三角函数定义及其三角函数公式大全
完整三角函数公式表

完整三角函数公式表三角函数公式表是数学中常用的一个工具,用于计算三角函数的数值。
它包含了各种三角函数的定义和性质,能够帮助我们在解决三角函数相关问题时,快速找到所需的公式和计算方法。
以下是一个完整的三角函数公式表,包含了常见的正弦、余弦、正切、余切、正割和余割函数的公式:1. 正弦函数(sin):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的y坐标。
- 基本关系:sin θ = y/r,其中θ是角度,y是对应的y坐标,r是单位圆的半径(常为1)。
- 周期性:sin (θ + 2π) = sin θ。
- 奇偶性:sin (-θ) = -sin θ。
2. 余弦函数(cos):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的x坐标。
- 基本关系:cos θ = x/r,其中θ是角度,x是对应的x坐标,r是单位圆的半径(常为1)。
- 周期性:cos (θ + 2π) = cos θ。
- 奇偶性:cos (-θ) = cos θ。
3. 正切函数(tan):- 定义:tan θ = sin θ / cos θ。
- 周期性:tan (θ + π) = tanθ。
- 奇偶性:tan (-θ) = -tan θ。
4. 余切函数(cot):- 定义:cot θ = 1 / tan θ = cos θ / sin θ。
- 周期性:cot (θ + π) = cot θ。
- 奇偶性:cot (-θ) = -cot θ。
5. 正割函数(sec):- 定义:sec θ = 1 / cos θ。
- 周期性:sec (θ + 2π) = sec θ。
- 奇偶性:sec (-θ) = sec θ。
6. 余割函数(csc):- 定义:csc θ = 1 / sin θ。
- 周期性:csc (θ + 2π) = csc θ。
- 奇偶性:csc (-θ) = -csc θ。
此外,三角函数还有一些重要的性质:1. 三角函数的范围:sin、cos、csc、sec的值在[-1, 1]之间,tan、cot的值在整个实数范围内。
(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角函数公式(最全)

5 、幂级数
c0+c1x+c2x2+...+cnxn+...=
∑cnxn (n=0.. ∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=
90 ° -(60 ° -a)]sin[-90
° +(60 ° +a)] =-4cosacos(6
a)[-cos(60
° +a)] =4cosacos(60
° -a)cos(60
上述两式相比可得: tan3a=tana · tan(60 ° +a)
· tan(60 ° -a)
6、四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)] cos4a=1+(-8*cosa^2+8*cosa^4) tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
1
三角函数公式
一、定义公式
锐角三角函数 任意角三角函数
正弦( sin ) 余弦( cos ) 正切( tan 或 tg ) 余切( cot 或 ctg ) 正割( sec ) 余割( csc) 正弦( sin ) 余弦( cos ) 正切( tan 或 tg ) 余切( cot 或 ctg ) 正割( sec ) 余割( csc)
在任意△ ABC 中,角 A 、 B 、 C 所对的边长分别为 a 、 b 、 c , 三角形 外接圆的半径为 R.则有:
三角函数公式大全

三角函数公式大全1.三角函数的基本定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边- 余切函数:cotθ = 1/tanθ- 正割函数:secθ = 1/cosθ- 余割函数:cscθ = 1/sinθ2.三角函数的周期性:- 正弦函数的周期为2π:sin(θ+2π) = sinθ- 余弦函数的周期为2π:cos(θ+2π) = cosθ- 正切函数的周期为π:tan(θ+π) = tanθ3.三角函数的平方和差公式:- 正弦函数的平方和差公式:sin(A±B) = sinAcosB ± cosAsinB - 余弦函数的平方和差公式:cos(A±B) = cosAcosB ∓ sinAsinB - 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB)/(1 ∓tanAtanB)4.三角函数的倍角公式:- 正弦函数的倍角公式:sin2θ = 2sinθcosθ- 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ- 正切函数的倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)5.三角函数的半角公式:- 正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2)- 余弦函数的半角公式:cos(θ/2) = ±√((1 + cosθ)/2)- 正切函数的半角公式:tan(θ/2) = ±√((1 - cosθ)/(1 +cosθ))6.三角函数的和差化积公式:- 正弦函数的和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)- 余弦函数的和差化积公式:cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)- 正弦函数的差化积公式:sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)- 余弦函数的差化积公式:cosA - cosB = 2sin((A+B)/2)sin((A-B)/2)7.其他重要公式:- 三角函数的平方公式:sin²θ + cos²θ = 1- 三角函数的倒数公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ- 三角函数的和差化差公式:cos(A-B) = cosAcosB + sinAsinB,cos(A+B) = cosAcosB - sinAsinB这些是三角函数中一些重要的公式,对于理解和应用三角函数有很大的帮助。
三角函数定义及三角函数公式大全

三角函数定义及三角函数公式大全三角函数是数学中一类重要的函数,主要用于描述和分析三角形以及周期性现象。
三角函数的定义涵盖了正弦函数、余弦函数、正切函数、余切函数、割函数和余割函数等,它们在数学和物理等领域都有广泛的应用。
下面将对每个三角函数的定义及其公式进行详细介绍。
1. 正弦函数(sine function):正弦函数是一个周期性函数,在单位圆上定义。
它的定义域是所有实数,值域是[-1, 1]。
通常用sin(x)或者sinθ来表示,其中θ为角度值。
正弦函数的公式为:sin(x) = sinθ = y/r = 对边/斜边2. 余弦函数(cosine function):余弦函数同样也是一个周期性函数,也在单位圆上定义。
它的定义域是所有实数,值域也是[-1, 1]。
通常用cos(x)或者cosθ来表示。
余弦函数的公式为:cos(x) = cosθ = x/r = 邻边/斜边3. 正切函数(tangent function):正切函数是一个无界函数,定义于所有实数上。
它的定义域是除了π/2 + kπ(k=0,1,2,...)外的所有实数,值域是(-∞, ∞)。
正切函数通常用tan(x)或者ta nθ来表示。
正切函数的公式为:tan(x) = tanθ = y/x = 对边/邻边4. 余切函数(cotangent function):余切函数也是一个无界函数,定义于所有实数上。
它的定义域是除了kπ(k=0,1,2,...)外的所有实数,值域也是(-∞, ∞)。
余切函数通常用cot(x)或者cotθ来表示。
余切函数的公式为:cot(x) = cotθ = x/y = 邻边/对边5. 割函数(secant function):割函数是一个无界函数,在余弦函数的基础上定义。
它的定义域是除了π/2 + kπ(k=0,1,2,...)外的所有实数,值域是(-∞, -1]∪[1, ∞)。
割函数通常用sec(x)或者secθ来表示。
九年级数学:三角函数定义及三角函数公式大全(1)

斜边 cba a 2 +b 2 =c 2三角函数定义及三角函数公式大全一:初中三角函数公式及其定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成 ∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余B角的正弦值。
由∠A + ∠B = 90︒得∠B = 90︒ - ∠AAC邻边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余 角的正切值。
由∠A + ∠B = 90︒得∠B = 90︒ - ∠A5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)sin A = cos Bcos A = sin Bsin A = cos(90︒ - A ) cos A = sin(90︒ - A ) tan A = cot B cot A = tan Btan A = cot(90︒ - A )cot A = tan(90︒ - A )对边sin α 0 1 22 23 21 cos α 1 32 2 21 20 tan α 03 313 - cot α-313 3当 0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当 0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知 的边和角。
依据:①边的关系: a 2 + b 2 = c 2 ;②角的关系:A+B=90°;③边角关系: 三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式大全三角函数是数学中一个重要的概念,它描述了以弧度为单位的角度与一个直角三角形的各边之间的关系。
三角函数在几何、三角学、物理学等领域中都有广泛的应用,所以熟练掌握三角函数及其相关公式是非常重要的。
在三角函数中,有六个基本的三角函数,它们分别是正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
这些函数有特定的定义和性质,下面我们将逐一介绍这些内容。
1. 正弦函数(sin):在一个直角三角形中,正弦函数定义为对边长度与斜边长度之比。
对于一个角度为θ的直角三角形,正弦函数可以表示为sinθ = 对边/斜边。
2. 余弦函数(cos):余弦函数定义为邻边长度与斜边长度之比。
对于一个角度为θ的直角三角形,余弦函数可以表示为cosθ = 邻边/斜边。
3. 正切函数(tan):正切函数定义为对边长度与邻边长度之比。
对于一个角度为θ的直角三角形,正切函数可以表示为tanθ = 对边/邻边。
4. 余切函数(cot):余切函数定义为邻边长度与对边长度之比。
对于一个角度为θ的直角三角形,余切函数可以表示为cotθ = 邻边/对边。
5. 正割函数(sec):正割函数定义为斜边长度与邻边长度之比。
对于一个角度为θ的直角三角形,正割函数可以表示为secθ = 斜边/邻边。
6. 余割函数(csc):余割函数定义为斜边长度与对边长度之比。
对于一个角度为θ的直角三角形,余割函数可以表示为cscθ = 斜边/对边。
除了基本的三角函数,还有一些重要的三角函数公式用于解决各种三角函数之间的关系问题。
1.三角恒等式:- π的周期性:sin(θ+π) = -sin(θ),cos(θ+π) = -cos(θ),tan(θ+π) = tan(θ)- 90度的周期性:sin(θ+90度) = cos(θ),cos(θ+90度) = -sin(θ),tan(θ+90度) = -cot(θ)- 互余:sin(θ) = csc(θ),cos(θ) = sec(θ),tan(θ) =cot(θ)- 余角:sin(π/2 - θ) = cos(θ),cos(π/2 - θ) = sin(θ),tan(π/2 - θ) = cot(θ)2.三角函数的平方和差:- sin(A + B) = sin(A)cos(B) + cos(A)sin(B)- sin(A - B) = sin(A)cos(B) - cos(A)sin(B)- cos(A + B) = cos(A)cos(B) - sin(A)sin(B)- cos(A - B) = cos(A)cos(B) + sin(A)sin(B)3.三角函数的倍角公式:- sin(2θ) = 2sin(θ)cos(θ)- cos(2θ) = cos²(θ) - sin²(θ)- tan(2θ) = 2tan(θ)/(1 - tan²(θ))4.三角函数的半角公式:- sin(θ/2) = ±√((1 - cos(θ))/2)- cos(θ/2) = ±√((1 + cos(θ))/2)- tan(θ/2) = sin(θ)/(1 + cos(θ))5.三角函数的和差化积公式:- sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)- sin(A) - sin(B) = 2cos((A+B)/2)sin((A-B)/2)- cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)- cos(A) - cos(B) = -2sin((A+B)/2)sin((A-B)/2)这些只是三角函数及其公式的一部分,还有更多的公式和关系可以在数学教材和参考资料中找到。
三角函数公式全解

视线
仰角 水平线 俯角
h
i h:l
视线
二:初中三角函数公式及其定理 ﻩ
1、勾股定理:直角三角形两直角边 a 、 b 的平方和等于斜边 c 的平方。 a2 b2 c2
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
定
义
表达式
取值范围
关系
正 弦
sin
A
A的对边 斜边
sin A a c
0 sin A 1
(∠A为锐角)
余 弦
cos
A
A的邻边 斜边
cos A b c
0 cosA 1
(∠A 为锐角)
正 切
tan
A
A的对边 A的邻边∠A 为锐角)
余 切
cot
A
A的邻边 A的对边
cot A b a
cot A 0
(∠A 为锐角)
sin A cosB cos A sin B sin 2 A cos2 A 1
ss= +ciαnα-o)(ﻫstπi(cn=/α2πo-ﻫ/cs+2(to+αaπt)nαα/()2=πc+o/2α)c ot αcso a oαtn(sπ((π++πα+)α)α=)==co-ttcaαn
=-tanα
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ ﻫs in(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ ﻫcos
三角函数
0°
30°
45°
60°
90°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数定义及其三角函数公式汇总1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβA90B90∠-︒=∠︒=∠+∠得由BA邻边A CA90B90∠-︒=∠︒=∠+∠得由BA6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法) 2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ三角函数公式汇总1:i h l =hlα⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a2=b2+c2-2bc A cos b2=a2+c2-2ac B cosc 2=a 2+b 2-2ab C cos bca cb A 2cos 222-+=⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =xy =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且abtg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T=ωπ2, 频率f=T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图⒏诱导公试 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限 ⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± ③βαβαβαtg tg tg tg tg ⋅±=±μ1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±μ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±=④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin ⒕和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=-⒖反三角函数:⒗最简单的三角方程三角公式汇总2一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:rx=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。
七、和差化积公式2cos 2sin2sin sin βαβαβα-+=+ …⑴ 2sin2cos2sin sin βαβαβα-+=- …⑵2cos2cos2cos cos βαβαβα-+=+ …⑶ 2sin2sin2cos cos βαβαβα-+-=- …⑷了解和差化积公式的推导,有助于我们理解并掌握好公式:2sin 2cos 2cos 2sin 22sin sin βαβαβαβαβαβαα-++-+=⎪⎭⎫⎝⎛-++= 2sin 2cos 2cos 2sin22sin sin βαβαβαβαβαβαβ-+--+=⎪⎭⎫⎝⎛--+= 两式相加可得公式⑴,两式相减可得公式⑵。