就是cosθ表示..2. sinnθ:1当n是奇数时:公式中出现的c都是偶次方;而c^2=1-s^2平方关系;因此全部都可以改成以s也就是sinθ表示..2当n是偶数时:公式中出现的c都是奇次方;而c^2=1-s^2平方关系;因此即使再怎么换成s;都至少会剩c也就是cosθ的一次方无法消掉..例. c^3=cc^2=c1-s^2;c^5=cc^2^2=c1-s^2^2半角公式tanA/2=1-cosA/sinA=sinA/1+cosAsin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa半角公式两角和公式两角和公式cosα+β=cosαcosβ-sinαsinβcosα-β=cosαcosβ+sinαsinβsinα+β=sinαcosβ+cosαsinβsinα-β=sinαcosβ -cosαsinβtanα+β=tanα+tanβ/1-tanαtanβtanα-β=tanα-tanβ/1+tanαtanβcotA+B = cotAcotB-1/cotB+cotAcotA-B = cotAcotB+1/cotB-cotA三角和公式sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα 和差化积sinθ+sinφ =2sinθ+φ/2 cosθ-φ/2和差化积公式sinθ-sinφ=2cosθ+φ/2 sinθ-φ/2cosθ+cosφ=2cosθ+φ/2cosθ-φ/2cosθ-cosφ= -2sinθ+φ/2sinθ-φ/2tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanBtanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB积化和差sinαsinβ=-cosα+β-cosα-β /2cosαcosβ=cosα+β+cosα-β/2sinαcosβ=sinα+β+sinα-β/2cosαsinβ=sinα+β-sinα-β/2双曲函数sh a = e^a-e^-a/2ch a = e^a+e^-a/2th a = sin ha/cos ha公式一:设α为任意角;终边相同的角的同一三角函数的值相等:sin2kπ+α= sinαcos2kπ+α= cosαtan2kπ+α= tanαcot2kπ+α= cotα公式二:设α为任意角;π+α的三角函数值与α的三角函数值之间的关系:sinπ+α= -sinαcosπ+α= -cosαtanπ+α= tanαcotπ+α= cotα公式三:任意角α与-α的三角函数值之间的关系:sin-α= -sinαcos-α= cosαtan-α= -tanαcot-α= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α= sinαcosπ-α= -cosαtanπ-α= -tanαcotπ-α= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α= -sinαcos2π-α= cosαtan2π-α= -tanαcot2π-α= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sinπ/2+α= cosαcosπ/2+α= -sinαtanπ/2+α= -cotαcotπ/2+α= -tanαsinπ/2-α= cosαcosπ/2-α= sinαtanπ/2-α= cotαcotπ/2-α= tanαsin3π/2+α= -cosαcos3π/2+α= sinαtan3π/2+α= -cotαcot3π/2+α= -tanαsin3π/2-α= -cosαcos3π/2-α= -sinαtan3π/2-α= cotαcot3π/2-α= tanα以上k∈ZA·sinωt+θ+ B·sinωt+φ =√{A+2ABcosθ-φ} · sin{ωt + arcsin A·sinθ+B·sinφ / √{A^2 +B^2 +2ABcosθ-φ} }√表示根号;包括{……}中的内容三角函数的诱导公式六公式公式一:sin-α = -sinαcos-α = cosαtan -α=-tanα公式二:sinπ/2-α = cosαcosπ/2-α = sinα公式三:sinπ/2+α = cosαcosπ/2+α = -s inα公式四:sinπ-α = sinαcosπ-α = -cosα公式五:sinπ+α = -sinαcosπ+α = -cosα公式六:tanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα诱导公式记背诀窍:奇变偶不变;符号看象限万能公式万能公式sinα=2tanα/2/1+tanα/2cosα=1-tanα/2/1+tanα/2tanα=2tanα/2/1-tanα/2其它公式三角函数其它公式1 sinα^2+cosα^2=1平方和公式21+tanα^2=secα^231+cotα^2=cscα^2证明下面两式;只需将一式;左右同除sinα^2;第二个除cosα^2即可4对于任意非直角三角形;总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-CtanA+B=tanπ-CtanA+tanB/1-tanAtanB=tanπ-tanC/1+tanπtanC整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证;当x+y+z=nπn∈Z时;该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论5cotAcotB+cotAcotC+cotBcotC=16cotA/2+cotB/2+cotC/2=cotA/2cotB/2cotC/27cosA^2+cosB^2+cosC^2=1-2cosAcosBcosC8sinA^2+sinB^2+sinC^2=2+2cosAcosBcosC其他非重点三角函数csca = 1/sinaseca = 1/cosaseca^2+csca^2=seca^2csca^2幂级数展开式sin x = x-x^3/3+x^5/5-……+-1^k-1x^2k-1/2k-1+…… x∈Rcos x = 1-x^2/2+x^4/4-……+-1kx^2k/2k+…… x∈Rarcsin x = x + 1/2x^3/3 + 13/24x^5/5 + ……|x|<1arccos x = π - x + 1/2x^3/3 + 13/24x^5/5 + …… |x|<1arctan x = x - x^3/3 + x^5/5 -…… x≤1无限公式sinx=x1-x^2/π^21-x^2/4π^21-x^2/9π^2……cosx=1-4x^2/π^21-4x^2/9π^21-4x^2/25π^2……tanx=8x1/π^2-4x^2+1/9π^2-4x^2+1/25π^2-4x^2+……secx=4π1/π^2-4x^2-1/9π^2-4x^2+1/25π^2-4x^2-+……sinxx=cosx/2cosx/4cosx/8……1/4tanπ/4+1/8tanπ/8+1/16tanπ/16+……=1/πarctan x = x - x^3/3 + x^5/5 -…… x≤1和自变量数列求和有关的公式sinx+sin2x+sin3x+……+sinnx=sinnx/2sinn+1x/2/sinx/2cosx+cos2x+cos3x+……+cosnx=cosn+1x/2sinnx/2/sinx/2tann+1x/2=sinx+sin2x+sin3x+……+sinnx/cosx+cos2x+cos3x+……+cosnxsinx+sin3x+sin5x+……+sin2n-1x=sinnx^2/sinxcosx+cos3x+cos5x+……+cos2n-1x=sin2nx/2sinx编辑本段内容规律三角函数看似很多;很复杂;但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系..而掌握三角函数的内部规律及本质也是学好三角函数的关键所在..三角函数本质:根据三角函数定义推导公式根据右图;有sinθ=y/ r; cosθ=x/r; tanθ=y/x; cosθ=x/y深刻理解了这一点;下面所有的三角公式都可以从这里出发推导出来;比如以推导sinA+B = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C;D;在单位圆上有任意A;B点..角AOD为α;BOD 为β;旋转AOB使OB与OD重合;形成新A'OD..Acosα;sinα;Bcosβ;sinβ;A'cosα-β;sinα-βOA'=OA=OB=OD=1;D1;0∴cosα-β-1^2+sinα-β^2=cosα-cosβ^2+sinα-sinβ^2和差化积及积化和差用还原法结合上面公式可推出换a+b/2与a-b/2单位圆定义单位圆六个三角函数也可以依据半径为一中心为原点的单位圆来定义..单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形..但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义;而不只是对于在0 和π/2 弧度之间的角..它也提供了一个图象;把所有重要的三角函数都包含了..根据勾股定理;单位圆的等式是:图象中给出了用弧度度量的一些常见的角..逆时针方向的度量是正角;而顺时针的度量是负角..设一个过原点的线;同x轴正半部分得到一个角θ;并与单位圆相交..这个交点的x和y坐标分别等于cos θ和sin θ..图象中的三角形确保了这个公式;半径等于斜边且长度为1;所以有sin θ= y/1 和cos θ= x/1..单位圆可以被视为是通过改变邻边和对边的长度;但保持斜边等于1的一种查看无限个三角形的方式..。

(史上最全)三角函数公式大全

(史上最全)三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) )(tan )2tan(cos )2cos(sin )2sin(.1Z k k k k ∈⎪⎩⎪⎨⎧=+=+=+ααπααπααπ sin()sin 2.cos()cos tan()tan αααααα-=-⎧⎪-=⎨⎪-=-⎩ sin()sin 3.cos()cos tan()tan πααπααπαα+=-⎧⎪+=-⎨⎪+=⎩⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin(.4 sin(2)sin 5.cos(2)cos tan(2)tan πααπααπαα-=-⎧⎪-=⎨⎪-=-⎩ ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看.成.锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)sin()cos 26.cos()sin 2tan()cot 2πααπααπαα⎧+=⎪⎪⎪+=-⎨⎪⎪+=-⎪⎩ sin()cos 27.cos()sin 2tan()cot 2πααπααπαα⎧-=⎪⎪⎪-=⎨⎪⎪-=⎪⎩ 3sin()cos 238.cos()sin 23tan()cot 2πααπααπαα⎧+=-⎪⎪⎪+=⎨⎪⎪+=-⎪⎩ 3sin()cos 239.cos()sin 23tan()cot 2πααπααπαα⎧-=-⎪⎪⎪-=-⎨⎪⎪-=⎪⎩ 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαs i n c o s c o s s i n )s i n (⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαs i n s i n c o s c o s )c o s (⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαt a n t a n 1t a n t a n )t a n (⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ ; αα2sin 22cos 1=-;2)cos (sin 2sin 1ααα+=+ ;2)cos (sin 2sin 1ααα-=-;六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=;ααα22tan 1tan 12cos +-=;ααα2tan 1tan 22tan -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同角三角函数的基本关系式
倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1
sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=
cscα/secα
sin 2α+cos 2α=1 1+tan 2α=sec 2α 1+cot 2α=csc 2α
诱导公式
sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα
sin (π/2-α)=cosα cos (π/2-α)=sinα tan (π/2-α)=cotα cot (π/2-α)=tanα sin (π/2+α)=cosα cos (π/2+α)=-sinα tan (π/2+α)=-cotα cot (π/2+α)=-tanα sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα
两角和与差的三角函数公式
万能公式 sin (α+β)=si nαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-sinαsinβ cos (α-β)=cosαcosβ+sinαsinβ
tanα+tanβ tan (α+β)=—————— 1-tanα ·tanβ
tanα-tanβ tan (α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan 2(α/2) 1-tan 2(α/2) cosα=—————— 1+tan 2(α/2) 2tan(α/2) tanα=—————— 1-tan 2(α/2)
初中三角函数公式及其定理
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222c b a =+
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
定 义
表达式
取值范围
关 系


斜边的对边A A ∠=
sin c a A =
sin
1sin 0<<A
(∠A 为锐角)
B A cos sin = B A sin cos =
1cos
sin
2
2
=+A A

弦 斜边的邻边A A ∠=
cos c b A =
cos
1cos 0<<A
(∠A 为锐角)


的邻边的对边A tan ∠∠=
A A b
a A =
tan
0tan >A
(∠A 为锐角)
B A cot tan = B A tan cot = A
A cot 1tan =
(倒数)
1cot tan =⋅A A


的对边的邻边A A A ∠∠=
cot a
b A =
cot
0cot >A
(∠A 为锐角)
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 三角函数
0° 30°
45°
60°
90° α
sin
2
1 2
2 2
3 1 αcos
1 23 2
2
2
1 0 αtan 0 3
3 1 3
- α
cot
-
3
1
3
3
6、正弦、余弦的增减性:
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:
当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)
2、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

)
90cot(tan A A -︒=)90tan(cot A A -︒=
B A cot tan = B A tan cot =
)90cos(sin A A -︒=)
90sin(cos A A -︒=B
A cos sin =B
A sin cos =A
90B 90∠-︒=∠︒=∠+∠得由B A

边 邻边
斜边 A
C
B
b
a c
A
90B 90∠-︒=∠︒=∠+∠得由B A
仰角铅垂线
水平线
视线
视线俯角
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h i l
=。

坡度
一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan h
i l
α=
=。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、
OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

:i h l
=h
l
α。

相关文档
最新文档