XX初二数学知识学习总结要点汇总:勾股定理

合集下载

初二数学下册勾股定理知识点及常考题型

初二数学下册勾股定理知识点及常考题型

初二数学下册勾股定理知识点及常考题型《勾股定理》知识点1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。

其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边; (3)利用勾股定理可以证明线段平方关系的问题。

2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C 为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。

3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

《勾股定理》常考题1、用对称法求平面中最短问题如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.解:如图,连接BD交AC于O,连接ED与AC交于点P,连接BP.已知BD⊥AC,且BO=OD,∴BP=PD,则BP+EP=ED,此时最短.∵AE=3,AD=1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52∴ED=BP +EP=5.2、用平移法求平面中最短问题如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬几厘米?将台阶面展开,连接AB,如图,线段AB即为壁虎所爬的最短路线.∵BC=30×3+10×3=120(cm),AC=50 cm,在Rt△ABC中,根据勾股定理,得AB2=AC2+BC2=16 900,∴AB=130 cm.所以壁虎至少爬行130 cm.3、利用勾股定理证明线段之间的平方关系如图,∠C=90°,AM=CM,MP⊥AB于点P.求证:BP2=BC2+AP2.证明:如图,连接BM.∵PM⊥AB,∴△BMP和△AMP均为直角三角形.∴BP2+PM2=BM2,AP2+PM2=AM2.同理可得BC2+CM2=BM2.∴BP2+PM2=BC2+CM2.又∵CM=AM,∴CM2=AM2=AP2+PM2.∴BP2+PM2=BC2+AP2+PM2.∴BP2=BC2+AP2.。

勾股定理知识点总结大全

勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。

具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。

这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。

二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。

几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。

常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。

2. 代数证明另外,勾股定理也可以通过代数方法进行证明。

代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。

通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。

三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。

例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。

勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。

2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。

而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。

这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。

3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。

初二下学期数学勾股定理知识点总结

初二下学期数学勾股定理知识点总结

初二下学期数学勾股定理知识点总结
1. 勾股定理的表述:直角三角形的斜边的平方等于两直角边的平方和。

2. 勾股定理的符号表示:设直角三角形的两直角边分别为a、b,斜边为c,则勾股定理可以表示为 c² = a² + b²。

3. 斜边、直角边的关系:斜边是直角三角形的最长边,而直角边分为两个,其中一条是斜边对应的直角边,另一条是与斜边相邻的直角边。

4. 勾股数:满足勾股定理的自然数称为勾股数。

例如,3、4、5是一个勾股数组。

5. 勾股数的性质: a、b、c是勾股数,则它们之间必定存在等比关系,即 b/a、c/a、c/b是分数(不含整数的部分)。

6. 勾股定理的应用:勾股定理可以用于求解直角三角形的边长、判断三角形是否为直角三角形、证明三角形相似等。

7. 勾股定理的证明:勾股定理有多种证明方法,常用的有几何证明、代数证明和三角函数证明。

8. 勾股定理的拓展:勾股定理可以推广到多维空间的直角坐标系中,即 n维空间的勾股定理。

9. 勾股定理的应用举例:例如,可以用勾股定理计算一个直角三角形的斜边长,可以用勾股定理证明两个三角形相似,还可以用勾股定理解决一些几何问题。

总之,勾股定理是初中数学中重要的几何定理之一,了解和掌握勾股定理的相关知识点对于解决直角三角形相关的问题和理解几何性质有重要意义。

八年级勾股定理的知识点

八年级勾股定理的知识点

八年级勾股定理的知识点作为初中数学的重要知识点之一,勾股定理在八年级学生的学习中扮演着重要的角色。

勾股定理的概念和应用可以帮助学生理解和求解同类问题,并为进一步学习更高级别的数学知识奠定基础。

以下是勾股定理在初中八年级阶段的知识点。

一、勾股定理的定义勾股定理是指直角三角形中长边平方等于两短边平方和的关系。

即在一个直角三角形中,长边的平方等于其他两边平方和。

勾股定理的公式为:a² + b² = c²其中,a、b 代表短边,c 代表长边。

这个公式是勾股定理的基本表达形式。

二、三角形中的勾股定理应用勾股定理不仅仅是为了了解概念,同样也是一种有用的工具来解决各种三角形问题。

在三角形中,有两种使用勾股定理的方式:已知两个边长求第三个边长和已知三角形的三个角度和一个边长,求任意一边长。

2.1 已知两边长求第三边长当我们知道任意两边长的长度时,我们可以使用勾股定理来求解第三边长的长度。

我们可以先将已知的两边长的平方和计算得出,然后再对这个结果求平方根来得到第三边长的长度。

例如,当我们知道一个三角形的两边分别为 3 和 4,需求出第三边长,我们可以使用勾股定理进行计算:(3)² + (4)² = c²9 + 16 = c²25 = c²c = √25 = 52.2 已知三个角度和一个边长,求任意一边长在已知三个角度和一个边长的情况下,我们可以使用正弦、余弦、正切等三角函数结合勾股定理来求解三角形任意一边长。

例如,假设我们知道一个三角形的三个角分别为 60 度、30 度和 90 度,此三角形的一个边长为 5,需求出另外两边长的长度。

我们可以利用下列公式进行计算:sin(60°) = 对边 / 斜边 = c / 5c = 5 sin(60°) = 4.33(约)cos(60°) = 邻边 / 斜边 = b / 5b = 5 cos(60°) = 2.5(约)根据勾股定理,我们可以求出第三条边的长度:a² + b² = c²a² + (2.5)² = (4.33)²a² = (4.33)² - (2.5)²a² = 9 - 6.25a = √2.75 = 1.66(约)通过这种方式,我们可以使用勾股定理解决许多有关三角形的问题。

勾股定理公式知识点总结

勾股定理公式知识点总结

勾股定理公式知识点总结一、勾股定理的证明方法勾股定理的证明有许多种方法,下面介绍其中比较常见的几种证明方法:1. 几何法证明几何法证明是最直观的证明方法之一,它利用几何图形和性质进行推理。

一种常见的几何法证明是利用平行四边形的性质,将直角三角形的两个直角边分别构造成平行四边形的边,利用平行四边形的对角线相等性质即可证明勾股定理。

2. 代数法证明代数法证明是利用代数运算推导出勾股定理成立的证明方法。

一种常见的代数法证明是利用两个直角三角形组成一个正方形,通过展开式的数字运算推导出勾股定理成立。

3. 数学归纳法证明数学归纳法是一种数学论证方法,通过证明当n=k时定理成立,再证明当n=k+1时定理也成立,从而得出在一切正整数n上定理成立的论证方法。

勾股定理的证明中也可以使用数学归纳法证明。

4. 数学分析法证明数学分析法是通过数学函数的图像分析证明定理的方法。

通过分析直角三角形和斜边的关系,利用函数的性质进行推导,可以证明勾股定理成立。

以上是勾股定理的几种常见的证明方法,它们都是通过不同的数学思维和方法来证明同一个定理的正确性。

在学习和掌握勾股定理时,可以通过比较不同的证明方法,增加对定理的理解和掌握。

二、勾股定理的应用场景勾股定理是数学中的基础定理,它被广泛地应用于各种实际问题中。

下面将介绍一些勾股定理在实际应用中的具体场景:1. 地理测量在地理测量中,经常需要利用勾股定理来计算直角三角形的边长。

例如,利用直角三角形的边长和角度来计算地球上两点的距离,或者计算某一点的具体位置等。

2. 建筑设计在建筑设计中,经常需要利用勾股定理来设计直角三角形结构的建筑物。

例如,在设计楼梯的高度和跨度,或者在设计房屋的墙角和斜面等方面,都需要用到勾股定理。

3. 机械制造在机械制造中,勾股定理也有广泛的应用。

例如,在设计机械零件的装配结构、角度、长度等方面,都需要用到勾股定理来进行计算和设计。

4. 航空航天在航空航天领域,勾股定理也有重要的应用。

初二数学知识点梳理:勾股定理

初二数学知识点梳理:勾股定理

初二数学知识点梳理:勾股定理知识点总结一、勾股定理:勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

二、勾股定理的逆定理逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:确定最大边;算出最大边的平方与另两边的平方和;比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

常见考法直接考查勾股定理及其逆定理;应用勾股定理建立方程;实际问题中应用勾股定理及其逆定理。

初二数学--勾股定理复习

初二数学--勾股定理复习

初二数学 勾股定理复习一、知识点: 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。

数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。

要点回顾【知识点 1】 勾股定理内容: 〖基础回顾〗1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。

2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。

3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。

4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。

【知识点 2】 勾股数 回忆常见的勾股数 〖基础回顾〗1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345a b c === D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。

(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷Aa【知识点 3】定理与逆定理的应用 〖基础回顾〗1、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 。

2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______.3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。

八年级勾股定理知识点总结归纳

八年级勾股定理知识点总结归纳

八年级勾股定理知识点总结归纳勾股定理是我们在学习数学中接触的一条非常重要的定理。

它是数学中的基础知识之一,也被广泛应用于各个领域。

在本文中,我将为大家总结并归纳八年级学生需要掌握的勾股定理知识点。

一、勾股定理的概念勾股定理,又称毕达哥拉斯定理,是指在直角三角形中,直角边的平方和等于斜边的平方。

可以表示为a² + b² = c²。

其中,a和b代表直角三角形的两条直角边,c代表斜边。

二、勾股定理的证明1. 几何证明:通过构造几何图形,如正方形、等腰直角三角形等,可以证明勾股定理的正确性。

2. 代数证明:使用代数方法,通过展开平方和或者利用勾股定理的向量形式等,也可以证明勾股定理的正确性。

三、勾股定理的应用1. 求解直角三角形的边长:已知两条直角边的长度,可以利用勾股定理求解斜边的长度。

2. 判断三角形是否为直角三角形:已知三角形的三条边长,如果符合勾股定理,则可以判断该三角形为直角三角形。

3. 解决实际问题:勾股定理被广泛应用于测量和工程等领域,如测量建筑物的高度、解决航行和测量问题等。

四、勾股定理的相关定理1. 勾股数:满足勾股定理的三个正整数称为勾股数,如3、4、5就是一个勾股数。

2. 欧几里得算法:利用勾股定理的应用,可以解决两个正整数的最大公约数问题。

五、勾股定理的拓展1. 平面几何拓展:勾股定理不仅适用于直角三角形,在平面几何中也会有类似的定理,如正三角形的边长关系等。

2. 空间几何拓展:勾股定理也可以推广到空间几何中,应用于解决立体图形的相关问题。

六、勾股定理的思考1. 与勾股定理相关的数学问题:在学习勾股定理的过程中,可以思考如何证明其他数学定理或解决其他几何问题。

2. 勾股定理在日常生活中的应用:可以回顾日常生活中哪些场景中涉及到勾股定理,如家具摆放、地图测距等。

通过对八年级勾股定理的知识点总结和归纳,我们对勾股定理的概念、证明、应用、拓展和思考都有了一定的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XX初二数学知识点汇总:勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a+b=c。

222
:如果三角形三边长a,b,c满足a+b=c。

,那么这个三角形是直角三角形。

222
我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

、直角三角形的两个锐角互余。

可表示如下:∠c=90°?∠A+∠B=90°
、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°
可表示如下:?
Bc=1AB2
∠c=90°
、直角三角形斜边上的中线等于斜边的一半
∠AcB=90°
可表示如下:?cD=
D为AB的中点1AB=BD=AD2
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠AcB=90°2?AD?BD
?Ac2?ADABcD⊥2?BD?AB
由三角形面积公式可得:AB?cD=Ac?Bc
1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a,b,c 有关系a?b?c,那么这个三角形是直角三角形。

222
1、命题的概念
判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:
命题必须是个完整的句子;
这个句子必须对某件事情做出判断。

2、命题的分类
命题
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理
用推理的方法判断为正确的命题叫做定理。

5、证明
判断一个命题的正确性的推理过程叫做证明。

6、证明的一般步骤
根据题意,画出图形。

根据题设、结论、结合图形,写出已知、求证。

经过分析,找出由已知推出求证的途径,写出证明过程。

连接三角形两边中点的线段叫做三角形的中位线。

三角形共有三条中位线,并且它们又重新构成一个新的三角形。

要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:
位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

相关文档
最新文档