(整理)大学物理复习资料.
大学物理复习资料

大学物理复习资料一、简答题1.利用所学的物理知识解释花样滑冰运动员在双手合拢时旋转速度增大,双手展开时旋转速度减小。
答:当合外力矩等于0时物体对轴的角动量守恒,即JW=常量。
当双手合拢时旋转半径变小,J变小,旋转角速度W增大,将双手展开,J增大了,旋转角速度W又会减小。
2.“河道宽处水流缓,河道窄处水流急”,如何解释?答:由不可压缩流体的连续性方程V1△S1=V2△S2即V△S=恒量,知河流宽处△S大,V小,河流窄处△S小,V大。
3.为什么从水龙头徐徐流出的水流,下落时逐渐变细,请用所学的物理知识解释。
答;有机械能守恒定理知,从水龙头流出的水速度逐渐增大,再由不可压缩流体的连续性方程V△S=常量知,V增大时△S变小,所以水流变细。
4.请简述机械振动与机械波的区别与连续答:区别:机械振动是在某一位置附近做周期性往返运动5.用所学的物理知识总结一下静电场基本性质及基本规律。
答:性质:a.处于电场中的任何带电体都受到电场所作用的力。
b.当带电体在电场中移动时,电场力将对带电体做功。
规律:高斯定理:通过真空中的静电场中任一闭合面的电通量Φe等于包围在该闭合面内的电荷代数和∑qi的ε0分之一,而与闭合面外的电荷无关。
ΦEdSSqSε0环流定理:在静电场中,场强E的环流恒等于零。
Edl0l6.简述理想气体的微观模型。
答:①分子可以看做质点②分子作匀速直线运动③分子间的碰撞是完全弹性的7.一定质量的理想气体,当温度不变时,其压强随体积的减小而增大,当体积不变时,其压强随温度的升高而增大,请从微观上解释说明,这两种压强增大有何区别。
答:当温度不变时,体积减小,分子的平均动能不变,但单位体积内的气体分子数增加,故而压强增大;当体积不变时,温度升高,单位体积内的气体分子数不变,但分子的平均动能增加,故压强增大。
这两种压强增大是不同的,一个是通过增加分子数密度,一个是通过增加分子的平均平动动能来增加压强的。
9.请简述热力学第一定律的内容及数学表达式。
大学物理(1)总复习

k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.
大学物理复习资料

大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。
在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。
大学物理复习资料

第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为(C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。
大学物理知识点整理

⼤学物理知识点整理⼀、质点:是物体的理想模型。
它只有质量⽽没有⼤⼩。
平动物体可作为质点运动来处理,或物体的形状⼤⼩对物体运动状态的影响可忽略不计是也可近似为质点。
⼆、⼒:是物体间的相互作⽤。
分为接触作⽤与场作⽤。
在经典⼒学中,场作⽤主要为万有引⼒(重⼒),接触作⽤主要为弹性⼒与摩擦⼒。
1、弹性⼒:(为形变量)2、摩擦⼒:摩擦⼒的⽅向永远与相对运动⽅向(或趋势)相反。
固体间的静摩擦⼒:(最⼤值)固体间的滑动摩擦⼒:3、流体阻⼒:或。
4、万有引⼒:特例:在地球引⼒场中,在地球表⾯附近:。
式中R为地球半径,M为地球质量。
在地球上⽅(较⼤),。
在地球内部(),。
三、惯性参考系中的⼒学规律⽜顿三定律⽜顿第⼀定律:时,。
⽜顿第⼀定律阐明了惯性与⼒的概念,定义了惯性系。
⽜顿第⼆定律:普遍形式:;经典形式:(为恒量)⽜顿第三定律:。
⽜顿运动定律是物体低速运动()时所遵循的动⼒学基本规律,是经典⼒学的基础。
四、⾮惯性参考系中的⼒学规律1、惯性⼒:惯性⼒没有施⼒物体,因此它也不存在反作⽤⼒。
但惯性⼒同样能改变物体相对于参考系的运动状态,这体现了惯性⼒就是参考系的加速度效应。
2、引⼊惯性⼒后,⾮惯性系中⼒学规律:五、求解动⼒学问题的主要步骤恒⼒作⽤下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体⽰⼒图,列出分量式的运动⽅程。
变⼒作⽤下的单质点运动:分析⼒函数,选取坐标系,列运动⽅程,⽤积分法求解。
第3章机械能和功⼀、功1、功能的定义式:恒⼒的功:变⼒的功:2、保守⼒若某⼒所作的功仅取决于始末位置⽽与经历的路径⽆关,则该⼒称保守⼒。
或满⾜下述关系的⼒称保守⼒:3、⼏种常见的保守⼒的功:(1)重⼒的功:(2)万有引⼒的功:(3)弹性⼒的功:4、功率⼆、势能保守⼒的功只取决于相对位置的改变⽽与路径⽆关。
由相对位置决定系统所具有的能量称之为势能。
1、常见的势能有(1)重⼒势能(2)万有引⼒势能(3)弹性势能2、势能与保守⼒的关系(1)保守⼒的功等于势能的减少(2)保守⼒为势能函数的梯度负值。
大学物理复习资料

第1章<上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt>m,y=10sin(0.5πt>m,则质点运动方程的矢量式为r=,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v=,加速度=,速度的大小为,加速度的大小为,切向加速度的大小为0,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI>。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s 末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
b5E2RGbCAP3、某质点做直线运动规律为x=t2-4t+2(m>,在(SI>单位制下,则质点在前5s内通过的平均速度和路程为< C )p1EanqFDPwA、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5m E、2m﹒s-1,13mDXDiTa9E3d4、某质点的运动规律为dv/dt=-kv2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是< C )RTCrpUDGiTA、v=½ kt2+v0B、v=-½ kt2+v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =kt2∕2-v05PCzVD7HxA5、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?jLBHrnAILg6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?xHAQX74J0X第4章<P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r=coswti+bsinwtj,式中、b、w为正的常量。
大学物理复习资料1

2 3
1 2 3 4
Q
A
B
C
.P
E
1 2 Q S 同理可得: 0 2 3
Q Q Q 1 2 3 4 2S 2S 2S 按电场叠加原理可求得: Q Q Q EB EA EC 2 o S 2 o S 2 o S (2)第二板接地 则 4与大地构成一导体 4 0
qQ U2 U3 4 π 0 R3 4 π 0 R3 4 π 0 R3 q q qQ 4 π 0 R3
R2
R3
U1 U 2
q 4 π 0 R1
q 4 π 0 R2
(2)外壳接地, 电荷分布
U1
q 4 π 0 R1
q 4 π 0 R2
复习课
题型: 选择10题共30分, 填空10题共30分, 计算5题共40分 比例:静电场(第11、12章): 31分; 第13章: 19分; 第14章: 19分; 第15章: 11分; 第16章: 17分; 第17章: 3分。。
11章 真空中的静电场
1、利用场强叠加原理求场强:
E
q q 1 1 i r E ri E dE 3 3 40 r 40 ri 40
R
o
练习题:例11-16、17;习题11-6、7、8、14
例11-16
均匀带电圆环半径为R,带电总量为q
求 圆环轴线上一点的电势 解 建立如图坐标系,选取电荷元 dq
dq dl
dq dV 4 0 r
dq r
R
dl
4 0 R x
2 2
O
P
x
Vp
2 R
(完整版)大学物理实验复习资料(全12个物理实验复习资料完整版)

大学物理实验复习资料(全12个物理实验复习资料完整版)史上最震撼的《大学物理实验》全12个实验复习材料完整版!!你从未见过的珍贵考试资料!!Ps:亲!给好评,有送财富值哦! #^_^!!绪论-《测量的不确定度与数据处理》1、有效数字、有效数字的单位换算有效数字:具体地说,是指在分析工作中实际能够测量到的数字。
所谓能够测量到的是包括最后一位估计的,不确定的数字。
我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部分数字叫做存疑数字。
把测量结果中能够反映被测量大小的带有一位存疑数字的全部数字叫有效数字。
有效数字的单位换算:十进制的单位换算不影响有效数字和误差。
2、测量不确定度:测量不确定是与测量结果相关联的参数,表示测量值的分散性、准确性和可靠性,或者说它是被测量值在某一范围内的一个评定。
一个完整的测量结果不仅要给出测量值的大小,同时还应给出它的不确定度。
用不确定度来表征测量结果的可信赖程度。
测量结果的最佳估计值 11ni i x x n ==∑ A 类不确定度A x U σ=在一系列重复测量中,用统计的方法计算分量,它的表征值用标准偏差表示。
B 类不确定度B U =仪测量中凡是不符合统计规律的不确定度称为B 类不确定度。
合成不确定度U =测量结果的表示 x x U =±3、数据处理方法:作图法、逐差法作图法包括:图示法,图解法解实验方程,曲线改直。
逐差法:当自变量等间隔变换,而两物理量之间又呈现线性关系时,除了采用图解法,最小二乘法以外,还可采用逐差法。
注意逐差法要求自变量等间隔变化而函数关系为线性实验一 长度和固体密度的测量1、物理天平的调节过程及注意事项物理天平的调节过程:a 调底板水平:通过调水平螺钉让水准器中的汽泡处中心位置。
b 调零点:先将游码移到零点及调盘挂在副刀口上,然后通过调节螺母直至读数指针c 在摆动状态下处于平衡位置——读数标牌的平衡点。
注意事项:A 常止动:为避免刀口受冲击损坏,取放物体,砝码,调节平衡螺母以及不使用天平时,都必须放下横梁,止动天平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q ∴ 0=E题8-12图8-12两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E )(21210σσε-= 1σ面外, n E)(21210σσε+-=2σ面外, n E )(21210σσε+= n:垂直于两平面由1σ面指为2σ面. 8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E , ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场dπ4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερr E PO =, 03ερr E O P '-=' ,∴ 00033)(3ερερερd r r E E E O P PO P =='-=+=' ∴腔内场强是均匀的. 8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C点,求移动过程中电场力作的解: 如题8-16图示 0π41ε=O U 0)(=-RqR q0π41ε=O U )3(R qR q -R q 0π6ε-= ∴Rq q U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sin π-]R 0π2ελ-= (2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生2ln π402ελ=U 半圆环产生0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σS q A =得,32S q A =σ Sq A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R Rqr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得q R R q 21=' 外球壳上电势 ()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-= 8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量;(3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl QD π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ C Q W 22= ∴ )/ln(π22122R R lW Q C ε== 第九章题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=B CD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m 9-12 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题9-12图所示.求: (1)两导线所在平面内与该两导线等距的一点A(2)通过图中斜线所示面积的磁通量.(1r =3r =10cm,l =25cm)解:(1) 52010104)2(2)2(2-⨯=+=d I dI B A πμπμ T⊥纸面向外(2)r l S d d =612010110102.23ln 31ln 23ln 2])(22[1211-+⨯=πμ=πμ-πμ=-πμ+πμ=⎰l I l I l I ldr r d I r I r r r Φ 9-16 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如题9-16图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小解: ⎰∑μ=⋅L I l B 0d (1)a r < 2202R Ir r B μπ= 202RIr B πμ=(2) b r a << I r B 02μπ= rIB πμ20=(3)c r b << I b c b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ (4)c r > 02=r B π0=B题9-16图题9-17图9-17 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均(1)(2) 解:空间各点磁场可看作半径为R ,电流1I 均匀分布在横截面上的圆柱导体和半径为r 电流2I -均匀分布在横截面上的圆柱导体磁场之和.(1)圆柱轴线上的O 点B 的大小: 电流1I 产生的01=B ,电流2I -产生的磁场222020222r R Ir a a I B -==πμπμ ∴)(222200r R a Ir B -=πμ (2)空心部分轴线上O '点B 的大小: 电流2I 产生的02='B , 电流1I 产生的222022r R Ia a B -πμ=')(2220r R Ia -=πμ ∴)(22200r R Ia B -='πμ 0=M .题9-19图9-19 在磁感应强度为B的均匀磁场中,垂直于磁场方向的平面内有一段载流弯曲导线,电流为I ,如题9-19解:在曲线上取l d 则 ⎰⨯=baab B l I F d∵ l d 与B 夹角l d <,2π>=B不变,B是均匀的.∴ ⎰⎰⨯=⨯=⨯=b ab aab B I B l I B l I F)d (d 方向⊥ab 向上,大小BI F ab =ab题9-20图9-20 如题9-20图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm (1)导线AB(2)解:(1)CD F 方向垂直CD 向左,大小 4102100.82-⨯==dI b I F CD πμ N同理FE F方向垂直FE 向右,大小 5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F 方向垂直CF 向上,大小为 ⎰+-⨯=+πμ=πμ=a d d CF da d I I r r I I F 5210210102.9ln 2d 2 NED F方向垂直ED 向下,大小为 5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为 4102.7-⨯=F N合力矩B P M m ⨯= ∵ 线圈与导线共面 ∴B P m // 0=M9-23 一长直导线通有电流1I =20A ,旁边放一导线ab ,其中通有电流2I =10A ,且两者共面,如题9-23图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力 ab F ⊥d 向上,大小为 rI rI F πμ2d d 102= F d 对O 点力矩F r M ⨯=d M d 方向垂直纸面向外,大小为 r II F r M d 2d d 210πμ==⎰⎰-⨯===b a bar I I M M 6210106.3d 2d πμ m N ⋅题9-23图9-30 螺绕环中心周长L =10cm ,环上线圈匝数N =200匝,线圈中通有电流I =100 mA . (1)当管内是真空时,求管中心的磁场强度H 和磁感应强度0B;(2)若环内充满相对磁导率r μ=4200的磁性物质,则管内的B和H 各是多少?*(3)磁性物质中心处由导线中传导电流产生的0B 和由磁化电流产生的B′各是多少?解: (1) I l H l ∑=⋅⎰ d NI HL = 200==LNIH 1m A -⋅400105.2-⨯==H B μT (2)200=H 1m A -⋅05.1===H H B o r μμμ T (3)由传导电流产生的0B 即(1)中的40105.2-⨯=B T∴由磁化电流产生的05.10≈-='B B B T第十章10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴0=MeNM ε 即MN MeN εε= 又∵0cos d ln 02a bMN a bIv a bvB l a bμεππ+--==<+⎰所以MeN ε沿NeM 方向, 大小为ba ba Iv -+ln20πμ M 点电势高于N 点电势,即 ba ba Iv U U N M -+=-ln 20πμ 题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)(2)解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab bad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1d =0.05m时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ ∴klvt t m -=-=d d Φε 即沿abcd 方向顺时针方向.题10-8图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差;(2)b a ,两端哪一点电势高?解: (1)在Ob 上取dr r r +→一小段 则⎰==320292d l Ob l B r rB ωωε 同理⎰==302181d lOa l B r rB ωωε∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵bc ab ac εεε+= tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴t B R R ac d d ]12π43[22+=ε ∵0d d >tB∴0>ac ε即ε从c a → 十二章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dD x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm o A 6000= (2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ= ∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λo A 时,有 2500)21(21111+=+=λλk k ne ②当70002=λo A 时,有 3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得31=k 2112=-=k k 可由②式求得油膜的厚度为 67312250011=+=nk e λo A 12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k ∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求. 12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求: (1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少?(4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ 故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空 nR k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n 12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为 λN d n ∆=-)1(2∴)1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm 十三章13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆ 半角宽度为naλθ1sin -=(1)空气中,1=n ,所以 3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m 33101100.51010.0105000sin ----⨯=⨯⨯=θ rad (2)浸入水中,33.1=n ,所以有 33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m 331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θ rad 13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm当 3=k ,得60003=λoA 4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹; 若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带;当4=k 时,单缝处的波面可分成912=+k 个半波带.13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm .求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式λϕk b a =+sin )(,因1=k ,又fx ==ϕϕtan sin所以有λ=+f x b a 1)( 即62101100.51060105000---⨯⨯⨯⨯=+=b a f x λ2100.6-⨯=m 6= cm (2)对应中央明纹,有0=k 正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ 斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm 这就是中央明条纹的位移值. 13-16 波长6000=λoA 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式 对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a 101060003)(30.0-⨯⨯=+b a 得6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足 λϕk b a =+sin )( λϕk a '=sin解得k k ba a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )( λϕsin )(b a k += 当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 Dλθ22.1= ∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA 2=k 时,91.1245sin 75.22=⨯⨯=︒λo A 3=k 时,30.1389.3==λo A 4=k 时, 97.0489.3==λo A故只有30.13=λoA 和97.04=λoA 的X 射线能产生强反射.十四章14-7投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍? 解:由马吕斯定律有 0o 2018330cos 2I I I ==0ο2024145cos 2I I I == 0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍. 14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少?解:(1)max 120131cos 2I I I ==α 又20max I I = ∴ ,601I I = 故'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α ∴'ο221635,32cos ==αα14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少?解:(1),140.1tan 0=i ∴'ο02854=i (2) 'ο0ο323590=-=i y 14-11 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率. 解:由158tan οn=,故60.1=n。