点,直线,平面之间的位置关系

合集下载

高中数学必修《点直线平面之间的位置关系》知识点

高中数学必修《点直线平面之间的位置关系》知识点

高中数学必修《点直线平面之间的位置关系》知识点高中数学必修的《点直线平面之间的位置关系》是一个重要的几何知识点,主要涉及直线与平面、点与直线、点与平面之间的位置关系。

这个知识点对于理解几何图形的形状和性质具有重要作用,也为后续的三角函数、向量等知识打下基础。

下面将详细介绍该知识点的内容。

一、直线与平面的位置关系1.平面方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C为不能同时为0的实数,A、B、C为平面的法向量,D为常数项。

2.直线与平面的位置关系:(1)直线与平面相交:直线与平面相交可以有一个交点,也可以有无穷多个交点。

(2)直线含于平面:如果直线的所有点都在平面上,则直线被称为含于平面。

(3)直线与平面平行:如果直线与平面的交点集为空集,则直线与平面平行。

(4)直线与平面垂直:如果直线与平面的任意一条直线都垂直,则直线与平面垂直。

二、点与直线的位置关系1.点与直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,Ax0+By0+C,/√(A^2+B^2)。

2.点到线段的距离:点P到线段AB的距离:(1)如果P在AB的延长线上,则距离为AP或BP的长度。

(2)如果P在线段AB的两边,则距离为点P到线段AB所在直线的距离。

(3)如果P在线段AB上,则距离为0。

三、点与平面的位置关系1.点在平面上:点P(x0,y0,z0)在平面Ax+By+Cz+D=0上的充要条件是Ax0+By0+Cz0+D=0。

2.点到平面的距离:点P到平面Ax+By+Cz+D=0的距离公式为d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)。

3.点关于平面的对称点:点P(x0,y0,z0)关于平面Ax+By+Cz+D=0的对称点的坐标为:(x',y',z')=(x0-2*Ax0/(A^2+B^2+C^2),y0-2*By0/(A^2+B^2+C^2),z0-2*Cz0/(A^2+B^2+C^2))。

点、直线、平面之间的位置关系(知识点汇总)大全

点、直线、平面之间的位置关系(知识点汇总)大全

必修2第二章 点、直线、平面之间的位置关系1.四个公理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(此公理可以用来判断直线是否在平面内)。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。

公理2:过不在一条直线上的三点,有且只有一个平面。

三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面; ② 经过两条相交直线,有且只有一个平面; ③ 经过两条平行直线,有且只有一个平面; (它们给出了确定一个平面的依据)。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(这条公共直线即为两个平面的交线)。

符号语言:,,P P l P l αβαβ∈∈⇒=∈ 且。

公理4:平行于同一直线的两条直线互相平行(平行线的传递性)。

符号语言://,////a l b l a b ⇒且。

2.空间中直线与直线之间的位置关系(1)位置关系:两条直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(2)异面直线:把不在任何一个平面内的两条直线叫做异面直线。

(3)两条异面直线所成的角:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角)。

(易知:夹角范围090θ<≤︒)(4)等角定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

3.空间中直线与平面之间的位置关系直线l 与平面α//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点4.空间中平面与平面之间的位置关系平面α与平面β//l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线5.直线与平面平行的判定及其性质定理定理 定理内容 符号表示直线与平面 平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄ 平面与平面平行的判定 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行βαααββ//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂P b a b a b a 直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα平面与平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行b a b a ////⇒⎪⎭⎪⎬⎫==βγαγβα(1)线面平行的其它判定方法 ①定义:直线与平面无公共点;②若两个平面平行,则在其中一个平面内的任意一条直线平行于另一个平面; 符号语言:αββα////a a ⇒⎭⎬⎫⊂; (2)面面平行的其它判定方法 ①定义:两个平面无公共点;②垂直于同一条直线的两个平面平行;符号语言:βαβα//⇒⎭⎬⎫⊥⊥a a ; ③平行于同一个平面的两个平面平行;符号语言:βαγβγα//////⇒⎭⎬⎫; ④如果一个平面内的两条相交直线平行于另一个平面内的两条相交直线,那么这两个平面互相平行;符号语言:βαβα//,,////⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫==⊂⊂B d b A c a d b c a dc b a ;6.直线与平面所成的角(1)直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。

高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结(一)空间点、直线、平面之间的位置关系以下知识点需要我们去理解,记忆。

1、数学所说的直线是无限延伸的,没有起点,也没有终点。

2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。

3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

4、过不在同一直线上的三点,有且只有一个平面。

5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

6、平行于同一条直线的两条直线平行。

7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。

8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。

9、做位置关系的题目,可以借助实物,直观理解。

一、直线与方程考试内容及考试要求考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。

高一数学知识点总结(二)直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系(一)、立体几何网络图:1、线线平行的判断:(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(12)、垂直于同一平面的两直线平行。

2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

判定定理:性质定理:2线面斜交和线面角:l ∩α=A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。

2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、(重点)线面垂直的判断:证明面外直线分别平行于两条面内支线,常用方法:1中垂线平行于底边2三垂线定理及其逆定理3 欲证线a ⊥线b ,线c 所在平面,可证线b ⊥线a 所在平面→线b ⊥线a ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系

点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
•公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.
•公理2:过不在同一条直线上的三点,有且只有一个平面.
•公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
•公理4:平行于同一条直线的两条直线互相平行.
•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
•垂直于同一个平面的两条直线平行.
•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系知识梳理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.作用:可用来证明点、直线在平面内.公理2:过不在一条直线上的三点,有且只有一个平面.作用:①可用来确定一个平面;②证明点线共面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点.公理4:平行于同一条直线的两条直线互相平行.作用:判断空间两条直线平行的依据.2.空间直线的位置关系(1)位置关系的分类:⎧⎧⎪⎨⎨⎩⎪⎩平行共面直线相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:0,2π⎛⎤ ⎥⎝⎦.(3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面,平面与平面之间的位置关系图形语言 符号语言 公共点 直线与平面 相交a ∩α=A 1个平行a ∥α 0个 在平面内a ⊂α 无数个 平面与平面 平行α∥β 0个 相交α∩β=l 无数个 易错点:1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.[试一试]1.下列说法正确的是()A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面解析:选D由异面直线的定义可知选D.2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:选D b与α相交或b⊂α或b∥α都可以.3.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.异面B.相交C.不可能平行D.不可能相交解析:选C由已知直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b.与a,b是异面直线相矛盾.4.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A.AB∥CD B.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.5.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,求异面直线B1C与EF所成的角的大小.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求,又B1D1=B1C=D1C,∴∠D1B1C =60°.方法归纳:1.求异面直线所成角的方法(1)平移法:即选点平移其中一条或两条直线使其转化为平面角问题,这是求异面直线所成角的常用方法.(2)补形法:即采用补形法作出平面角.2.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内;(2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合.3.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上;(2)直接证明这些点都在同一条特定直线上.4.证明共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.[练一练]1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )解析:选D A ,B ,C 图中四点一定共面,D 中四点不共面.2.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,求异面直线BE 与CD 1所成的角的余弦值.解析:如上图连接BA 1 ∵BA 1∥CD 1,∴∠A 1BE 为所求.在△A 1BE 中,设AB =1,则AA 1=2,∴A 1B =5,A 1E =1,BE = 2.∴cos ∠A 1BE =31010考点精讲考点一 平面的基本性质及应用1.在下列命题中,不是..公理的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线解析:选A 选项A 是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数是( )A .0B .1C .2D .3解析:选C 对于①,未强调三点不共线,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,未强调三点共线,则两平面也可能相交,故④错误.3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为A 1A 的中点,求证:CE ,D 1F ,DA 三线共点.解析:∵112EF CD ,∴直线D 1F 和CE 必相交. 设D 1F ∩CE =P ,∵P ∈D 1F 且D 1F ⊂平面AA 1D 1D ,∴P ∈平面AA 1D 1D .又P ∈EC 且CE ⊂平面ABCD ,∴P ∈平面ABCD ,即P 是平面ABCD 与平面AA 1D 1D 的公共点.而平面ABCD ∩平面AA 1D 1D =AD .∴P ∈AD ,∴CE 、D 1F 、DA 三线共点.变式练习:本例条件不变试证明E ,C ,D 1,F 四点共面.证明:∵E ,F 分别是AB 和AA 1的中点,∴112EF A B ,又A 1D 1∥B 1C 1∥BC . ∴四边形A 1D 1CB 为平行四边形,∴A 1B ∥CD 1,从而EF ∥CD 1.∴EF 与CD 1确定一个平面,∴E ,C 1,F ,D 四点共面.[解题通法]1.证明线共点问题常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.2.证明点或线共面问题一般有以下两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证平面重合.考点二空间两直线的位置关系[典例]1、已知m,n,l为不同的直线,α,β为不同的平面,有下面四个命题:①m,n为异面直线,过空间任一点P,一定能作一条直线l与m,n都相交.②m,n为异面直线,过空间任一点P,一定存在一个与直线m,n都平行的平面.③α⊥β,α∩β=l,m⊂α,n⊂β,m,n与l都斜交,则m与n一定不垂直;④m,n是α内两相交直线,则α与β相交的充要条件是m,n至少有一条与β相交.则四个结论中正确的个数为()A.1B.2 C.3 D.4解析:选B①错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内且不在直线m上时,就不满足结论;②错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内时,就不满足结论;③正确,否则,若m⊥n,在直线m上取一点作直线a⊥l,由α⊥β,得a⊥n.从而有n⊥α,则n⊥l;④正确.2、已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.①求证:BC与AD是异面直线;②求证:EG与FH相交.证明:①假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.②如图,连接AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与HF相交.[类题通法]1.异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.[针对训练]若直线l 不平行于平面α,且l ⊄α,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交解析:选B 如图,设l ∩α=A ,α内直线若经过A 点,则与直线l 相交;若不经过点A ,则与直线l 异面.考点三 异面直线所成的角[典例]1、如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,求异面直线A 1B 与AD 1所成角的余弦值.[解析] 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45. 2、已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为多少.解:连接DF ,则AE ∥DF ,∴∠D 1FD 即为异面直线AE 与D 1F 所成的角.设正方体棱长为a ,则D 1D =a ,DF =52a ,D 1F =52a , ∴222155223cos 555222a a a D FD a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⋅⋅[类题通法]用平移法求异面直线所成的角的三步法(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.[针对训练]1、如图所示,点A 是平面BCD 外一点,AD =BC =2,E ,F 分别是AB ,CD 的中点,且EF =2,求异面直线AD 和BC 所成的角.解析:如图,设G 是AC 的中点,连接EG ,FG .因为E ,F 分别是AB ,CD 的中点,故EG ∥BC 且EG =12BC =1,FG ∥AD ,且FG =12AD =1.即∠EGF 为所求,又EF =2,由勾股定理逆定理可得∠EGF =90°.2、如图,三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =60°,PA =AB =AC =2,E 是PC的中点.(1)求异面直线AE 和PB 所成角的余弦值.(2)求三棱锥A -EBC 的体积.解:(1)取BC 中点F ,连接EF 、AF ,则EF ∥PB ,所以∠AEF 或其补角就是异面直线AE和PB 所成的角。

高中数学 点、直线、平面之间的位置关系

高中数学 点、直线、平面之间的位置关系

点、直线、平面之间的位置关系知识回顾1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.空间两条直线的位置关系(1)空间两条直线的位置关系有且只有三种:相交、平行、异面.(2)异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线.(3)异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).3. 线面、面面的位置关系1.一条直线a和一个平面α有且仅有a⊂α,a∩α=A或a∥α三种位置关系.(用符号语言表示)2.两平面α与β有且仅有α∥β或α∩β=l两种位置关系(用符号语言表示).题型讲解题型一概念例1、下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 M,宽是20 M;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为()A.1 B.2 C.3 D.4答案:A例2、若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β答案:B例3、如图所示正方体ABCD-A1B1C1D1中,E、F分别为CC1和AA1的中点,画出平面BED1F和平面ABCD的交线.解析:如图所示,在平面ADD1A1内延长D1F与DA,交于一点P,则P∈平面BED1F,∵DA⊂平面ABCD,∴P∈平面ABCD,∴P是平面ABCD与平面BED1F的一个公共点,又B是两平面的一个公共点,∴PB为两平面的交线.例4、空间四边形ABCD的两条对角线AC、BD相互垂直,顺次连接四边中点的四边形一定是()A.空间四边形 B.矩形C.菱形 D.正方形答案:B题型二异面直线例5、已知正方体ABCD—A′B′C′D′中:(1)BC′与CD′所成的角为________;(2)AD与BC′所成的角为________.答案:(1)60°(2)45°解析连接BA′,则BA′∥CD′,连接A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形,知∠A′BC′=60°,由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.例6、一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.答案:①③解析把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.题型三线面关系例7、已知直线a∥平面α,直线b⊂α,则a与b的位置关系是()A.相交 B.平行C.异面 D.平行或异面答案:D例8、三个互不重合的平面把空间分成6部分时,它们的交线有()A .1条B .2条C .3条D .1条或2条 答案:D例9、平面α∥β,且a ⊂α,下列四个结论: ①a 和β内的所有直线平行; ②a 和β内的无数条直线平行; ③a 和β内的任何直线都不平行; ④a 和β无公共点. 其中正确的个数为( )A .0B .1C .2D .3 答案:C跟踪训练1. 文字语言叙述“平面内有一条直线,则这条直线上的一点必在这个平面内”用符号表述是( )A .⎭⎪⎬⎪⎫A ⊂αA ⊂a ⇒A ⊂α B .⎭⎪⎬⎪⎫a ⊂αA ∈a ⇒A ∈α C .⎭⎪⎬⎪⎫a ∈αA ⊂a ⇒A ∈α D .⎭⎪⎬⎪⎫a ∈αA ∈a ⇒A ⊂α 答案:B2. 若直线a 、b 与直线l 相交且所成的角相等,则a 、b 的位置关系是( ) A .异面 B .平行C .相交D .三种关系都有可能答案:D3.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD)B .MN ≤12(AC +BD)C .MN =12(AC +BD)D .MN<12(AC +BD)答案:D4.正方体AC 1中,E 、F 分别是面A 1B 1C 1D 1和AA 1DD 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90° 答案:B5.已知a 是一条直线,过a 作平面β,使β∥平面α,这样的β( ) A .只能作一个 B .至少有一个 C .不存在 D .至多有一个答案:D6.正方体ABCD -A 1B 1C 1D 1中,平面BA 1C 1和平面ACD 1的交线与棱CC 1的位置关系是________,截面BA 1C 1和直线AC 的位置关系是________.答案:平行 平行 解析:如图所示,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1空间点、直线、平面之间的位置关系§2.1.1平面(第一课时)学习目标体会平面的定义,理解平面的基本性质,熟悉符号语言、文字语言与图形语言之间的等价转换.学习重难点体会平面的定义,理解平面的基本性质(公理1)【互动探究】1.水平的平面常画成__ ;如点A 在平面α内,可记作____;点B 在平面α外,可记作_____;直线l在平面α内,可记作_______;直线l在平面α外,可记作__ _ 2.点、线、面的基本位置关系如下表所示:3 .公理1 :如果一条直线上的_____在一个平面内,那么这条直线在此平面内符号语言表示为:__ ______.图形语言表示为:_ __剖列探究★讲解点一例题1:课本43页练习第4题★讲解点二例题2下列命题中,正确的个数是( ) ①两个平面重叠在一起比一个平面厚;②一条直线的长度比一个平面的长度大;③平行四边形是一个平面;④空间图形中先画的线是实线,后画的线是虚线A. 0B. lC.2D.3【规律技巧总结】平面无,它没有,和;平面只有被遮挡的部分才画成,与是否先画没有关系.【自我测评】1 .下列命题①公理1 可用集合符号叙述为:若A ∈l , B∈l,且A∈α , B ∈α则必有l⊂α.②四边形的两条直对角线必相交于一点.③用平行四边形表示的平面,以平行四边形的四条边作为平面边界线.④梯形是平面图形.其中正确的命题个数为( )A. 1B. 2C. 3D.42. 将下列文字语言转化为符号语言:(1)点A在平面α内,但不在平面β内;(2)直线l在平面α内,又在平面βα和β相交于直线l3.课本43页第2题作业:1.课本51页,第1题2.课本,51页,第2题课后反思:2.1空间点、直线、平面之间的位置关系§2.1.1平面(第二课时)学习目标进一步掌握平面的基本性质(公理2,公理3).学习重点进一步掌握平面的基本性质(公理3)学习难点会用平面的基本性质证明点共线、线共点、点线共面的三个典型问题【互动探究】1. 公理2 :过___________的三点,有且只有一个平面图形语言表示为:___ ______ _符号语言表示为:_______ ___2. 下列条件能否确定一个平面?为什么?(1) 一条直线和直线外一点 (2) 两条平行直线 (3) 两条相交直线3 .公理3 :如果两个_________的平面有_______个公共点,那么它们有且只有一条过_______的公共直线图形语言表示为:___ __符号语言表示为:____ ___剖列探究★讲解点一例题1课本43页练习第3题.★讲解点二例题2已知:E 、F 、C 、H 分别是空间四边形ABCD (四条线段首尾相接,且连接点不在同一平面内)各边AB 、AD 、CB 、CD 上的点,如果直线EF 、GH相交,如图,求证:直线EF、GH、BD共点.【思维切入】要证三线共点,先找出两条直线的交点,再证明另一条直线经过该点,即证明该点是两个平面的公共点,直线是两个平面的交线,由公理3 即可证明【自我测评】1.课本43页第1题2. 三个平面两两相交,则交线有( )A .l 条 B.2条 C.3 条 D. l 条或3 条3.下列推断中错误的是( )A. A ∈l, A∈α, B∈ l, B∈α⇒l⊂α,B. A∈α, A∈β,B∈α,B∈β⇒α⋂β=AB,C. A、B、C∈α,A、B、C∈β并且A、B、C不共线⇒α、β重合.D. l⊄α,A∈l⇒A∉α.4. 如图,平面α⋂平面β=l, A 、B ∈α,C∈β,C ∉l , 直线AB ⋂l = D ,过A 、B 、C三点确定的平面为γ,则平面γ、β的交线必过( )A .点AB .点B C. 点C ,但不过点D D. 点C 和点D课后反思:§2.1.2空间中直线与直线之间的位置关系(第一课时) 学习目标1.掌握空间两条直线的位置关系;2.理解异面直线的定义;3.掌握平行公理(公理4). 学习重点空间两条直线的位置关系. 学习难点异面直线的定义的理解.【互动探究】 自主探究1. ⎧⎧⎨⎪⎨⎩⎪⎩相交直线:共面直线平行直线:异面直线:2.公理4(平行公理): 符号语言: 剖列探法★ 讲解点一:空间直线位置关系的判定例题1.已知正方体ABCD A B C D ''''-,E F G H、、、分别为AB AD 、、 C B '',C D ''的中点,试判断下列直线的位置关系.(1) AD '与BC ';(2) EF CH 与 ;( 3 ) DE HB 与 .【规律技巧总结】证明直线平行,往往通过:“中间量”即第三条直线来实现例2:如右图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,求证:四边形EFGH是平行四边形。

【自我测评】1.课本48页练习1第一问2.若a,b是异面直线,b,c是异面直线,则()A. a∥bB. a,c是异面直线C. a,c相交D. a,c或平行或相交或异面3.课本45页探究课后反思:§2.1.2空间中直线与直线之间的位置关系(第二课时)学习目标会应用平行公理和等角定理解决有关问题;会求两条异面直线所成的角学习重难点重难点:异面直线夹角的判断和计算【互动探究】1.异面直线角的定义: .1.异面直线所成角Q的范围是____________.若两异面直线a,b所成角是直角,我们就说__ _________ _ __,记作____________.2.空间中如果两个角的两边分别对应平行,那么这两个角_________ ____.剖列探法★讲解点例题1.如图空间四边形ABCD 中,AC = 2 , BD = 2 , E 、F 分别是AD 和BC的中点,且EF =,求Ac 和BD 所成的角.【思维切入】已知AC 和BD 异面,求AC 和BD 所成角必须先找到两条相交直线所成角,关键是选择角的顶点,而该点的选择必须找特殊点,找出角后能顺利求出该角才是目的.【规律技巧总结】求两条异面直线夹角的步骤可概括为:“、、”“一作”是指选择恰当的点作为角的顶点,作出两条相交直线的夹角;“二证”是指证明作的角为两异面直线的夹角,即证明角的两边与两条直线相互平行;“三求”是指将作角放到三角形中进行求解例题2:如右图,点A 是BCD 所在平面外一点,AD=BC=2,E 、F 分别是AB 、CD 的中点,且EF=,求异面直线AD 与BC 所成的角。

【自我测评】1.课本48页练习第2题.2.若0120AOB ∠=,直线a ∥OA, Α和OB 异面,那么α和OB 所成角是( ) A. 1200 B. 600 C. 600或1200 D.不能确定3.如图,正方体1111A D CD B B C A -、E F 、分别是正方形D C B A 1111和11D ADD A 的中心,则EF 和CD 所成的角是( ) A.600 B 450 C. 300 D. 900课后反思:F§2.1.3 空间中直线与平面、平面与平面之间的位置关系学习目标会运用直线与平面之间的位置关系和平面与平面之间的位置关系解决简单的应用与证明问题;能用符号语言表示这此关系并能画出正确的图形学习重难点点运用直线与平面之间的位置关系和平面与平面之间的位置关系解决简单的应用与证明问题【互动探究】自主探究1.直线与平面之间的位置关系有以下三种:(1)直线在平面内--------- 图像语言:(2)直线与平面相交------ 图像语言:(3)直线与平面平行------ 图像语言:2 .平面和平面之间的位置关系有以下两种:(1)两个平面平行---- (2)两个平面相交----- 剖列探究★讲解点一直线和平面的位置关系例题1下列命题:①直线L 平行于平面α内的无数条直线,则L ∥α;②若直线a 在平面α外,则a∥α;③若直线a∥b ,直线b⊂α,则a∥α④若直线a∥b , b⊂α,那么直线a 就平行于平面α内的无数条直线其中真命题的个数为( )A 0 B. 1 C.2 D.3【思维切入】从线与平面平行的定义入手进行筛选★讲解点二空间两个平面的位置关系例题2给出下列各命题①已知直线a∥α,直线α⊂β,则必有α∥β;②直线a∥b ,直线a 与平面α平行,则直线b 与平面α平行;③直线a∥b ,直线a 与平面α相交,则直线b 与平面α相交;④平面α∥β,a∥α,则a与平面β不可能相交。

⑤如果一条直线平行于一个平面,则这条直线与这个平面内的无数条直线平行其中正确命题的序号是______________. 【思维切入】通过实物或画图体会空间线面的位置关系,是处理线面关系判定的特殊方法对于正确的命题可以给出简要的证明或说明,对于错误的命题至少要举出一个反例.【自我测评】1. 直线与平面平行是指( )A .直线与平面内的无数直线都无公共点B. 直线上两点到平面的距离相等C. 直线与平面无公共点D. 直线不在平面内2 .下列四个命题中假命题的个数是( )①两条直线都和同一个平面平行,则这两条直线平行②两条直线没有公共点,则这两条直线平行③两条直线都和第三条直线垂直,则这两条直线平行④一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行A. 4B. 3C. 2D. l3 .若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( )A. a 内所有直线与m 异面B. a 内不存在与m 平行的直线C. a内存在惟一的直线与m 平行D. a内的直线与m 都相交4.①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③过平面外一点有且只有一条直线与该平面平行;④过平面外一点有且只有一个平面与该平面平行其中正确命题的个数是()A.0B.1C.2D.35.课本50页练习课后反思:§2.2直线与平面平行的判定及其性质§2.2.1直线与平面平行的判定学习目标掌握直线与平面平行的判定定理,会用定理解决一些基本问题,加深对转化思想的理解。

学习重难点点直线与平面平行的判定定理,会用定理解决一些基本问题 提示与建议可以通过直线间的平行,推证直线与平面平行,这是处理空间位置关系的一种常用方法,即将直线与平面平行关系(空间问题)转化为直线间平行关系(平面问题)【互动探究】 自主探究1.若一条直线和一个平面 则这条直线和这个面平行。

2.如果直线a 在平面α外,是只直线a 和平面α ,记作 。

3.直线在平面内,则直线与平面有 个交点;直线和平面相交,则直线与平面 有 个交点;直线和平面平行,则直线与平面有 个交点。

4.直线和平面平行的判定定理用符号表示为: 。

相关文档
最新文档