2015—2016学年九年级第二次月考试题
九年级第二次月考数学考试试题

2015—2016学年度上学期九年级第二次月考(2015.12)数 学 试 题时间:120分钟 总分:120分一、选择题(1-8题每题3分,9-12题每题4分,共40分)1.下列说法中,①平分弦的直径垂直于弦 ②直角所对的弦是直径 ③相等的弦所对的弧相等 ④等弧所对的弦相等 ⑤圆周角等于圆心角的一半,其中正确的命题个数为( )A 、0B 、1C 、2D 、3 2.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( )A .B .C .D .3.如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则AE=( )A .1B .2C .3D .44.已知反比例函数A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A .51 B .25 C .35 D .54 6.如图,两个同心圆的半径分别为4cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为( )A.3cm B .4cm C .6cm D .8cm7.如图,CD 是⊙O 的直径,弦DE ∥OA ,若∠D 的度数是50°,则∠A 的度数是 ( )A .25°B .30°C .40°D .50°8.如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )A .12πcm 2B .15πcm 2C .18πcm 2D .24πcm 29. 如图,一次函数112y k x =+与反比例函数22k y x=的图象交点A (m ,4) 和 B (-8,-2)两点,若y 1> y 2,则x 的取值范围是 ( )A .-8<x<4B .x<-8或0<x<4C .x<-8或x>4D .x>4或-8<x<010.下列图形中,阴影部分面积最大的是( )第8题图xyOA B第6题图第7题图11.如图,一次函数b x y +=的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数xy 2=交于点C (2,m ),则点B 到OC 的距离是( )A .2B .5C .52D .552 12.如图,两双曲线y=k x 与y=-3x 分别位于第一、四象限,A 是y 轴上任意一点,B 是y=-3x 上的点,C 是y=kx上的点,线段BC ⊥x 轴于点 D ,且4BD=3CD ,则下列说法:①双曲线y=kx在每个象限内,y 随x 的增大而减小;②若点B 的横坐标为3,则点C 的坐标为(3,-43);③k=4;④△ABC的面积为定值7,正确的有( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共20分)13.圆锥的底面半径为1,侧面积为4π,则圆锥的高线长为__________. 14.为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有______个白球15.四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰三角形。
2015-2016学年河南省三门峡市渑池县九年级上第二次月考数学试卷含答案解析

2015-2016学年河南省三门峡市渑池县九年级(上)第二次月考数学试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0 B.x<﹣1或0<x<1 C.x≤1或0<x≤1 D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1) C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.2015-2016学年河南省三门峡市渑池县九年级(上)第二次月考数学试卷参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0 B.x<﹣1或0<x<1 C.x≤1或0<x≤1 D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1) C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S 即可求出阴影部分的面积.空白AEC【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)∴S△AOD=OA•OD=•2•2=6,…(10分)∴S扇形△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴阴影部分的面积=S扇形△AOD﹣S△AOD=3π﹣6.…(12分)【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;(3)由S△OMB=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN∥x轴,AC∥y轴,∴四边形OCDB是平行四边形,∵x轴⊥y轴,∴▱OCDB是矩形.∵M和A都在双曲线y=上,∴BM×OB=6,OC×AC=6,∴S△OMB=S△OAC=×|k|=3,又∵S四边形OADM=6,∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC•OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD;(4)如图,∵S△OAC=OC•AC=3,OC=3,∴AC=2,∴A(3,2),∴OA==,∴当OA=OP时,P1(,0);当OA=AP时,∵AC⊥x轴,OC=3,∴OC=CP2=3,∴P2(6,0);当OP=AP时,设P3(x,0),∵O(0,0),A(3,2),∴x=,解得x=,∴P3(,0).综上所述,P点坐标为P1(,0),P2(6,0),P3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.。
肇庆市2015-2016年第一学期九年级第二次月考化学试题及答案

2015-2016学年第一学期 九年级第二次段考化学科试题说明:1、全卷共6页,满分100分,考试时间80分钟。
考试不准使用计算器。
2、可能用到的相对原子质量:H —1 C —12 O —16 Cl —35.5 K —39 Fe —56一、选择题(本大题包括14小题,每小题2分,共28分。
每小题只有一个选项符合题意)1. 前者属于物理变化,后者属于化学变化的是 ( )A .水结成冰,冰融化成水 B. 酒精挥发,酒精燃烧 C .鸡蛋变臭,人体呼吸 D.铁生锈,电灯通电发光 2.地壳中含量最多的金属元素是 ( )A .氧 B. 硅 C.铝 D.铁 3. 空气中含量最多且性质很稳定的是( )A .氧气 B. 氮气 C. 稀有气体 D. 二氧化碳 4. 下列是我们日常生活中接触到的物质,其中属于纯净物的是 ( ) A.蒸馏水 B.碘酒C.可乐饮料D.洁净的空气5.下列物质中,氯元素化合价最低的是( )A .Cl 2 B. HCl04 C. KCl03 D. KC1 6.下列符号中,能表示一个原子、一种元素、一种物质的是 ( ) A. H B. N 2 C . Cu D. CO 7.元素的化学性质主要决定于原子的 ( )A. 质子数B. 中子数C.最外层电子数D. 电子层数 8.根据下图提供的信息,下列说法正确的是( )A .钠的原子序数为11B .钠原子最外层有11个电子C .钠的相对原子质量是22.99gD .钠属于非金属元素9.下列实验操作错误的是 ( )年级________班级__________姓名__________学号____________10.用酒精灯给试管里的液体加热时,发现试管破裂,可能原因有:①用酒精灯的外焰给试管加热;②加热前试管外壁的水没有擦干;③加热时试管底部触及灯芯;④被加热的液体超过试管容积的1/3;⑤加热时没有不时地上下移动试管;⑥没有进行预热,直接集中加热管里液体的中下部。
河南省桐柏县2015-2016年九年级上数学第二次月考试题含答案

2015年秋期九年级第二次月考数学试题(考试时间:100分钟;满分:120分)题序一二三总分1—8 9—15 16 17 18 19 20 21 22 23得分一.选择题(共8小题,每小题3分,共24分)1.与3是同类二次根式的是().A.2 B.9 C.18 D.312.已知一个直角三角形的两条直角边的长恰好是方程22870x x-+=的两个根,则这个直角三角形的斜边长是()A.3B.3C.6D.93、从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.13B.14C.16D.1124、在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,则下列各式成立的是()A. b=a·sinBB. a=b·cosBC. a=b·tanBD. b=a·tanB5、如右图,在直角坐标系中,矩形OABC的顶点O是坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)6.如右图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B 重合,折痕为DE,则S△BCE:S△BDE等于()A. 2:5B.14:25C.16:25D. 4:257.如果关于x的一元二次方程22(21)10k x k x-++=有两个不相等的实数根,那么k的取值范围是()A.14k>- B.14k>-且0k≠ C.14k<- D.14k≥-且k≠8如右图,在Rt△中,∠°,于点.已知,,那么()A. B. C. D..二.填空题(共7小题,每小题3分,共21分)9.当x时,322-x在实数范围内有意义。
2015年九年级月考卷子

2015年九年级月考卷子(考试时间:90分钟,满分:100分)一、选择题(共7题,每题4分,满分28分)1. ()4分2. ()4分3. ()4分4. ()4分5. ()4分6. ()4分7. ()4分二、填空题(共5题,每题4分,满分20分)8. ()4分9. ()4分10. ()4分11. ()4分12. ()4分三、名词解释(共3题,每题6分,满分18分)13. ()6分14. ()6分15. ()6分四、简答题(共3题,每题10分,满分30分)16. ()10分17. ()10分18. ()10分五、论述题(共2题,每题14分,满分28分)19. ()14分20. ()14分一、选择题1. 下列词语中,不属于一词多义的是()A. 行B. 者C. 莫D. 而2. 下列句子中,没有使用比喻修辞手法的是()A. 长风破浪会有时,直挂云帆济沧海。
B. 燕山雪花大如席,片片吹落轩辕台。
C. 会当凌绝顶,一览众山小。
D. 春风又绿江南岸,明月何时照我还?3. 下列词语中,加点字的注音有误的是()A. 拘泥(nì)B. 氛围(fēn)C. 横财(hèng)D. 横祸(hèng)4. 下列句子中,成语使用不恰当的是()A. 他这个人很热情,每次见到我们都侃侃而谈。
B. 这篇文章观点新颖,令人耳目一新。
C. 这个问题很复杂,我们需要深入浅出地分析。
D. 他虽然失败了,但仍然不气馁,继续努力。
5. 下列句子中,没有语病的是()A. 通过这次活动,使同学们认识到了环保的重要性。
B. 他的学习成绩不仅在班级里名列前茅,而且在全国也享有盛誉。
C. 老师告诉我们,只有勤奋学习,才能取得好成绩。
D. 这个故事讲述了一个勤奋好学的小女孩,最终成为了一名优秀的科学家。
6. 下列诗句中,表达作者思乡之情的是()A. 举头望明月,低头思故乡。
B. 海内存知己,天涯若比邻。
C. 莫愁前路无知己,天下谁人不识君。
甘肃省永登县苦水中学2016届九年级上学期第二次月考语文试题-1

2015—2016学年度第一学期第二次月考九年级语文试卷一、语文知识积累与运用(32分)1.根据拼音写出汉字或给加点的字注音(4分)光哲把读书喻为灵魂的壮游,一卷在手,日月山川,悲欢离合,兴衰更替,便如沿途风景扑面而来。
读《沁园春》,我们能感受无限江山的妖ráo()美好;读《傅雷家书》,我们能体察父亲对儿子的提掖.()深情;读《孤独之旅》,我们能明白一个人zhuó()壮成长的生命历程;读《香菱学诗》,我们能感悟学诗需要苦心吟诵、精血.()诚聚……2.古诗文积累。
(10分)(1)鸡声茅店月,。
(温庭筠《商山早行》)(2) ,背灼炎天光。
(白居易《观刈麦》)(3)了却君王天下事,。
(《破阵子为陈同甫赋壮词以寄之》)(4) ,西北望,射天狼。
(苏轼《江城子密州出猎》)(5)王维以“大漠孤烟直,长河落日圆”突出了边塞的壮美,范仲淹在《渔家傲》中用相同的景物却描写了边塞的悲凉,这句词是“”。
(6)《醉花阴》是李清照的代表作之一,其中以生动的形象来表达相思之苦,并将“为伊消得人憔悴”的含意蕴含其中的诗句是“,,”。
(7)《诸葛亮集》中有这样的话:“赏不可不平,罚不可不均”。
《出师表》中与这句语义相仿的句子是:“,”。
3.名著阅读(9分)根据材料,填写相应的人物或情节A.他站住了,脸上现出欢喜和凄凉的神情;动着嘴唇,却没有作声,他的态度终于恭敬起来了,分明叫道:“老爷!”(他是谁?出自那位作家的哪部作品?)B.不看便罢,看了一遍,又念了一遍,自己把两手拍了一下,笑了一声,道:“噫!好了!我中了!”(填人物,这个人物出自谁的哪部作品?)C.月明风冷醮坛深,鸾鹤空中送好音。
地煞天罡排姓字,激昂忠义一生心。
这首诗应证了水泊梁山(填情节,这个情节出自哪个作家的哪部作品?)4.综合性学习(9分)学校开展“到乡间去采风”活动,某班乘风破浪组同学走进了鄞江十月十庙会,也请你同行。
【养正堂一游】⑴步入养正堂,望见一副对联,上联为“德智礼仪童启养正叩师圣”,下联为“孝悌忠信儒学培才成天樑”。
2015-2016学年度九年级上第二次月考数学试卷及答案

广东深圳锦华实验学校2015-2016学年度第一学期九年级第二次月考数学试题一、选择题(本大题共小题,每小题3分,共24分)每小题只有一个正确选项 1.下列方程是关于x 的一元二次方程的是【 】 A .ax 2+bx +c=0B .21x + x =2 C .x 2+2x =x 2-1 D .3x 2+1=2x +22.下列关于x 的方程有实数根的是【 】A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=0 3.具有四条边都相等且四个角都是直角的性质的四边形只有【 】 A .平行四边形 B .矩形 C .菱形 D .正方形4.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是【 】 A .43 B .85 C .127 D .215.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是【 】A .B .C .D .6.关于反比例函数y =x2的图象,下列说法正确的是【 】 A .图象经过点(1,1) B .两个分支分布在第二、四象限 C .两个分支关于x 轴成轴对称 D .当x <0时,y 随x 的增大而减小7.如图,10×2网格中有一个△ABC ,下图中与△ABC 相似的三角形的个数有【 】A .1个B .2个C .3个 D.4个8.如图,在△ABC 中,∠ACB =90°,∠ABC =60°, BD 平分∠ABC ,P 点是BD 的中点,若AD =6, 则CP 的长为【 】A .3B .3.5C .4D .4.5二、填空题(本大题共6小题,每小题3分,共18分)9.在矩形ABCD 中, AB =5,BC =15,则CD 的长为______. 10.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积是 ____.11.在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形△A ′B ′C ′,使△ABC 与△A ′B ′C ′的相似比等于1:2,则点A ′的坐标__________.12.蓄电池电压为定值,使用此电源时,电流I (安) 与电阻R (欧)之间关系图象如图所示,若点P 在图 象上,当电流为2安时,电阻R 为________ 欧.13.请将六棱柱的三视图名称填在相应的横线上(填 “主视图”、“左视图”、“俯视图”). (1)________;(2)________;(3)________. 14.△ABC 中,D 、E 分别是边AB 与AC 的中点,BC =4,下面四个结论:①DE =2;②△ADE ∽△ABC ;③△ADE 的面积与△ABC的面积之比为 1:4;④△ADE 的周长与△ABC 的周长之比为 1:4;其中正确的有___________.(只填序号) 三、(本大题共2小题,每小题5分,共10分) 15.用适当的方法解下列方程:x(x -2)+x -2=0 四、(本大题共2小题,每小题7分,共14分)16.已知:如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻,AB 在阳光下的投影BC =4m .(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长17.如图,矩形ABCD ,AE ,CF 分别垂直对角线BD 于E ,F .(1)求证:△ABE ≌△CDF ; (2)若∠ABD =60°,AB =2,求AD 的长.CA B④③②①E AB C DABCDPI( FA BCD E(1) (2) (3) 正面五、(本大题共2小题,每小题8分,共16分)18.现有2个红球,1个白球和1个蓝球,它们除颜色外其它均相同,把这些球放入若干个不透明袋中搅匀,求恰好摸到1个红球和1个蓝球的概率,列表格. (1)把这4个球放入一个袋中,任意摸出两个球;(2)把一个红球和一个白球放入一个袋中,再把一个红球和一个篮球放入另一个袋中,分别从这两个袋中各摸一个球.19.已知:如图,一次函数y =x+b 的图象与反比例函数y =xk(k <0)的图象交于A 、B 两点,A 点坐标为(1,m ),连接OB ,过点B 作BC ⊥x 轴,垂足为点C ,且△BOC 的面积为23(1)求k 的值;(2)求这个一次函数的解析式.(3)根据图象直接写出:当x 取何值时,反比例函数 的值大于一次函数的值.六、(本大题共2小题,每小题9分,共18分)20.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?21.已知:关于x 的一元二次方程x 2-(3m +1)x +2m 2+m =0 (1)求证:无论k 取何值,这个方程总有实数根;(2)若△ABC 的两边的长是这个方程的两个实数要根,第三边的长为3,当 △ABC 为等腰三角形时,求m 的值及△ABC 的周长. 七、(本大题共小题,每小题10分,共20分)22.在△ABC 中,D 是BC 的中点,且AD =AC ,DE ⊥BC ,与AB 相交于点E ,EC 与AD 相交于点F .过C 点作CG ∥AD ,交BA 的延长线于G , 过A 作BC 的平行线交CG 于H 点.(1)若∠BAC =900,求证:四边形ADCH 是菱形; (2)求证:△ABC ∽△FCD ;(3)若DE =3,BC =8,求△FCD 的面积.23.如图.己知四边形ABCD 中,AB ∥DC ,AB =DC ,且AB =6cm ,BC =8cm ,对角线AC =l0cm .(1)求证:四边形ABCD 是矩形; (2)如图(2),若动点Q 从点C 出发,在CA 边上以每秒5 cm 的速度向点A 匀速运动,同时动点P 从点B 出发,在BC 边上以每秒4 cm 的速度向点C 匀速运动,运动时间为t 秒(0≤t <2),连接BQ 、AP ,若AP ⊥BQ ,求t 的值; (3)如图(3),若点Q 在对角线AC 上,CQ =4cm ,动点P 从B 点出发,以每秒1cm 的速度沿BC 运动至点C 止.设点P 运动了t 秒,请你探索:从运动开始,经过多少时间,以点Q 、P 、C 为顶点的三角形是等腰三角形?请求出所有可能的结果.GHA B C D E F 图(1) A B C D图(2) A Q P B C D 图(3)A Q PB CD2015—2016学年度九年级第一学期第二次月考试题数学试卷 答题卡__________ 班级__________ 姓名_________ 考号_________—————CD。
2015~2016学年度九年级化学二模试卷

B.活字印刷 B.碳酸氢铵 B.二氧化硫 B.N2
C.铜币生锈 C.钢 C.氯化钠 C.稀有气体
D.榨取果汁 D.酒精 D.硫酸 D. O2
3.下列物质属于混合物 的是 ... 4.下列物质由原子 直接构成的是 .. 5.空气是一种宝贵的自然资源,其中含量最多的是 6.下列有关人体生理活动的叙述,不正确 的是 ... A.胃液中少量的盐酸可以帮助消化 B.香烟烟气中的 CO 会使血红蛋白携氧能力降低 C.无机盐和水虽不能提供能量,却是人体必需的 D.老年人缺钙会骨质疏松,因此需大量食用钙片 7.氮肥能促进植物茎、叶生长旺盛,提高植物蛋白质的含量,下列属于氮肥 的是 .. A.CO(NH2)2 A.-1 B.Ca3(PO4)2 B.0 C.NH4H2PO4 C.+3 D.K2SO4 D.+5 8.亚氯酸钠(NaClO2)是一种高效漂白剂,其中 Cl 元素的化合价是 9.下列实验操作或设计中正确 的是 ..
20.取含铁、氧两种元素的固体样品 11.6g,通入足量 CO 并充分加热,将产生的气体通入 足量澄清石灰水,充分反应后,得沉淀 20.0g。固体的组成可能是 A.FeO B.Fe3O4 C.Fe 和 Fe2O3 D.Fe3O4 和 Fe2O3
第Ⅱ卷(选择题 三、(本题包括 4 小题,每空 1 分,共 40 分)
21.(6 分)用化学符号表示: ①2 个氧原子 ⑥缺
共 60 分)
▲
; ②3 个氨分子
▲
; ③4 个铜离子
▲
;
;
④氧化铝中铝元素化合价
▲
; ⑤最简单的有机化合物
▲
▲
引发甲状腺肿大。 B.硫酸铜 C.干冰 D.氩气 E.碘酒 F.纤维素 ;
22.(6 分)用字母序号填空: A.生石灰 ①棉、麻等天然植物的主要成分是 ▲ ③制取农药波尔多液的盐是 ⑤检验淀粉的是 ▲ ; ;②常用作舞台生“烟” ▲ ④旺旺雪饼中的干燥剂是 ⑥焊接金属保护气
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题 (24分)
1.下图中所描述的是几种我们比较熟悉的现象,其中能说明分子在不断运动的( )
2.下列现象中,通过热传递来改变内能的是( )
3.关于温度、热量、内能,以下说法正确的是( )
A 、0℃的冰没有内能
B 、物体温度升高,内能一定增加
C 、物体的温度越低,所含的热量越小
D 、物体的内能与温度有关,只要温度不变,物体的内能就一定不变 4.在内燃机工作的四个冲程中,发生内能和机械能相互转化的是( ) A 吸气冲程和压缩冲程 B 压缩冲程和做功冲程 C 做功冲程和排气冲程 D 排气冲程和吸气冲程
5.教室里投影仪的光源是强光灯泡,发光时必须用风扇给予降温。
为了保证灯泡不
被烧坏,要求:带动风扇的电动机启动后,灯泡才能发光;风扇不转,灯泡不能发光。
则下列设计的四个简化电路图(如图3所示)中符合要求的是( )
6.电源电压为4.5V ,闭合开关后,电压表的示数如图所示,则L 1两端电压为( ) A 、2.2V B 、2.3V C 、4.5V D 、6.7V
7.下面关于导体电阻的说法中,正确的是( ) A 、某导体两端的电压越大,这个导体的电阻就越大
B 、通过导体的电流越大,这个导体的电阻就越小w W w .X k b 1. c O m
C 、导体中没有电流时,不可能对电流有阻碍作用,此时导体没有电阻
D 、导体的电阻与电压、电流无关
8.如图所示,当开关闭合时,发现电压表示
数为零,灯L 1不亮,灯L 2亮。
下列几种故障中,可能的是( ) A .灯L 1的灯座短路 B .灯L 1灯丝断 C .灯L 2的灯座短路 D .灯L 2灯丝断了
二、填空题(36)
1冬天手冷时,我们经常将两只手相互搓搓使手暖和,这是利用_______的方式使手的内能增加;也可以用“暖手宝”焐手,这是利用________的方式增加手的内能。
2、核电站发生重大事故时,为了降低核安全壳周围的温度,采用水对其进行冷却,因为水的_________较大,且它汽化时能______(填“吸收”或“放出”)大量的热。
3、生活中的“热”含义非常丰富,物理学中,“天气很热”中的“热”是指______;“两手相互摩擦手会发热”的“热”是指_____________。
4、水的比热容较大,生活中,我们常用水来加热或散热,例如:冬天常用热水袋取暖,把质量为2Kg ,温度为900
C 的热水装入热水袋中,到温度降为300
C 的时侯,这些水放出了____________ J 的热量;如果用相同质量,相同温度的沙来取暖,沙会冷得_______________(填“快些”或“慢些”)。
5.滑动变阻器是靠改变连入电路中的电阻线的___________来改变电阻的,从而改变电路中的___________。
旋转收音机的音量旋钮时,实质是调节内部的_____________。
图
3
1 2
3
6.某导体接在由两节新干电池串联组成的电源上,导体电阻值为10Ω,若电路中减少一节干电池,则导体的阻值变为 Ω,若电路中电压为零时,导体阻值为 Ω。
7.如图,长度相同而横截面积不同的两根镍铬导线A 和B 串联后接入电路中,其中阻值较小的是 ,通过两根导线的电流值I A I B (该空选填“大于”“等于”“小于”)。
若将它们并联接入电路中,则UA UB (填写“大于”、“小于”或“等于”)。
8.汽油的热值是4.6×107 J/ kg, 完全燃烧500g 汽油能放出 J 的热量;若这些热量全
部被水吸收,可使 kg 的水,从20℃升高到40℃。
(计算结果若有近似,保留两位小数)
三、实验题(20分)
1、如图所示,小明同学连接的测电阻R 的电路。
(1)电路中有一根导线连接错了,请你在接错的导线上打一个叉,并画出正
确的连线。
(4分) (2)请在方框内画出改正后的电路图。
(4分)
(3)他做此实验的原理是____________,闭合开关进行实验时,滑片P 应滑到 (A,B),滑动变阻器的作用是:1. 2. 。
(4)改正后当滑片P 在某点时,电压表的示数是3.4V ,电流表示数如图所示,则被测电阻R 的阻值是 Ω。
(5)若闭合开关后发现电流表指针偏转,电压表指针没有偏转,该故障的原因是_____(选填下列故障原因的字母代号)。
A .电阻R 接线短路
B .电阻R 接线断路
C .电源接触不良
D .电流表接线短路
四、计算题(20分)
1、小王学习了有关热学的知识后,知道水的比热容是4.2×103
J /(kg ・℃).
(1)如果小王用燃气灶将质量为5kg 、温度为20℃的水加热到100℃,则水需要吸收多少热量? (2)若小王烧水用的燃气灶使用的是热值为4.2×107
J/kg 的煤气,且燃气灶烧水时的热效率(热效率等于水吸收的热量与燃料完全燃烧放出的热量之比)为20%,则实际消耗的煤气为多少千克?
2.如图所示,电源电压为10V ,闭合开关S 后,电流表、电压表的示数分别为O..5A 和6V 。
求:
(1)通过R1的电流I1是多少?
(2)马平同学在求R2的电阻值时,解题过程如下: 根据欧姆定律:R2=U/I=6V/0.5A=12Ω
请你指出马平同学在解题过程中存在的错误,并写出正确的解题过程。