Self-assembled synthesis of hierarchically porous NiO film

合集下载

第十九章-自由基取代反应

第十九章-自由基取代反应

这种结果可以归结于芳香溶剂和氯原子之间形成 了复合物,以致氯原子的活泼性减小,选择性加大。
(3) 自由基消失过程
自由基反应的特点:
(1)无论是在气相或是在液相进行的自由基反应都很相似,但 是在溶液里进行的自由基反应,溶剂化作用会造成一些区别。 (2)除了非极性溶剂可能压低竞争的离子反应以外,自由基反 应不受酸或碱的存在,以及溶剂极性改变的影响。 (3)被典型的自由基引发剂(如过氧化物或光)所引发和加速。 (4)反应速度被自由基抑制剂(如氧化氮、分子氧、苯醌等)所减 小或完全抑制。
2) 歧化 3) R提取氢原子
机理的证实:
从苯的芳香基化反应里, 曾经离析到过歧化产 品和偶合产品。CIDNP也检定到过这种中间体。
19.1.3 非经典自由基取代反应机理
例1,在光催化的卤代反应里,一般得到的是许多产品 的混合物。但是,溴代一个含有溴原子的碳链则位置 选择性很高。溴代烷烃的溴代反应,8494%取代在 分子中原有的溴的邻位碳原子上。
在本章中仅就自由基取代反应进行讨沦。至于自 由基对不饱和化合物的加成,以及重排反应等将在有 关章节再行介绍。
第一节 自由基取代反应机理 19.1.1 脂肪族自由基取代反应机理
按自由基进行的脂肪族取代反应,在原则上可能 按两种途径进行: a.
b.
许多实验结果都表明反应是通过a途径进行的。 例如,在按自由基机理进行的卤代反应中,卤原子是 链锁载体,反应的第一步是链增长反应:
b.取代基共轭效应的影响 苯基取代的碳原子上的氢披提取的相对活性
c.取代基类型的影响 CH3COOH和CH3COCl这样的化合物则很难发
生反应。 丙酸的-氢和-氢被提取的比例数
C l2
Cl
Cl
19.2.2 试剂的影响

超分子化学中分子识别与自组装研究

超分子化学中分子识别与自组装研究

超分子化学中分子识别与自组装研究超分子化学是研究分子之间相互作用及有机分子的自组装的一门学科。

它的研究内容主要围绕着分子识别、自组装、阴离子识别和分子传感等方面展开。

今天,我们重点研究超分子化学中分子识别和自组装的相关话题,并探讨其在生物、药物等领域中的应用。

一、分子识别分子识别是超分子化学中的一个重要的课题。

它是指根据分子间相互作用,通过化学或物理手段将两种不同的分子进行有效地分离或识别。

在分子识别中,可以利用分子之间的亲疏性、电荷、极性、氢键等识别某种分子,并进行有效地分离。

1.1 氢键识别氢键是超分子化学中非常常用的分子识别手段。

过程中,利用氢键在分子间的作用力,将不同类型的分子进行有效地分离。

例如,生物中许多药物和蛋白质间的相互作用就是通过氢键实现。

1.2 阴离子识别除了氢键识别,阴离子识别也是超分子化学中的重要领域之一。

阴离子识别主要是指利用一种含有亲疏性的分子,在与负离子形成络合物时,从而实现有效地阴离子识别和分离。

二、自组装超分子化学中自组装也是一个重要的研究主题。

它是指化合物以一种特定的方式自发地组合,形成新的结构或材料的过程。

自组装现象在自然界中广泛存在,例如生物分子(例如蛋白质和核酸)自组装成为细胞膜、组织和细胞等基本单元。

2.1 分子自组装分子自组装是指由化学分子间的相互作用导致的高级结构组装。

这些相互作用包括氢键、范德华力、电荷转移、π-π堆积等。

分子自组装在材料科学中占据着重要的地位。

2.2 生物体系的自组装生物体系的自组装是指生物分子中水平结构与垂直结构的自组装过程。

生物分子在某些条件下能够自组装形成特定形态的超分子构造,达到一定的生物效应。

例如,在细胞内脂质体的自组装,在药物递送上得到了广泛的应用。

三、应用在生物学、药物学等领域,超分子化学中分子识别和自组装的研究成为了热点。

它已经应用于药物传递、药物设计、生命科学等许多领域。

3.1 药物传递超分子化学中分子自组装的构建技术为药物传递提供了一种新的手段。

青岛科技大学 高分子物理试卷B

青岛科技大学 高分子物理试卷B

2006-20071 高分子物理(B 卷)高分子学院高分子物理教研室 高材04级(本科)(答案写在答题纸上,写在试题纸上无效)一、名词解释(2分/名词)等效自由结合链 取向度 溶解度参数 溶剂化作用 次级松弛非牛顿性指数 粘弹性 Boltzmann 叠加原理 银纹 表观粘度二、填空(2分/题)1.柔顺性的大小可以用⎽⎽⎽⎽⎽⎽⎽、⎽⎽⎽⎽⎽⎽⎽⎽、⎽⎽⎽⎽⎽⎽⎽⎽、来表征。

2.轻度交联可使材料拉伸强度⎽⎽⎽、弹性⎽⎽⎽、蠕变⎽⎽⎽⎽、应力松弛⎽⎽⎽。

3.高聚物的单晶一般只能在_____生成,而在熔体或浓溶液中外力较小时形成_____它在偏光显微镜下具有____现象。

4.通常[η]=K×M α中的α值在0.5-1之间,故同一样品的M n ,Mw ,M η和M z 值的大小顺序是__。

5.GPC 法是根据⎽⎽⎽⎽对高分子进行分离的,从色谱柱最先分离出来的是__。

6.⎽⎽⎽⎽现象可用聚合物存在链段运动来解释:a.聚合物泡在溶剂中有溶胀;b.聚合物受力可发生大弹性变形;c.聚合物熔体粘度很大。

7.高密度聚乙烯与低密度聚乙烯相比其支化度___、结晶度___、熔点____、拉伸强度___。

8.通常来说,T g 是塑料使用的⎽⎽⎽,橡胶使用的⎽⎽⎽,而几乎所有的塑料都是在⎽⎽⎽温度区间进行加工。

9.单向外力能够促使⎽⎽⎽,从而使T g ⎽⎽⎽;而提高升温速率会使T g ⎽⎽⎽。

10.在(a.聚苯醚,b.聚二甲基硅氧烷,c.聚乙烯,d.聚环氧乙烷)中,⎽⎽⎽的柔顺性最好;⎽⎽⎽⎽的柔顺性最差。

11.θ溶液中, ∆μ1E ⎽⎽⎽,A 2 ⎽⎽⎽,χ1 ⎽⎽⎽,高分子链处于⎽⎽⎽状态。

12.橡胶产生高弹性的主要原因是拉伸过程中___。

a.内能的变化;b.熵的变化;c.体积的变化13.从分子结构来说,____的内耗最大(a.顺丁橡胶;b.丁苯橡胶;c.丁腈橡胶;d.丁基橡胶),这是因为____。

14.可以用时温等效原理研究聚合物的粘弹性,是因为高聚物的分子运动是一个与____有关的____过程。

有机物的合成与表征

有机物的合成与表征

[(C6H5)2NH2】3[PWl2040】.4H20的合成与表征宰
韩杰丽,王自为,武锄I,李海峰,任建国
(山西大学化学化工学院,山西太原030006) 摘要:以12.钨磷酸和二苯胺为原料合成了一种电荷 转移盐.通过元素分析确定其组成为【(C6H5)2NH2】3 【Pwl20如】・4H20,各元素的质量分数分别为(括号内为 理论值)C 12.9l%(13.08%),H 1.304%(1.344%),N
【l】
Farhadi,Mozhgan
Af§h撕.【J】.Te廿ahedron
Letters,
2005.46:8483-8486.
【4】 【5】 【6】 【7】
林青松.【J】.自然杂志,1998,20(3):160.162. 石晓波,石淑华.【J】.功能材料,2005,36(3):451.453. 李洁,孙容.[J】.中南大学学报(自然科学版),2006, 37(1):58-62. 王恩波,胡长文,许林.多酸化学导论【M】.北京:化 学工业出版社。1997.
韩杰丽等:【(C6H5)2NH2】3[Pwl20柏】.4H20的合成与表征
4结论
【2】
2003.6:1020-1024.
Nanlke 407.417. Saeld H,Yamase
T.【J】.S01id State Chem,2003,173
所合成的新型电荷转移化合物为[(C6H5)2NH2】3 【PWl2040】・4H20,其杂多阴离子保持Keggin结构特征; 相对于H3PWl2040・x H20,该化合物中由于离域Ⅱ键的 存在,对紫外.可见光的吸收发生了红移。同时用该物 质作催化剂时具有不腐蚀设备,无环境污染,使生产流 程简化等特点,为工业化应用提供了广阔的前景。 参考文献:

手性有机聚合物毛细管电色谱整体柱研究进展

手性有机聚合物毛细管电色谱整体柱研究进展
gs f o a ia l t p oei hg fc nis n P C ( bl a ds t nr h s sl — e t cpl r e er h rs ( i e i e c )a dH L moi n t i a p ae ee ob h l y e o s h i e e ao y c t i ) T ea pia o tC C trea t sp r in a eevd m c oeat t n i rcn i t . h p l t no E o n ni e aa 0 sh srci u h m r t ni n ee t vy ci o t e e o
y a s Chr l mo o i i c l m n c n v i t e r b e s n o n e e i c r l pe t b l r n e r. ia n l h c ou t s a a od h p o lm e c u t r d n hia o n—u u a a d c ia o v n ina a k d c l h r lc n e to lp c e oumn . S mia o c ia iia ba e o o i ,c ia r a c poy r s i lrt h r lslc — s d m n lt hs h r lo g ni l me —
( ol eo h mi r a d C e c l n ie r g X a e nv ri , i e 3 1 0 ,C ia C l g f e s y n h mi g e n , i n U i s y X a n 6 0 5 hn ) e C t aE n i m e t m
合法” 和 “ 手性修 饰法” 两种 ,虽然前者制 备简 单并广泛 应用于 早期研 究 ,但 聚合混合 液成分 的微小 改变 即可引起最终聚合物的形态变化 ,并且大部分带丙烯基 的手性选 择剂较难 从市场购买 。凶此 ,手性修 饰法因 作为手性选择剂基质的整体柱制备且优化 只需进 行一次 的优势而 受到普 遍关 注。亲核取代 、杂环开环和点击 化学是常用的修饰手段 该文总结了这两种制备方法的应用 ,同时对未来的研究方 r提出参考I u J 生意见。

吉林大学2021年9月考试《波谱分析》作业考核试题【答案】

吉林大学2021年9月考试《波谱分析》作业考核试题【答案】

吉林大学网络教育学院2020-2021学年第二学期期末考试《波谱分析》大作业2020-2021学年第二学期期末考试波谱分析一名词解释题 (共10题,总分值30分 )1.质谱(3 分)答:质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

2.特征峰(3 分)答:用于鉴定官能团存在的峰称为特征吸收峰或特征峰(Characteristic Peak)。

谱图中的吸收峰对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域3.分子离子(3 分)的分子量数值。

4.增色效应(3 分)extinction coefficient)ε增大的现象,亦称高色效应。

还有另外一种说法,即由于获得有序结构而产生减色效应的高分子,变性成为无规则卷曲时,减色效应消失的现象叫增色效应。

5.氮律(3 分)答:氮律是质谱分析中判断分子离子峰质量数的规律。

6.弛豫(3 分)答:弛豫是物理学用语,指的是在某一个渐变物理过程中,从某一个状态逐渐地恢复到平衡态的过程。

高能物理中,在外加射频脉冲RF(B1)的作用下,原子核发生磁共振达到稳定的高能态7.麦氏重排(3 分)答:是对质谱分析中离子的重排反应提出的经验规则,于1956年由美国质谱学家麦克拉弗蒂(F.W.Mclafferty)提出。

8.α-裂解(3 分)答:由自由基引发的,有自由基重新组成新键而在α位导致碎裂的过程9.屏蔽效应(3 分)答:由于其他电子对某一电子的排斥作用而抵消了一部分核电荷对该电子的吸引力,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。

10.i-裂解(3 分)答:由自由基引发的,有自由基重新组成新键而在α位导致碎裂的过程二简答题 (共5题,总分值40分 )11. 紫外光谱在有机化合物结构研究中有哪些应用?(8 分)答; 紫外-可见光谱(ultraviolet Visiblespeetroseopy,UV-Vis),也简称为紫外光谱(UV),属于吸收光谱的一种。

海南大学生物工程学院2021年《细胞生物学》考试试卷(1577)

海南大学生物工程学院2021年《细胞生物学》考试试卷(1577)

海南大学生物工程学院2021年《细胞生物学》课程试卷(含答案)__________学年第___学期考试类型:(闭卷)考试考试时间:90 分钟年级专业_____________学号_____________ 姓名_____________1、判断题(40分,每题5分)1. 自主复制DNA序列具有一段11~14bp的同源性很高的富含GC的共有序列。

()答案:错误解析:ARS含有一段同源性很高的富含AT的共有序列。

AT碱基之间形成一对氢键而GC碱基彼此之间形成三个氢键,GC相对稳定。

采用AT碱基使DNA双链容易打开,从而更容易起始复制2. ras是一个癌基因。

()答案:错误解析:ras是一个原癌基因,如果带有而使突变其始终处于活化状态的突变,才会变成癌基因。

3. 载体蛋白,又称为通透酶,它像酶一样,不能改变反应平衡,只能增加达到反应平衡的速度,但是与酶不同的是,载体蛋白不对被转运的分子作任何修饰。

()答案:错误解析:载体脂质与酶不同的是,载体蛋白不够不对被转运的原子作任何共价修饰;载体蛋白能改变运输过程的平衡点,加快物质沿自由能减少的方向细胞骨架运动的速率。

4. 癌细胞生长旺盛,因而糙面内质网特别发达。

()答案:错误解析:5. 相对其他组织器官,肝脏具有较强的再生能力,其再生过程也包括去分化和再分化两阶段。

()答案:错误解析:肝脏再生绝不涉及转分化,干细胞只是从G0期进入细胞周期。

6. 高尔基体和内质网上所有与糖基化有关的蛋白都是可溶性蛋白。

()答案:错误解析:都是整合蛋白。

7. 所谓Hayrick界限就是指细胞分化的极限。

()答案:错误解析:Hayrick界限是指由正常的体外培养的细胞寿命不是无限的,而只能进行受限进行系数的增殖,即细胞分裂的极限。

8. 核孔复合体中央有一通道,其大小不能调节,但蛋白质自细胞质输入核内以及RNA自核内输出到胞质,都是高度有选择性的。

()答案:错误解析:核孔复合体的有效通道的大小是可以调节的。

海南大学生物工程学院2021年《细胞生物学》考试试卷(431)

海南大学生物工程学院2021年《细胞生物学》考试试卷(431)

海南大学生物工程学院2021年《细胞生物学》课程试卷(含答案)__________学年第___学期考试类型:(闭卷)考试考试时间:90 分钟年级专业_____________学号_____________ 姓名_____________1、判断题(40分,每题5分)1. 顺式作用因子在基因表达中起正控制作用。

()答案:错误解析:起开关的作用,到底正控制还是负控制则是由与之作用的蛋白质决定。

2. 自主复制DNA序列具有一段11~14bp的同源性很高的富含GC的共有序列。

()答案:错误解析:ARS含有一段同源性很高的富含AT的共有序列。

AT碱基之间形成一对氢键而GC碱基之间形成三个化学键,GC相对稳定。

采用AT碱基使DNA双链容易打开,从而更容易起始复制3. 当有动作电位刺激时,轴突的膜电位瞬时变得负值增加。

()答案:错误解析:动作电位将引发膜电位发生去极化(即负值减低向正值转化),并发生电位反转。

4. 细胞分化是选择性基因表达的结果,所以受精卵中不同的区域表达不同组织的专一性基因。

()答案:正确解析:受精卵细胞中的细胞质中,物质分布是不均匀的,正是这种不均一分布决定了细胞的冰体早期分化。

5. 核孔复合体中央有一通道,其大小不能调节,但蛋白质自细胞质输入核内以及RNA自核内输出到胞质,都是高度有选择性的。

()答案:错误解析:核孔复合体的有效通道的大小是可以调节的。

6. 在固定操作过程中,样品的处死与取材都要快速进行,通常在室温下固定,以防止酶的自溶作用造成破坏。

()答案:错误解析:在固定操作过程中,样品的处死与选材都进行要快速进行,通常在低温下固定,以防止蛋白质的自溶作用造成破坏。

7. 过氧化物酶体是一种异质性的细胞器。

它来自高尔基体,参与膜的流动。

()答案:错误解析:不是来自高尔基体,也不参与膜流动。

8. G蛋白偶联受体被激活后,使相应的G蛋白解离成α、β、γ三个亚基,以进行信号传递。

()答案:错误解析:G蛋白三聚体结合GTP后解离出成α亚基和βγ亚基复合物,β与γ亚基并未解离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Power Sources 199 (2012) 413–417Contents lists available at SciVerse ScienceDirectJournal of PowerSourcesj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j p o w s o urShort communicationSelf-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitorsY.Q.Zhang,X.H.Xia,J.P.Tu ∗,Y.J.Mai,S.J.Shi,X.L.Wang,C.D.Gu.State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,Chinaa r t i c l ei n f oArticle history:Received 21June 2011Received in revised form 26August 2011Accepted 17October 2011Available online 20 October 2011Keywords:Nickel oxideElectrochemical capacitor Porous filma b s t r a c tA hierarchically porous NiO film on nickel foam substrate is prepared by a facile ammonia-evaporation method.The self-assembled film possesses a structure consisting of NiO triangular prisms and randomly porous NiO nanoflakes.The pseudocapacitive behaviors of the porous NiO film are investigated by cyclic voltammograms and galvanostatic charge–discharge tests in 1M KOH.The hierarchically porous NiO film exhibits a high discharge capacitance and excellent rate capability with 232F g −1,229F g −1,213F g −1and 200F g −1at 2,4,10,and 20A g −1,respectively.The specific capacitance of 87%is maintained from 2A g −1to 20A g −1.The porous NiO film also shows rather good cycling stability and exhibits a specific capacitance of 348F g −1after 4000cycles.© 2011 Elsevier B.V. All rights reserved.1.IntroductionElectrochemical capacitors (ECs),also called supercapacitors,represent an emerging energy storage technology that offers high power density,long cycling life and fast recharge ability.ECs store energy using either ion adsorption (electrochemical double layer capacitors)or fast surface redox reactions (pseudo-capacitors)[1,2].Redox-based ECs materials have shown the potential to com-bine the high energy density of conventional batteries and the high power capabilities of electrostatic capacitors [3].Transition metal oxides such as RuO 2[4–7],MnO 2[8–11],Co 3O 4[12–14]and NiO [15–17]are considered as the most promising pseudo-capacitor candidate materials due to their high capacitances with several times larger than carbonaceous materials [18].ECs based on RuO 2are capable of delivering specific capacitance ranging from 720to 860F g −1(for a single electrode system)[6].However,apart from being toxic,RuO 2is quite expensive for extensive commer-cial applications.Therefore,great efforts have been devoted to searching for inexpensive alternative materials with good capac-itive characteristics similar to RuO 2.Among the explored systems,NiO is of particular interest owing to its easy availability,cost effectiveness,and good pseu-docapacitive behavior.There have been a variety of reports of the synthesis of different NiO nanostructures including porous nano/microspheres [19]nanoflowers [20,21],nanosheets or nanoflake [22–24],nanotubes [25,26]and nanofibers [27,28].∗Corresponding author.Tel.:+8657187952573;fax:+8657187952856.E-mail addresses:tujp@ (J.P.Tu),wangxl@ (X.L.Wang).And it has been shown that their morphology plays an important role in capacitance enhancement.It is well accepted that pseu-docapacitance is an interfacial phenomenon tightly related to the morphology of electroactive materials.The porous structure could provide a very short diffusion pathway for ions as well as large active surface area,leading to enhanced electrochemical proper-ties [18,19,29,30].Therefore,it is believed that the porous NiO film could exhibit superior pseudocapacitor performance.Recently,self-assembled synthesis of hierarchically structured NiO parti-cles such as sandwich-like triangular NiO film has been developed [31].Nevertheless,there is little literature into self-assembled syn-thesis of hierarchically porous NiO film and their application for ECs.Herein,we report a nickel foam-supported hierarchical NiO film consisting of triangular prisms NiO and randomly porous NiO nanoflakes.As a cathodic electrode material,the self-assembled NiO film exhibits superior pseudocapacitive performance with excellent capacity retention and high-rate capacity.2.ExperimentalAll the reagents were analytical grade and were used without further purification.30ml aqueous ammonia (25–28%)was added to 30ml aqueous solution of 0.1M Ni(NO 3)2·H 2O with vigorous stir-ring.Nickel foam substrate with a size of 2cm ×3cm was pressed to thin plate by 10MPa and cleaned ultrasonically in ethanol for 10min.Its top side was protected for solution contamination by uniformly coating with a polytetrafluoroethylene tape.Then,it was immersed into the reaction solution.After heated at 90◦C for 5h,the nickel foam substrate was covered with a green film.This green precursor film was washed with deionized water for several times,0378-7753/$–see front matter © 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.jpowsour.2011.10.065414Y.Q.Zhang et al./Journal of Power Sources 199 (2012) 413–417I n t e n s i t y / a .u .2 θ / d egreeFig.1.XRD patterns of films (a)before and (b)after heat treatment.and dried.Thenthe film was heated in a tube furnace at 300◦C for2h in flowing argon.The structure and morphology of the film were charac-terized by X-ray diffraction (XRD,RigakuD/max-3B),scanning electron microscopy (SEM,D/Max-2550)and transmission elec-tron microscopy (TEM,JEOL JEM200CX).The surface area of the film scratched from the substrate was determined by BET (Brunauer–Emmett–Teller)measurements using a NOVA-1000e surface area analyzer.Electrochemical measurements were car-ried out in a three-electrode electrochemical cell containing 1M KOH aqueous solution as the electrolyte.Cyclic voltammetry (CV)measurements were performed on a CHI660c electrochem-ical workstation (Chenhua,Shanghai)at room temperature,with the NiO film as the working electrode,Hg/HgO as the reference electrode and a Pt foil as counter-electrode.The galvanos-tatic charge–discharge tests were conducted on a LAND battery program-control test system.Fig.2.SEM images of NiO film annealed at 300◦C for 2h.Fig.3.TEM images of NiO film annealed at 300◦C for 2h.3.Results and discussionXRD patterns of films before and after heat treatment are shown in Fig.1.For the precursor film (pattern a),excluding three strong peaks from the nickel foam substrate,all the diffraction peaks cor-respond to well-crystallized ␤-phase hexagonal nickel hydroxide (JCPDS 14-0117).The diffraction peak at 19.3◦indexed to (001)plane of ␤-Ni(OH)2is much stronger than the others.It implies that the preferable growth of ␤-Ni(OH)2along 001 direction.After annealing at 300◦C,the ␤-Ni(OH)2precursor film converts into NiO phase (JCPDS 47-1049)(pattern b).-0.20.00.20.40.60.8 1.0405060708090100110V o l u m e A d s o r b e e d (c m 3g -1)Relative Pressure ( P/P 0)Fig.4.BET isotherm of NiO film.The inset shows pore size distribution,calculatedfrom desorption branch of isotherm,using BJH method.Y.Q.Zhang et al./Journal of Power Sources 199 (2012) 413–4174152010-10-20C u r r e n t d e n s i t y / m A c m -2Potential vs.(H g/HgO) / V(a)0204060800.00.10.20.30.40.50.6P o t e n t i a l v s . (H g /H g O ) / VTime / s2 A g -14 A g -1 10 A g -1 20 A g-1(b)123450.00.10.20.30.40.50.62 A g-14 A g-110 A g-120 A g-1P o t e n t i a l / V (v s . H g /H g O )Time / s(c)100020003000400050100150200250300350400450500550S p e c i f i c c a p a c i t a n c e / F g-1Cycle number(d)(e)P o w e r D e n s i t y / k W k g -1Energy De nsit y / Wh kg -1Fig.5.Electrochemical characterizations of the hierarchically porous NiO film.(a)CV curves at different scan rates,(b)discharge curves of NiO film at different dischargecurrent densities,(c)discharge curves of Ni foam at different discharge current densities,(d)cycling performance of NiO film and Ni foam at 2A g −1,(e)Ragone plots (Power density vs.energy density).Fig.2shows SEM images of the as-prepared NiO film annealed at 300◦C for 2h.Notice that the nickel foam substrate is fully covered by numerous homogeneous small triangular prisms (Fig.2a).And the overall size of those triangular prisms is usually in the micron range.Interestingly,as shown in a magnified SEM image (Fig.2b),each prism consists of two parts including regular stacking of tri-angular platelets and randomly porous NiO nanoflakes.These NiO nanoflakes grow vertically on the triangular platelets forming the porous surface.The special morphological characteristics are sup-ported by TEM results.Obviously,the regular triangular plateletsare uniformly decorated by nanoflakes with a thickness of approx-imately 100nm (Fig.3a).The individual nanoflake is composed of nanoparticles with diameters of 5–10nm (Fig.3b).Formation of ␤-Ni(OH)2by ammonia-evaporation method has been studied in earlier works [18,31,32].The formation of ␤-Ni(OH)2arises from the competition balance between reactions (1)and (2).Ni 2++6NH 3→[Ni(NH 3)6]2+(1)416Y.Q.Zhang et al./Journal of Power Sources199 (2012) 413–417[Ni(NH3)6]2++2OH−90◦C−→Ni(OH)2↓+6NH3(2) In a typical␤-Ni(OH)2molecule,the metal cation Ni2+is located in the central spaces of oxygen octahedral from six hydroxyl groups. These octahedral then share their edges to form two dimensional (2D)sheets.Ammonia plays the major role in controlling the hierar-chically porous NiOfilm during the self-assembly growth process. The nanostructures grow in a dynamic process with a gradual decreasing of pH value and ammonia concentration in the solu-tion.In the beginning,the high concentration of dissolved ammonia in the initial solution brings excess NH4+and NH3,reacting with Ni2+to form[Ni(NH3)6]2+.Ammonia begins to evaporate at90◦C, and the hydrolysis of[Ni(NH3)6]2+occurs and leads to the forma-tion of Ni(OH)2platelets.Under the function of ammonia,those platelets stack into triangular prism.When ammonia concentration decreases,the nanoflakes randomly grow on the triangular prisms. After annealing,the NiO keeps the hierarchically porous morphol-ogy of precursor Ni(OH)2film.In order to further investigate the hierarchically porous NiOfilm,a nitrogen adsorption–desorption technique was used.The N2adsorption–desorption isotherm of NiO is given in Fig.4with pore size distribution in the inset.The isotherm demonstrates the porous nature of NiO sample.According to Brunauer–Emmett–Teller(BET)analysis,a total specific sur-face area of196.8m2g−1is obtained.The pore size distribution suggests that the NiOfilm synthesized by ammonia-evaporation method contains a distribution of macropores in the range of 33–42nm,which is similar to that obtained from SEM.The hierar-chical structure provides larger surface area and more active sites for electrochemical reactions.The electrochemical performance of the hierarchically porous NiOfilm is elucidated by means of CV and galvanostatic charge–discharge in1M KOH aqueous solution.For NiO as an elec-trode material,it is well accepted that the surface faradaic reaction can be expressed as follows:NiO+OH−↔NiOOH+e−(3)A pair of cathodic and anodic peaks is clearly observed in the CV curves(Fig.5a).The charge process of thefilm is associated with the oxidation peak,whereas the discharge process is associ-ated with the reduction peak.It indicates that the capacity mainly results from the pseudo-capacitance,which is based on a redox mechanism[21,26,33].With the increase of sweep rate,the shape of the CV curve changes.The anodic and cathodic peak potentials shift in more anodic and cathodic directions,respectively,and the capacitance decreases inevitably,which is further confirmed by the result at different discharge current densities(Fig.5b).In practice,the ability to discharge at high rate is crucial in capacitors.The specific capacitances C s are calculated from thefirst discharge curves using the following equation:C=i tm V(4)where C(F g−1)is specific capacitance,i(mA)represents the cur-rent applied and m(mg), V(V)and t(s)designate the mass of the active materials,potential drop during discharge and total dis-charge time,respectively.In this way,the specific capacitance of the porous NiOfilm at a galvanostatic current density of2,4,10,and 20A g−1are232F g−1,229F g−1,213F g−1and200F g−1,respec-tively(Fig.5b).The pseudocapacitances are obtained by subtracting the discharge time of nickel foam.And as shown in Fig.5c,the nickel foam only exhibits small capacitance with several discharge seconds.The rate capability is another important factor required for prac-tical applications.87%of capacitance is retained when the current density changes from2A g−1to20A g−1.It is much higher than the result obtained by Song et al.[21],only41.56%capacitance is retained from2A g−1to10A g−1.The excellent rate capability is mainly attributed to the following two reasons:first,the porous NiO nanoflakes on triangular prisms provide a large specific sur-face area for electrolyte access and shortens the diffusion path in solid phase,resulting in fast redox reactions.Second,every prism grows directly on the foam nickel substrate,which can enhance the conductivity of the electrode.Fig.5d shows the cyclability of the hierarchically porous NiO film and the NiOfilm substrate over4000cycles between0and 0.55V at a discharging current of2A g−1.The porous-structured NiO electrode shows an obvious increase in the specific capacitance, from232F g−1to349F g−1,during thefirst400cycles,and then a slight increase to the highest specific capacitance(441F g−1)until around1500cycles.This phenomenon might be attributed to the hierarchically porous structure.Thefirst obvious increase of capac-itance should be the activation process of the randomly porous NiO nanoflakes and the surface of triangular prisms.The activation pro-cess of inner active material of triangular prism leads to later slight increase.In other words,the electrolyte gradually penetrates into the internal of NiO,and then the inner active materials participate in the electrical reaction.After4000cycles the hierarchically porous NiO electrode exhibits excellent specific capacitance retention with 348F g−1.Our values are higher than those obtained from the electrodeposited nanoporous NiOfilms(<200F g−1)[29,34],and comparable to mesoporous NiOfilm(327F g−1)[35],and macrop-orous NiOfilm(351F g−1)[36].The capacitance of Ni foam substrate increases from16.3F g−1to20.2F g−1around400cycles,then increases to21F g−1and23.5F g−1at1500cycles and4000cycles, respectively.It indicates that the increased specific capacitance mostly is due to the activation process of the active material.Fig.5e shows the Ragone plots(Power density vs.energy density)of the hierarchically porous NiOfilm.The energy and power densities were derived from the discharge curves of NiOfilm at different discharge current densities.Our NiOfilm delivered a high energy density of about30Wh kg−1at a high power density of5.5kW kg−1. Based on these results,it is believed that the hierarchically porous NiO is a good electrode material for supercapacitors.4.ConclusionsIn summary,a hierarchically porous NiOfilm directly grown on nickel foam substrate is prepared by a facile ammonia-evaporation method.Thefilm possesses a structure consisting of NiO tri-angular prisms and randomly porous NiO nanoflakes.The high specific capacitance and remarkable rate capability are promis-ing for applications in supercapacitors with both high energy and power densities.The enhanced electrochemical capacitance is mainly due to its hierarchically porous structure. AcknowledgementThe authors would like to acknowledgefinancial support from China Postdoctoral Science Foundation(Grant No.20100481401). References[1]P.Simon,Y.Gogotsi,Nat.Mater.7(2008)845.[2]Y.Zhang,H.Feng,X.B.Wu,L.Z.Wang,A.Q.Zhang,T.C.Xia,H.C.Dong,X.F.Li,L.S.Zhang,Int.J.Hydrogen Energy34(2009)4889.[3]X.Zhao,B.M.Sanchez,P.J.Dobson,P.S.Grant,Nanoscale3(2011)839.[4]R.R.Bi,X.L.Wu,F.F.Cao,L.Y.Jiang,Y.G.Guo,L.J.Wan,J.Phys.Chem.C114(2010)2448.[5]C.C.Hu,K.H.Chang,M.C.Lin,Y.T.Wu,Nano Lett.6(2006)2690.[6]J.T.Zhang,J.Z.Ma,L.L.Zhang,P.Z.Guo,J.W.Jiang,X.S.Zhao,J.Phys.Chem.C114(2010)13608.[7]A.Devadas,S.Baranton,T.W.Napporn,C.Coutanceau,J.Power Sources196(2011)4044.[8]X.L.Wang,A.B.Yuan,Y.Q.Wang,J.Power Sources172(2007)1007.Y.Q.Zhang et al./Journal of Power Sources199 (2012) 413–417417[9]Q.Lu,Y.K.Zhou,J.Power Sources196(2011)4088.[10]R.R.Jiang,T.Huang,J.L.Liu,J.H.Zhuang,A.S.Yu,Electrochim.Acta54(2009)3047.[11]R.Amade,E.Jover,B.Caglar,T.Mutlu,E.Bertran,J.Power Sources196(2011)5779.[12]X.H.Xia,J.P.Tu,X.L.Wang,C.D.Gu,X.B.Zhao,mun.47(2011)5786.[13]T.Zhu,J.S.Chen,X.W.Lou,J.Mater.Chem.20(2010)7015.[14]X.H.Xia,J.P.Tu,Y.J.Mai,X.L.Wang,C.D.Gu,X.B.Zhao,J.Mater.Chem.21(2011)9319.[15]A.I.Inamdar,Y.Kim,S.M.Pawar,J.H.Kim,H.Im,H.Kim,J.Power Sources196(2011)2393.[16]D.W.Wang,F.Li,H.M.Cheng,J.Power Sources185(2008)1563.[17]D.C.Wang,W.B.Ni,H.Pang,Q.Y.Lu,Z.J.Huang,J.W.Zhao,Electrochim.Acta55(2010)6830.[18]X.H.Xia,J.P.Tu,X.L.Wang,C.D.Gu,X.B.Zhao,J.Mater.Chem.21(2011)671.[19]S.K.Meher,P.Justin,G.R.Rao,Electrochim.Acta55(2010)8388.[20]ng,L.B.Kong,W.J.Wu,Y.C.Luo,L.Kang,mun.(2008)4213.[21]C.Y.Cao,W.Guo,Z.M.Cui,W.G.Song,W.Cai,J.Mater.Chem.21(2011)3204.[22]Y.J.Mai,J.P.Tu,X.H.Xia,C.D.Gu,X.L.Wang,J.Power Sources196(2011)6388.[23]L.Liu,Y.Li,S.M.Yuan,M.Ge,M.M.Ren,C.S.Sun,Z.Zhou,J.Phys.Chem.C114(2010)251.[24]X.H.Huang,J.P.Tu,X.H.Xia,X.L.Wang,J.Y.Xiang,mun.10(2008)1288.[25]S.A.Needham,G.X.Wang,H.K.Liu,J.Power Sources159(2006)254.[26]J.H.Kim,K.Zhu,Y.F.Yan,C.L.Perkins,A.J.Frank,Nano Lett.10(2010)4099.[27]Y.J.Qiu,J.Yu,X.S.Zhou,C.L.Tan,J.Yin,Nanoscale Res.Lett.4(2009)173.[28]M.M.Shaijumon,F.S.Ou,L.J.Ci,P.M.Ajayan,mun.(2008)2373.[29]M.S.Wu,Y.A.Huang,C.H.Yang,H.H.Jow,Int.J.Hydrogen Energy32(2007)4153.[30]X.H.Xia,J.P.Tu,J.Zhang,X.H.Huang,X.L.Wang,W.K.Zhang,H.Huang,Elec-mun.10(2008)1815.[31]J.Zhong,X.L.Wang,X.H.Xia,C.D.Gu,J.Y.Xiang,J.Zhang,J.P.Tu,J.Alloys Compd.509(2011)3889.[32]D.B.Kuang,B.X.Lei,Y.P.Pan,X.Y.Yu,C.Y.Su,J.Phys.Chem.C113(2009)5508.[33]T.Nathan,A.Aziz,A.F.Noor,S.R.S.Prabaharan,J.Solid State Electrochem.12(2008)1003.[34]M.S.Wu,C.Y.Huang,K.H.Lin,J.Power Sources186(2009)557.[35]H.L.Li,M.W.Xu,S.J.Bao,J.Solid State Electrochem.11(2007)372.[36]M.S.Wu,M.J.Wang,J.J.Jow,J Power Sources195(2010)3950.。

相关文档
最新文档