2017-2018学年人教A版高中数学必修二(浙江专版)学案:2.2直线平面平行的判定及其性质 Word版含答案
2017-2018学年人教A版高中数学必修二浙江专版学案:4-

4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系1.直线与圆有三种位置关系2.直线Ax +By +C =0代数法:由⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b 2=r2消元得到一元二次方程的判别式Δ [点睛] 判断直线与圆的位置关系,一般常用几何法,因为代数法计算繁琐,书写量大,易出错,几何法则较简洁,但是在判断直线与其他二次曲线的位置关系时,常用代数法.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( )(2)直线x +2y -1=0与圆2x 2+2y 2-4x -2y +1=0的位置关系是相交.( )答案:(1)√ (2)√2.设直线l 过点P (-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( ) A .±1 B .±12C .±33D .± 3解析:选C 设l :y =k (x +2),即kx -y +2k =0. 又l 与圆相切,∴|2k |1+k2=1.∴k =±33. 3.直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25.故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 5[典例] (1)已知直线l :x -2y +5=0与圆C :(x -7)2+(y -1)2=36,判断直线l 与圆C 的位置关系.[解] [法一 代数法]由方程组⎩⎪⎨⎪⎧x -2+y -2=36,x -2y +5=0消去y 后整理,得5x 2-50x +61=0. ∵Δ=(-50)2-4×5×61=1 280>0, ∴该方程组有两组不同的实数解, 即直线l 与圆C 相交. [法二 几何法]圆心(7,1)到直线l 的距离为d =|1×7-2×1+5|12+-2=2 5.∵d <r =6,∴直线l 与圆C 相交.[活学活用]1.直线x -ky +1=0与圆x 2+y 2=1的位置关系是( ) A .相交 B .相离 C .相交或相切D .相切解析:选C 直线x -ky +1=0恒过定点(-1,0),而(-1,0)在圆上,故直线与圆相切或相交.2.设m >0,则直线l :2(x +y )+1+m =0与圆O :x 2+y 2=m 的位置关系为( ) A .相切 B .相交 C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆的半径为r =m ,∵d -r =1+m2-m =12(m -2m +1)=12(m -1)2≥0,∴d ≥r ,故直线l 和圆O 相切或相离.[典例] (1)若圆C :+6=0对称,则由点(a ,b )向圆所作的切线长的最小值是( )A .2B .3C .4D .6(2)过点A (-1,4)作圆(x -2)2+(y -3)2=1的切线l ,求切线l 的方程为________. [解析] (1)因为过圆外一点的圆的切线长l 、半径长r 和这点到圆心的距离d 满足勾股定理,即l 2=d 2-r 2,所以切线长最短时该点到圆心的距离最小,转化成求该点与圆心的距离的最小值问题.由题意易知圆心C (-1,2),半径长r =2,点(a ,b )在直线y =x -3上,所以点(a ,b )与圆心的距离的最小值即圆心到直线y =x -3的距离d ,易求d =|-1-2-3|2=32,所以切线长的最小值为d 2-r 2=22-2=4.(2)∵(-1-2)2+(4-3)2=10>1, ∴点A 在圆外.当直线l 的斜率不存在时,l 的方程是x =-1,不满足题意.设直线l 的斜率为k ,则切线l 的方程为y -4=k (x +1), 即kx -y +4+k =0.圆心(2,3)到切线l 的距离为|2k -3+4+k |k 2+1=1, 解得k =0或k =-34,因此,所求直线l 的方程y =4或3x +4y -13=0. [答案] (1)C (2)y =4或3x +4y -13=0[活学活用]1.圆x 2+y 2=4在点P (3,-1)处的切线方程为( ) A.3x +y -2=0 B.3x +y -4=0 C.3x -y -4=0D.3x -y +2=0解析:选C ∵(3)2+(-1)2=4,∴点P 在圆上. ∵切点与圆心连线的斜率为-33,∴切线的斜率为3, ∴切线方程为y +1=3(x -3),即3x -y -4=0.2.点P 是直线2x +y +10=0上的动点,PA ,PB 与圆x 2+y 2=4分别相切于A ,B 两点,则四边形PAOB 面积的最小值为________.解析:如图所示,因为S 四边形PAOB =2S △POA .又OA ⊥AP ,所以S 四边形PAOB =2×12|OA |·|PA |=2|OP |2-|OA |2=2|OP |2-4.为使四边形PAOB 面积最小,当且仅当|OP |达到最小,即为点O 到直线2x +y +10=0的距离:|OP |min =1022+12=2 5.故所求最小值为252-4=8.答案:8[典例] 如果一条直线经过点M ⎝ ⎛⎭⎪⎫-3,-32且被圆x 2+y 2=25所截得的弦长为8,求这条直线的方程.[解] 圆x 2+y 2=25的半径长r 为5,直线被圆所截得的弦长l =8,于是弦心距d =r 2-⎝ ⎛⎭⎪⎫l 22=52-42=3.因为圆心O (0,0)到直线x =-3的距离恰为3,所以直线x =-3是符合题意的一条直线.设直线y +32=k (x +3)也符合题意,即圆心到直线kx -y +⎝⎛⎭⎪⎫3k -32=0的距离等于3,于是⎪⎪⎪⎪⎪⎪3k -32k 2+1=3,解得k =-34.故直线的方程为3x +4y +15=0.综上可知,满足题意的直线有两条,对应的方程分别为x =-3和3x +4y +15=0.[活学活用]1.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x +2y -3=0被圆截得的弦长为24-95=2555. 答案:25552.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 解析:设点A (3,1),易知圆心C (2,2),半径r =2. 当弦过点A (3,1)且与CA 垂直时为最短弦, |CA |=-2+-2= 2.∴半弦长=r 2-|CA |2=4-2= 2. ∴最短弦的长为2 2. 答案:2 2层级一 学业水平达标1.直线3x +4y +12=0与圆C :(x -1)2+(y -1)2=9的位置关系是( ) A .相交并且直线过圆心 B .相交但直线不过圆心 C .相切D .相离解析:选D 圆心C (1,1)到直线的距离d =|3×1+4×1+12|32+42=195,圆C 的半径r =3,则d >r ,所以直线与圆相离.2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A. 6 B.62C .1D .5解析:选A 圆的方程可化为(x -2)2+(y +2)2=2,则圆的半径r =2,圆心到直线的距离d =|2+2-5|2=22,所以直线被圆截得的弦长为2r 2-d 2=22-12= 6. 3.以点(2,-1)为圆心,且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3 B .(x +2)2+(y -1)2=3 C .(x +2)2+(y -1)2=9D .(x -2)2+(y +1)2=9解析:选D 圆心到直线3x -4y +5=0的距离d =|6+4+5|5=3,即圆的半径为3,所以所求圆的方程为(x -2)2+(y +1)2=9.4.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ) A .0或4 B .0或3 C .-2或6D .-1或 3解析:选A 由圆的方程,可知圆心坐标为(a,0),半径r =2.又直线被圆截得的弦长为22,所以圆心到直线的距离d =22-⎝⎛⎭⎪⎫2222= 2.又d =|a -2|2,所以|a -2|=2,解得a =4或a =0.故选A.5.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2 解析:选D 圆心到直线的距离d =|c |a 2+b2=12,设弦长为l ,圆的半径为r ,则⎝ ⎛⎭⎪⎫l 22+d 2=r 2,即l =2r 2-d 2= 2.6.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:根据“半径、弦长AB 的一半、圆心到直线的距离”满足勾股定理可建立关于a 的方程,解方程求a .圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以⎝ ⎛⎭⎪⎫|a +a -2|a 2+12+12=22, 解得a =4±15. 答案:4±157.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为____________________.解析:令y =0得x =-1,所以直线x -y +1=0与x 轴的交点为(-1,0).因为直线x +y +3=0与圆相切,所以圆心到直线的距离等于半径,即r =|-1+0+3|2=2,所以圆C 的方程为(x +1)2+y 2=2. 答案:(x +1)2+y 2=28.点M ,N 在圆x 2+y 2+kx +2y +4=0上,且点M ,N 关于直线x -y +1=0对称,则该圆的半径是________.解析:由题知,直线x -y +1=0过圆心⎝ ⎛⎭⎪⎫-k2,-1,即-k2+1+1=0,∴k =4.∴r =16+4-162=1. 答案:19.一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.解:因为圆与y 轴相切,且圆心在直线x -3y =0上, 故设圆的方程为(x -3b )2+(y -b )2=9b 2. 又因为直线y =x 截圆得弦长为27, 则有⎝⎛⎭⎪⎫|3b -b |22+(7)2=9b 2, 解得b =±1,故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.10.设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为22,求圆的方程.解:设所求圆的方程为(x -a )2+(y -b )2=r 2,则圆心为(a ,b ),半径长为r .∵点A (2,3)关于直线x +2y =0的对称点A ′仍在这个圆上,∴圆心(a ,b )在直线x +2y =0上.∴a +2b =0,①且(2-a )2+(3-b )2=r 2.②又∵直线x -y +1=0与圆相交的弦长为22, ∴r 2-d 2=r 2-⎝⎛⎭⎪⎫|a -b +1|22=(2)2.③ 解由方程①②③组成的方程组,得{ a =6,b =-3,r 2=52或{ a =14,b =-7,r 2=244.∴所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(x +7)2=244.层级二 应试能力达标1.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=1的位置关系是( ) A .相交 B .相切C .相离D .无法确定,与m 的取值有关解析:选A 圆心到直线的距离d =|-1-m +1|m 2+1=|m |m 2+1<1=r ,故选A. 2.直线x +7y -5=0截圆x 2+y 2=1所得的两段弧长之差的绝对值是( ) A.π4B.π2C .πD.3π2解析:选C 圆心到直线的距离d =|0+0-5|1+49=22.又圆的半径r =1,∴直线x +7y -5=0被圆x 2+y 2=1截得的弦长为2,∴直线截圆所得的劣弧所对的圆心角为90°,∴劣弧是整个圆周的14,∴直线截圆所得的两段弧长之差的绝对值为整个圆周长的一半,即12×2πr =π.3.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为C (-2,3),则直线l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=0解析:选A 由圆的一般方程可得圆心为M (-1,2).由圆的性质易知M (-1,2)与C (-2,3)的连线与弦AB 垂直,故有k AB ×k MC =-1⇒k AB =1,故直线AB 的方程为y -3=x +2,整理得x -y +5=0.4.与圆C :x 2+y 2-4x +2=0相切,且在x ,y 轴上的截距相等的直线共有( ) A .1条 B .2条 C .3条D .4条解析:选C 圆C 的方程可化为(x -2)2+y 2=2.可分为两种情况讨论:(1)直线在x ,y 轴上的截距均为0,易知直线斜率必存在,设直线方程为y =kx ,则|2k |1+k2=2,解得k =±1;(2)直线在x ,y 轴上的截距均不为0,则可设直线方程为x a +y a=1(a ≠0),即x +y -a =0(a ≠0),则|2-a |2=2,解得a =4(a =0舍去).因此满足条件的直线共有3条.5.过直线x +y +4=0与圆x 2+y 2+4x -2y -4=0的交点且与y =x 相切的圆的方程为________________.解析:设所求圆的方程为x 2+y 2+4x -2y -4+λ(x +y +4)=0.联立方程组{ y =x ,x 2+y 2+4x -2y -4+λx +y +=0,得x 2+(1+λ)x +2(λ-1)=0.因为圆与y =x 相切,所以Δ=0,即(1+λ)2-8(λ-1)=0,则λ=3,故所求圆的方程为x 2+y2+7x +y +8=0.答案:x 2+y 2+7x +y +8=06.过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________.解析:圆的方程化为标准方程为(x -3)2+(y -4)2=5,示意图如图所示.则圆心为O ′(3,4),r = 5.切线长|OP |=|OO ′|2-|O ′P |2=2 5. ∴|PQ |=2·|OP |·|O ′P ||OO ′|=2×25×55=4.答案:47.已知点A (1,a ),圆O :x 2+y 2=4.(1)若过点A 的圆O 的切线只有一条,求实数a 的值及切线方程;(2)若过点A 且在两坐标轴上截距相等的直线被圆O 截得的弦长为23,求实数a 的值. 解:(1)由于过点A 的圆O 的切线只有一条,则点A 在圆上,故12+a 2=4,∴a =± 3. 当a =3时,A (1,3),切线方程为x +3y -4=0; 当a =-3时,A (1,-3),切线方程为x -3y -4=0. (2)设直线方程为x +y =b .∵直线过点A ,∴1+a =b ,即a =b -1.① 又圆心到直线的距离d =|b |2,∴⎝⎛⎭⎪⎫|b |22+⎝ ⎛⎭⎪⎫2322=4,② 由①②,得{ a =2-1,b =2或{ a =-2-1,b =- 2.8.已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. 解:(1)证明:直线的方程可化为y +3=2m (x -4),由点斜式可知,直线过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交.(2)圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--4-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt △APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.4.2.2&4.2.3 圆与圆的位置关系、直线与圆的方程的应用[新知初探]1.圆与圆的位置关系圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含. 2.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系的判断方法如下:(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:[点睛] (1)圆和圆相离,两圆无公共点,它包括外离和内含; (2)圆和圆相交,两圆有两个公共点;(3)圆和圆相切,两圆有且只有一个公共点,它包括内切和外切.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切( ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交( )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程( )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2( )答案:(1)× (2)× (3)× (4)√2.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切B .相交C .外切D .相离解析:选B 两圆的圆心分别为(-2,0),(2,1),半径分别为r =2,R =3,两圆的圆心距离为-2-2+-2=17,则R -r <17<R +r ,所以两圆相交,选B.3.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A ,B 两点,则直线AB 的方程是________.解析:圆的方程(x -1)2+(y -3)2=20可化为x 2+y 2-2x -6y =10.又x 2+y 2=10, 两式相减得2x +6y =0,即x +3y =0. 答案:x +3y =0对应学生用书P61[典例] 已知两圆C 1:x 2+y 2+4x +4y -2=0,C 2:x 2+y 2-2x -8y -8=0,判断圆C 1与圆C 2的位置关系.[解] [法一 几何法]把圆C 1的方程化为标准方程,得(x +2)2+(y +2)2=10.圆C 1的圆心坐标为(-2,-2),半径长r 1=10.把圆C 2的方程化为标准方程,得(x -1)2+(y -4)2=25.圆C 2的圆心坐标为(1,4),半径长r 2=5.圆C 1和圆C 2的圆心距d =-2-2+-2-2=35,又圆C 1与圆C 2的两半径长之和是r 1+r 2=5+10,两半径长之差是r 2-r 1=5-10. 而5-10<35<5+10,即r 2-r 1<d <r 1+r 2, 所以两圆的位置关系是相交. [法二 代数法]将两圆的方程联立得到方程组⎩⎪⎨⎪⎧x 2+y 2+4x +4y -2=0,①x 2+y 2-2x -8y -8=0,②由①-②得x +2y +1=0,③ 由③得x =-2y -1,把此式代入①, 并整理得y 2-1=0,④所以y 1=1,y 2=-1,代入x +2y +1=0得x 1=-3,x 2=1.所以圆C 1与圆C 2有两个不同的公共点(-3,1),(1,-1),即两圆的位置关系是相交.[活学活用]到点A (-1,2),B (3,-1)的距离分别为3和1的直线有________条.解析:到点A (-1,2)的距离为3的直线是以A 为圆心,3为半径的圆的切线;同理,到B 的距离为1的直线是以B 为圆心,半径为1的圆的切线,所以满足题设条件的直线是这两圆的公切线,而这两圆的圆心距|AB |=+2+-1-2=5.半径之和为3+1=4,因为5>4,所以圆A 和圆B 外离,因此它们的公切线有4条. 答案:4[典例] 求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎪⎨⎪⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0,得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有a +2+a -4-2= a +2+a -4+2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72,半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0.法二: ∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7.故所求圆的方程为x 2+y 2-x +7y -32=0.[活学活用]求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.解:联立两圆的方程得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2.所以|AB |=-4-2+-2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1--+4|1+-2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.[典例] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解] 以O 为坐标原点,OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0),C (0,8),所以直线BC 的方程为x 8+y8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离.此时DE 的最小值为|0+0-8|2-1=(42-1)km.[活学活用]一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解:以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图所示),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l 的方程为x 7+y4=1,即4x +7y -28=0,圆心(0,0)到l :4x +7y -28=0的距离d =2842+72=2865,因为2865>3,所以直线与圆相离.故轮船不会受到台风的影响.层级一学业水平达标1.已知两圆分别为圆C1:x2+y2=81和圆C2:x2+y2-6x-8y+9=0,这两圆的位置关系是( )A.相离 B.相交C.内切 D.外切解析:选C 圆C1的圆心为C1(0,0),半径长r1=9;圆C2的方程化为标准形式为(x-3)2+(y-4)2=42,圆心为C2(3,4),半径长r2=4,所以|C1C2|=-2+-2=5.因为r1-r2=5,所以|C1C2|=r1-r2,所以圆C1和圆C2内切.2.两圆x2+y2=r2,(x-3)2+(y+1)2=r2外切,则正实数r的值是( )A.10B.10 2C. 5 D.5解析:选B 由题意,知2r=32+12=10,r=102.3.圆O1:x2+y2-6x+16y-48=0与圆O2:x2+y2+4x-8y-44=0的公切线条数为( ) A.4条 B.3条C.2条 D.1条解析:选C 圆O1为(x-3)2+(y+8)2=121,O1(3,-8),r=11,圆O2为(x+2)2+(y-4)2=64,O2(-2,4),R=8,∴|O1O2|=+2+-8-2=13,∴r-R<|O1O2|<R+r,∴两圆相交.∴公切线有2条.4.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是( )A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0解析:选C AB的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A、B、D.5.台风中心从A地以20 km/h的速度向东北方向移动,离台风中心30 km内的地区为危险区,城市B在A地正东40 km处,则城市B处于危险区内的时间为( ) A.0.5 h B.1 hC.1.5 h D.2 h解析:选B如图,以A 地为原点,AB 所在直线为x 轴,建立平面直角坐标系,则以B (40,0)为圆心,30为半径的圆内MN 之间(含端点)为危险区,可求得|MN |=20,∴时间为1 h.6.若圆x 2+y 2-2ax +a 2=2和x 2+y 2-2by +b 2=1外离,则a ,b 满足的条件是________. 解析:由题意可得两圆圆心坐标和半径长分别为(a,0),2和(0,b ),1,因为两圆相离,所以a 2+b 2>2+1,即a 2+b 2>3+2 2. 答案:a 2+b 2>3+2 27.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________. 解析:两圆的方程相减,得公共弦所在的直线方程为(x 2+y 2+2ay -6)-(x 2+y 2)=0-4⇒y =1a,又a >0,结合图象(图略),再利用半径、弦长的一半及弦心距所构成的直角三角形,可知1a= 22-32=1⇒a =1.答案:18.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________________.解析:由已知可设所求的圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入可得λ=-34,故所求圆的方程为x 2+y 2-34x -34y -114=0.答案:x 2+y 2-34x -34y -114=09.求与圆C :x 2+y 2-2x =0外切且与直线l :x +3y =0相切于点M (3,-3)的圆的方程.解:圆C 的方程可化为(x -1)2+y 2=1, 圆心C (1,0),半径为1.设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),由题意可知⎩⎪⎨⎪⎧a -2+b 2=r +1,b +3a -3×⎝ ⎛⎭⎪⎫-33=-1,|a +3b |2=r ,解得⎩⎪⎨⎪⎧a =4,b =0,r =2.所以所求圆的方程为(x -4)2+y 2=4.10.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.(1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解:两圆的标准方程为:(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6),半径分别为11和61-m . (1)当两圆外切时,-2+-2=11+61-m ,解得m =25+1011.(2)当两圆内切时,因定圆的半径11小于两圆圆心间距离5,故只有61-m -11=5,解得m =25-1011.(3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,即4x +3y -23=0, ∴公共弦长为2112-⎣⎢⎡⎦⎥⎤|4×1+3×3-23|42+322=27. 层级二 应试能力达标1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9D .-11解析:选C 依题意可得圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0的圆心分别为C 1(0,0),C 2(3,4),则|C 1C 2|= 33+42=5.又r 1=1,r 2=25-m ,由r 1+r 2=25-m +1=5,解得m =9.2.若圆x 2+y 2=r 2与圆x 2+y 2+2x -4y +4=0有公共点,则r 满足的条件是( ) A .r <5+1 B .r >5+1 C .|r -5|<1D .|r -5|≤1解析:选D 由x 2+y 2+2x -4y +4=0,得(x +1)2+(y -2)2=1,两圆圆心之间的距离为-2+22= 5.∵两圆有公共点,∴|r -1|≤5≤r +1,∴5-1≤r ≤5+1,即-1≤r-5≤1,∴|r -5|≤1.3.圆(x +2)2+y 2=5关于直线x -y +1=0对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x -1)2+(y -1)2=5D .(x +1)2+(y +1)2=5解析:选 D 由圆(x +2)2+y 2=5,可知其圆心为(-2,0),半径为 5.设点(-2,0)关于直线x -y +1=0对称的点为(x ,y ),则⎩⎪⎨⎪⎧y -0x +2=-1,x -22-y +02+1=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,∴所求圆的圆心为(-1,-1).又所求圆的半径为5,∴圆(x +2)2+y 2=5关于直线x -y +1=0对称的圆的方程为(x +1)2+(y +1)2=5.4.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是( )A .5B .1C .35-5D .35+5解析:选C 圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2);圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1),两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.5.若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长为________.解析:连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A中,|OA |=5,|O 1A |=25,∴|OO 1|=5,∴|AC |=5×255=2, ∴|AB |=4. 答案:46.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是________.解析:设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0,则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝⎛⎭⎪⎫21+λ,λ-11+λ代入l :2x +4y -1=0的方程,可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0. 答案:x 2+y 2-3x +y -1=07.已知圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1). (1)若圆O 1与圆O 2外切,求圆O 2的方程;(2)若圆O 1与圆O 2交于A ,B 两点,且|AB |=22,求圆O 2的方程. 解:(1)设圆O 1、圆O 2的半径分别为r 1,r 2, ∵两圆外切,∴|O 1O 2|=r 1+r 2,∴r 2=|O 1O 2|-r 1=-2+-1-2-2=2(2-1), ∴圆O 2的方程是(x -2)2+(y -1)2=12-8 2.(2)由题意,设圆O 2的方程为(x -2)2+(y -1)2=r 23,圆O 1,O 2的方程相减,即得两圆公共弦AB 所在直线的方程,为4x +4y +r 23-8=0.∴圆心O 1(0,-1)到直线AB 的距离为|0-4+r 23-8|42+42=4-⎝ ⎛⎭⎪⎫2222=2,解得r 23=4或20.∴圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.8.某公园有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A ,B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设在何处?解:所选观景点应使对两景点的视角最大.由平面几何知识知,该点应是过A ,B 两点的圆与小路所在的直线相切时的切点.以小路所在直线为x 轴,B 点在y 轴正半轴上建立平面直角坐标系.由题意,得A (2,2),B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2,由A ,B 两点在圆上,得{ a =0,b =2 或{ a =42,b =52,由实际意义知a =0,b =2,∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.。
2017-2018学年高中数学人教A版浙江专版必修2:课时跟

课时跟踪检测(十二)直线与平面垂直的判定层级一学业水平达标1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )A.α∥β,且m⊂αB.m∥n,且n⊥βC.m⊥n,且n⊂βD.m⊥n,且n∥β解析:选B A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,符合题意;C、D中,m⊂β或m∥β或m与β相交,不符合题意,故选B.2.若两条不同的直线与同一平面所成的角相等,则这两条直线( )A.平行B.相交C.异面D.以上皆有可能解析:选D在正方体ABCD-A1B1C1D1中,A1A,B1B与底面ABCD所成的角相等,此时两直线平行;A1B1,B1C1与底面ABCD所成的角相等,此时两直线相交;A1B1,BC与底面ABCD所成的角相等,此时两直线异面.故选D.3.下列四个命题中,正确的是( )①若一条直线垂直于一个平面内的无数条直线,则这条直线与这个平面垂直;②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;③若一条直线平行于一个平面,另一条直线垂直于这个平面,则这两条直线互相垂直;④若两条直线垂直,则过其中一条直线有惟一一个平面与另一条直线垂直.A.①②B.②③C.②④D.③④解析:选D①②不正确.4.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是( )A.异面B.平行C.垂直D.不确定解析:选C∵BA⊥α,α∩β=l,l⊂α,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC.∵AC⊂平面ABC,∴l⊥AC.5.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是( )A.60°B.45°C.30°D.120°解析:选A∠ABO即是斜线AB与平面α所成的角,在Rt△AOB中,AB=2BO,所以cos∠ABO=1 2,即∠ABO=60°.6.已知直线l,a,b,平面α,若要得到结论l⊥α,则需要在条件a⊂α,b⊂α,l⊥a,l⊥b中另外添加的一个条件是________.答案:a,b相交7.如图所示,三棱锥P-ABC中,PA⊥平面ABC,PA=AB,则直线PB与平面ABC所成的角等于________.解析:因为PA⊥平面ABC,所以斜线PB在平面ABC上的射影为AB,所以∠PBA即为直线PB与平面ABC所成的角.在△PAB中,∠BAP=90°,PA=AB,所以∠PBA=45°,即直线PB与平面ABC所成的角等于45°.答案:45°8.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形ABCD一定是________.解析:如图,∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.又BD⊥PC,PA∩PC =P,∴BD⊥平面PAC.又AC⊂平面PAC,∴BD⊥AC.∴平行四边形ABCD为菱形.答案:菱形9.如图,在四面体A -BCD 中,∠BDC =90°,AC =BD =2,E ,F 分别为AD ,BC 的中点,且EF = 2.求证:BD ⊥平面ACD .证明:取CD 的中点为G ,连接EG ,FG .又∵E ,F 分别为AD ,BC 的中点,∴FG ∥BD ,EG ∥AC .∵AC =BD =2,则EG =FG =1.∵EF =2,∴EF 2=EG 2+FG 2,∴EG ⊥FG ,∴BD ⊥EG .∵∠BDC =90°,∴BD ⊥CD .又EG ∩CD =G ,∴BD ⊥平面ACD .10.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.解:如图,取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连接AO ,B 1C .由ABCD -A 1B 1C 1D 1为正方体,易得B 1C ⊥BC 1,B 1C ⊥D 1C 1,BC 1∩D 1C 1=C 1,BC 1⊂平面ABC1D 1,D 1C 1⊂平面ABC 1D 1,∴B 1C ⊥平面ABC 1D 1.∵E ,F 分别为A 1B 1,CD 的中点,∴EF ∥B 1C ,∴EF ⊥平面AC 1,即∠EAO 为直线AE 与平面ABC 1D 1所成的角.在Rt △EOA 中,EO =12EF =12B 1C =22, AE =A 1E 2+AA 21= ⎝⎛⎭⎫122+12=52, ∴sin ∠EAO =EO AE =105. ∴直线AE 与平面ABC 1D 1所成的角的正弦值为105. 层级二 应试能力达标1.在正方体ABCD -A 1B 1C 1D 1中,与AD 1垂直的平面是 ( )A.平面DD1C1C B.平面A1DB1C.平面A1B1C1D1D.平面A1DB答案:B2.下面四个命题:①过一点和一条直线垂直的直线有且只有一条;②过一点和一个平面垂直的直线有且只有一条;③过一点和一条直线垂直的平面有且只有一个;④过一点和一个平面垂直的平面有且只有一个.其中正确的是( )A.①④B.②③C.①②D.③④解析:选B过一点和一条直线垂直的直线有无数条,故①不正确;过一点和一个平面垂直的平面有无数个,故④不正确;易知②③均正确.故选B.3.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m解析:选B根据两条平行线中的一条直线垂直于一个平面,则另一条直线也垂直于这个平面,知选项B正确.4.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析:选D选项A正确,因为SD垂直于平面ABCD,而AC在平面ABCD内,所以AC垂直于SD;再由ABCD为正方形,所以AC垂直于BD,而BD与SD相交,所以AC垂直于平面SBD,进而垂直于SB.选项B正确,因为AB平行于CD,而CD在平面SCD内,AB不在平面SCD内,所以AB平行于平面SCD.选项C正确,设AC与BD的交点为O,连接SO,则SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于∠SCD,而DC与SA所成的角是∠SAB,这两个角不相等.5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是AD的中点,F是BB1的中点,则直线EF与平面ABCD所成角的正切值为________.解析:连接EB,由BB1⊥平面ABCD,知∠FEB即直线EF与平面ABCD所成的角.在Rt△FBE中,BF=1,BE=5,则tan∠FEB=5 5.答案:5 56.如图所示,将平面四边形ABCD沿对角线AC折成空间四边形,当平面四边形ABCD满足________时,空间四边形中的两条对角线互相垂直.(填上你认为正确的一种条件即可,不必考虑所有可能情况)解析:在平面四边形中,设AC与BD交于E,假设AC⊥BD,则AC⊥DE,AC⊥BE.折叠后,AC与DE,AC与BE依然垂直,所以AC⊥平面BDE,所以AC⊥BD.若四边形ABCD为菱形或正方形,因为它们的对角线互相垂直,同上可证AC⊥BD.答案:AC⊥BD(或四边形ABCD为菱形、正方形等)7.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1.(2)若D为B1C1的中点,求AD与平面A1B1C1所成角的正弦值.解:(1)证明:由题意知四边形AA1B1B是正方形,∴AB1⊥BA1.由AA1⊥平面A1B1C1得AA1⊥A1C1.又∵A1C1⊥A1B1,AA1∩A1B1=A1,∴A1C1⊥平面AA1B1B,又∵AB1⊂平面AA1B1B,∴A1C1⊥AB1.又∵BA1∩A1C1=A1,∴AB1⊥平面A1BC1.(2)连接A1D.设AB=AC=AA1=1,∵AA 1⊥平面A 1B 1C 1,∴∠A 1DA 是AD 与平面A 1B 1C 1所成的角.在等腰直角三角形A 1B 1C 1中,D 为斜边的中点,∴A 1D =12×B 1C 1=22. 在Rt △A 1DA 中,AD =A 1D 2+A 1A 2=62. ∴sin ∠A 1DA =A 1A AD =63, 即AD 与平面A 1B 1C 1所成角的正弦值为63.8.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =1,∠ACB =90°,AA 1=2,D 是A 1B 1的中点.(1)求证C 1D ⊥平面AA 1B 1B ; (2)当点F 在BB 1上的什么位置时,会使得AB 1⊥平面C 1DF ?并证明你的结论. 证明:(1)∵ABC -A 1B 1C 1是直三棱柱,∴A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°.又D 是A 1B 1的中点,∴C 1D ⊥A 1B 1.∵AA 1⊥平面A 1B 1C 1,C 1D ⊂平面A 1B 1C 1,∴AA 1⊥C 1D ,又A 1B 1∩C 1D =D ,∴C 1D ⊥平面AA 1B 1B .(2)作DE ⊥AB 1交AB 1于E ,延长DE 交BB 1于F ,连接C 1F ,则AB 1⊥平面C 1DF ,点F 为所求.∵C 1D ⊥平面AA 1B 1B ,AB 1⊂平面AA 1B 1B ,∴C 1D ⊥AB 1. 又AB 1⊥DF ,DF ∩C 1D =D ,∴AB 1⊥平面C 1DF .∵AA 1=A 1B 1=2,∴四边形AA 1B 1B 为正方形.又D 为A 1B 1的中点,DF ⊥AB 1,∴F 为BB 1的中点, ∴当点F 为BB 1的中点时,AB 1⊥平面C 1DF .。
人教A版高中数学必修二(浙江专版)教学案:2.1空间点直线平面之间的位置关系 含答案

2.1 空间点、直线、平面之间的位置关系2.1.1 平面预习课本P40~43,思考并完成以下问题1.平面的表示方法有哪些?2.公理1、公理2、公理3的内容是什么?3.公理1、公理2、公理3各自的作用是什么?4.点、线、面之间的位置关系用符号怎样表示?[新知初探]1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.3.平面的表示法图①的平面可表示为平面α、平面ABCD 、平面AC 或平面BD .[点睛] (1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量; (2)平面无厚薄、无大小,是无限延展的. 4.平面的基本性质公理内容 图形符号作用公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A ∈l ,B ∈l ,且A ∈α,B ∈α⇒l ⊂α用来证明直线在平面内公理2 过不在一条直线上的三点,有且只有一个平面A ,B ,C 三点不共线⇒存在唯一的α使A ,B ,C ∈α用来确定一个平面公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P ∈α,P ∈β⇒α∩β=l ,且P ∈l用来证明空间的点共线和线共点[点睛] 对公理2必须强调是不共线的三点.[尝试应用]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)空间不同三点确定一个平面( )(2)空间两两相交的三条直线确定一个平面( ) (3)和同一直线都相交的三条平行线在同一平面内( ) 答案:(1)× (2)× (3)√ 2.有以下命题:(1)8个平面重叠起来要比6个平面重叠起来厚; (2)有一个平面的长是50 m ,宽是20 m ;(3)平面是无厚度、可以无限延展的抽象的数学概念. 其中正确命题的个数为( ) A .0 B .1 C .2D .3 解析:选 B 平面是无厚度的,故(1)错;平面是无限延展的,不可度量,故(2)错;平面是无厚度、无限延展的,故(3)正确.正确命题的个数为1.3.根据右图,填入相应的符号:A__________平面ABC,A________平面BCD,BD________平面ABC,平面ABC∩平面ACD=________.答案:∈∉⊄AC文字语言、图形语言、符号语言的相互转化[典例] 根据图形用符号表示下列点、直线、平面之间的关系.(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.[解] (1)点P∈直线AB.(2)点C∉直线AB.(3)点M∈平面AC.(4)点A1∉平面AC.(5)直线AB∩直线BC=点B.(6)直线AB⊂平面AC.(7)平面A1B∩平面AC=直线AB.三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.[活学活用]1.若点M在直线a上,a在平面α内,则M,a,α间的关系可记为( )A.M∈a,a∈αB.M∈a,a⊂αC.M⊂a,a⊂αD.M⊂a,a∈α解析:选B 根据点与线、线与面之间位置关系的符号表示可知B正确.2.用符号语言表示下列语句,并画出图形:(1)三个平面α,β,γ相交于一点P,且平面α与平面β相交于PA,平面α与平面γ相交于PB,平面β与平面γ相交于PC;(2)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.解:(1)符号语言表示:α∩β∩γ=P,α∩β=PA,α∩γ=PB,β∩γ=PC,图形表示:如图(1).(2)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC,图形表示:如图(2).平面的基本性质的应用题点一:点线共面问题1.如图,已知直线a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:a,b,c,l共面.证明:∵a∥b,∴a,b确定一个平面α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴l⊂α.∵b∥c,∴b,c确定一个平面β.同理可证l⊂β.于是b⊂α,l⊂α,b⊂β,l⊂β,即α∩β=b,α∩β=l.又∵b与l不重合,∴α与β重合,∴a,b,c,l共面.点线共面问题是指证明一些点或直线在同一平面内的问题,主要依据是公理1、公理2.解决该类问题通常有三种方法:(1)纳入平面法,先由部分元素确定一个平面,再证其他元素也在该平面内;(2)辅助平面法(平面重合法),先由有关的点、线确定平面α,再由其余元素确定平面β,最后证明平面α,β重合;(3)反证法.通常情况下采用第一种方法.题点二:点共线问题2.如图,在正方体ABCDA1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.证明:如图,连接A1B,CD1,显然B∈平面A1BCD1,D1∈平面A1BCD1.∴BD1⊂平面A1BCD1.同理BD1⊂平面ABC1D1.∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q,∴Q∈平面ABC1D1.又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1.∴Q在平面A1BCD1与ABC1D1的交线上,即Q∈BD1,∴B,Q,D1三点共线.点共线问题是证明三个或三个以上的点在同一条直线上,主要依据是公理3.解决此类问题常用以下两种方法:(1)首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3知,这些点都在这两个平面的交线上;(2)选择其中两点,确定一条直线,然后证明其他点也在这条直线上.题点三:三线共点问题3.已知:平面α,β,γ两两相交于三条直线l1,l2,l3,且l1,l2不平行.求证:l1,l2,l3相交于一点.证明:如图,α∩β=l1,β∩γ=l2,α∩γ=l3.∵l1⊂β,l2⊂β,且l1,l2不平行,∴l1与l2必相交.设l1∩l2=P,则P∈l1⊂α,P∈l2⊂γ,∴P∈α∩γ=l3,∴l1,l2,l3相交于一点P.证明三线共点问题的基本方法是,先确定待证的三线中的两条相交于一点,再证明第三条直线也过该点.常结合公理3,证出该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点.层级一学业水平达标1.下列说法中正确的是( )A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点解析:选C 不共线的三点确定一个平面,故A不正确;四边形有时指空间四边形,故B 不正确;梯形的上底和下底平行,可以确定一个平面,故C正确;两个平面如果相交,一定有一条交线,所有这两个平面的公共点都在这条交线上,故D不正确.故选C.2.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选 B ①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.3.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF 交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B 由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由公理3可知点P一定在直线AC上.4.用一个平面截正方体所得的截面图形不可能是( )A.六边形B.五边形C.菱形D.直角三角形解析:选D 可用排除法,正方体的截面图形可能是六边形、五边形、菱形,故选D.5.下列各图均是正六棱柱,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是( )解析:选D 在选项A、B、C中,由棱柱、正六边形、中位线的性质,知均有PS∥QR,即在此三个图形中P,Q,R,S共面,故选D.6.用符号表示“点A在直线l上,l在平面α外”为________.答案:A∈l,l⊄α7.如图,看图填空:(1)平面AB1∩平面A1C1=________;(2)平面A1C1CA∩平面AC=________.答案:A1B1AC8.已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是________.解析:其中三个点可确定唯一的平面,当第四个点在此平面内时,可确定1个平面,当第四个点不在此平面内时,则可确定4个平面.答案:1或49.如图,在正方体ABCDA1B1C1D1中,判断下列命题是否正确,并说明理由.(1)由点A,O,C可以确定一个平面;(2)由点A,C1,B1确定的平面为平面ADC1B1.解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D ∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.10.按照给出的要求,完成图中两个相交平面的作图,图中所给线段AB分别是两个平面的交线.解:以AB 为其中一边,分别画出表示平面的平行四边形.如图.层级二 应试能力达标1.如果直线a ⊂平面α,直线b ⊂平面α,M ∈a ,N ∈b ,M ∈l ,N ∈l ,则( ) A .l ⊂α B .l ⊄α C .l ∩α=MD .l ∩α=N解析:选A ∵M ∈a ,a ⊂α,∴M ∈α,同理,N ∈α,又M ∈l ,N ∈l ,故l ⊂α. 2.下列命题正确的是( ) A .一条直线和一点确定一个平面 B .两条相交直线确定一个平面 C .四点确定一个平面 D .三条平行直线确定一个平面解析:选B 根据一条直线和直线外的一点确定一个平面,知A 不正确;B 显然正确;C 中四点不一定共面,故C 不正确;三条平行直线可以确定一个平面或三个平面,故D 不正确.故选B.3.下列命题中,正确的是( )A .经过正方体任意两条面对角线,有且只有一个平面B .经过正方体任意两条体对角线,有且只有一个平面C .经过正方体任意两条棱,有且只有一个平面D .经过正方体任意一条体对角线与任意一条面对角线,有且只有一个平面解析:选 B 因为正方体的四条体对角线相交于同一点(正方体的中心),因此经过正方体任意两条体对角线,有且只有一个平面,故选B.4.在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱DD 1和BB 1上的点,MD =13DD 1,NB =13BB 1,那么正方体的过点M ,N ,C 1的截面图形是( )A .三角形B .四边形C .五边形D .六边形解析:选C 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱DD 1和BB 1上的点,MD =13DD 1,NB =13BB 1.如图,延长C 1M 交CD 于点P ,延长C 1N 交CB 于点Q ,连接PQ 交AD 于点E ,AB 于点F ,连接NF ,ME ,则正方体的过点M ,N ,C 1的截面图形是五边形.故选C.5.已知α,β是不同的平面,l ,m ,n 是不同的直线,P 为空间中一点.若α∩β=l ,m ⊂α,n ⊂β,m ∩n =P ,则点P 与直线l 的位置关系用符号表示为________.解析:因为m ⊂α,n ⊂β,m ∩n =P ,所以P ∈α且P ∈β.又α∩β=l ,所以点P 在直线l 上,所以P ∈l .答案:P ∈l6.在长方体ABCD A 1B 1C 1D 1的所有棱中,既与AB 共面,又与CC 1共面的棱有________条. 解析:作图并观察可知既与AB 共面,又与CC 1共面的棱有CD ,BC ,BB 1,AA 1,C 1D 1,共5条.答案:57.如图所示,AB ∩α=P ,CD ∩α=P ,A ,D 与B ,C 分别在平面α的两侧,AC ∩α=Q ,BD ∩α=R .求证:P ,Q ,R 三点共线. 证明:∵AB ∩α=P ,CD ∩α=P , ∴AB ∩CD =P .∴AB ,CD 可确定一个平面,设为β. ∵A ∈AB ,C ∈CD ,B ∈AB ,D ∈CD , ∴A ∈β,C ∈β,B ∈β,D ∈β.∴AC ⊂β,BD ⊂β,平面α,β相交. ∵AB ∩α=P ,AC ∩α=Q ,BD ∩α=R , ∴P ,Q ,R 三点是平面α与平面β的公共点.∴P ,Q ,R 都在α与β的交线上,故P ,Q ,R 三点共线.8.如图,在直四棱柱ABCD A 1B 1C 1D 1中,AD >BC ,P ,Q ,M ,N 分别为AA 1,BB 1,CC 1,DD 1上的点,设PQ 与NM 的交点为S ,AB 与DC 的交点为R ,A 1B 1与D 1C 1的交点为G .求证:R ,S ,G 三点共线.证明:因为P ,Q ,M ,N 分别为AA 1,BB 1,CC 1,DD 1上的点,PQ ∩NM =S , 所以S ∈MN ,MN ⊂平面CC 1D 1D ,S ∈PQ ,PQ ⊂平面AA 1B 1B ,所以S∈平面CC1D1D,且S∈平面AA1B1B,所以S在平面AA1B1B与平面CC1D1D的交线上.同理可证:R,G也在平面AA1B1B与平面CC1D1D的交线上,所以R,S,G三点共线.2.1.2 空间中直线与直线之间的位置关系预习课本P44~47,思考并完成以下问题1.空间两直线有哪几种位置关系?2.什么是异面直线?3.什么是异面直线所成的角?4.平行公理的内容是什么?5.等角定理的内容是什么?[新知初探]1.异面直线(1)定义:不同在任何一个平面内的两条直线.(2)异面直线的画法:2.空间两条直线的位置关系位置关系特点相交同一平面内,有且只有一个公共点平行同一平面内,没有公共点异面直线不同在任何一个平面内,没有公共点[点睛] (1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线既不相交,也不平行.(2)不能把异面直线误认为分别在不同平面内的两条直线,如图中,虽然有a⊂α,b⊂β,即a,b分别在两个不同的平面内,但是因为a∩b=O,所以a与b不是异面直线.3.平行公理(公理4)(1)文字表述:平行于同一条直线的两条直线互相平行.这一性质叫做空间平行线的传递性.a∥b b∥c⇒a∥c.(2)符号表述:}4.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)异面直线所成的角θ的取值范围:0°<θ≤90°.(3)当θ=90°时,a与b互相垂直,记作a⊥b.[点睛] (1)异面直线所成角的范围是0°<θ≤90°,所以垂直有两种情况:异面垂直和相交垂直.(2)公理4也称为平行公理,表明空间的平行具有传递性,它在直线、平面的平行关系中得到了广泛的应用.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)两条直线无公共点,则这两条直线平行( )(2)两直线若不是异面直线,则必相交或平行( )(3)过平面外一点与平面内一点的连线,与平面内的任意一条直线均构成异面直线( )(4)和两条异面直线都相交的两直线必是异面直线( )答案:(1)× (2)√(3)× (4)×2.如果两条直线a和b没有公共点,那么a与b的位置关系是( )A.共面B.平行C.异面D.平行或异面解析:选 D 空间中两直线的位置关系有:①相交;②平行;③异面.两条直线平行和两条直线异面都满足两条直线没有公共点,故a与b的位置关系是平行或异面.3.已知AB∥PQ,BC∥QR,若∠ABC=30°,则∠PQR等于( )A.30° B.30°或150°C.150° D.以上结论都不对解析:选B 由等角定理可知∠PQR与∠ABC相等或互补,故∠PQR=30°或150°.两直线位置关系的判定[典例] 如图,在长方体ABCDA1B1C1D1中,(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.[解析] (1)在长方体ABCDA1B1C1D1中,A1D1綊BC,∴四边形A1BCD1为平行四边形,∴A1B∥D1C.(2)直线A1B与直线B1C不同在任何一个平面内.(3)直线D1D与直线D1C相交于点D1.(4)直线AB与直线B1C不同在任何一个平面内.[答案] (1)平行(2)异面(3)相交(4)异面(1)判定两条直线平行或相交的方法判定两条直线平行或相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.(2)判定两条直线是异面直线的方法①定义法:由定义判断两直线不可能在同一平面内.②重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB与l是异面直线(如图).[活学活用]1.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( )A.平行B.异面C.相交D.以上均有可能解析:选B 假设BE与CF是共面直线,设此平面为α,则E,F,B,C∈α,所以BF,CE⊂α,而A∈CE,D∈BF,所以A,D∈α,即有A,B,C,D∈α,与ABCD为空间四边形矛盾,所以BE与CF是异面直线,故选B.2.若a,b为异面直线,直线c∥a,则c与b的位置关系是( )A.相交B.异面C.平行D.异面或相交解析:选D 由空间直线的位置关系,知c与b可能异面或相交.平行公理与等角定理的应用[典例] 如图,在正方体ABCDA1B1C1D1中,M,M1分别是棱AD和A1D1的中点.(1)求证:四边形BB1M1M为平行四边形;(2)求证:∠BMC=∠B1M1C1.[证明] (1)在正方形ADD1A1中,M,M1分别为AD,A1D1的中点,∴A1M1綊AM,∴四边形AMM1A1是平行四边形,∴A1A綊M1M.又∵A1A綊B1B,∴M1M綊B1B,∴四边形BB1M1M为平行四边形.(2)由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角.∴∠BMC=∠B1M1C1.(1)空间两条直线平行的证明:①定义法:即证明两条直线在同一个平面内没有公共点;②利用公理4找到一条直线,使所证的直线都与这条直线平行.(2)“等角”定理的结论是相等或互补,在实际应用时,一般是借助于图形判断是相等,还是互补,这是两种情况都有可能.[活学活用]如图,已知在棱长为a 的正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点. 求证:(1)四边形MNA 1C 1是梯形;(2)∠DNM =∠D 1A 1C 1.证明:(1)如图,连接AC ,在△ACD 中, ∵M ,N 分别是CD ,AD 的中点,∴MN 是△ACD 的中位线, ∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, ∴∠DNM =∠D 1A 1C 1.异面直线所成角[典例] 在正方体ABCD A 1B 1C 1D 1中,E ,F 分别是A 1B 1,B 1C 1的中点,求异面直线DB 1与EF 所成角的大小.[解] 法一:如图1所示,连接A 1C 1,B 1D 1,并设它们相交于点O ,取DD 1的中点G ,连接OG ,A 1G ,C 1G ,则OG ∥B 1D ,EF ∥A 1C 1,∴∠GOA 1为异面直线DB 1与EF 所成的角(或其补角). ∵GA 1=GC 1,O 为A 1C 1的中点, ∴GO ⊥A 1C 1.∴异面直线DB 1与EF 所成的角为90°.图1法二:如图2所示,连接A 1D ,取A 1D 的中点H ,连接HE ,则HE綊12DB1,于是∠HEF为异面直线DB1与EF所成的角(或其补角).连接HF,设AA1=1,则EF=22,HE=32,取A1D1的中点I,连接HI,IF,则HI⊥IF,∴HF2=HI2+IF2=54,∴HF2=EF2+HE2,∴∠HEF=90°.∴异面直线DB1与EF所成的角为90°.图2法三:如图3,连接A1C1,分别取AA1,CC1的中点M,N,连接MN. ∵E,F分别是A1B1,B1C1的中点,∴EF∥A1C1,又MN∥A1C1,∴MN∥EF.连接DM,B1N,MB1,DN,则B1N綊DM,∴四边形DMB1N为平行四边形,∴MN与DB1必相交,设交点为P,则∠DPM为异面直线DB1与EF所成的角(或其补角).设AA1=k(k>0),则MP=22k,DM=52k,DP=32k,∴DM2=DP2+MP2,∴∠DPM=90°.∴异面直线DB1与EF所成的角为90°.法四:如图4,在原正方体的右侧补上一个全等的正方体,连接B1Q,易得B1Q∥EF,∴∠DB1Q就是异面直线DB1与EF所成的角(或其补角).设AA1=k(k>0),则B1D=3k,DQ=5k,B1Q=2k,∴B1D2+B1Q2=DQ2,∴∠DB1Q=90°.∴异面直线DB 1与EF 所成的角为90°.求两异面直线所成的角的三个步骤(1)作:根据所成角的定义,用平移法作出异面直线所成的角; (2)证:证明作出的角就是要求的角; (3)计算:求角的值,常利用解三角形得出.可用“一作二证三计算”来概括.同时注意异面直线所成角范围是0°<θ≤90°.[活学活用] 如图所示,点A 是△BCD 所在平面外一点,AD =BC ,E ,F 分别是AB ,CD 的中点,当EF =22AD 时,求异面直线AD 和BC 所成的角. 解:如图所示,设G 为AC 的中点,连接EG ,FG . ∵E ,F ,G 分别为AB ,CD ,AC 的中点.∴EG ∥BC ,且EG =12BC ;FG ∥AD ,且FG =12AD .又AD =BC ,∴EG =FG =12AD .∴EG 与GF 所成的锐角(或直角)即为AD 与BC 所成的角. 在△EFG 中,∵EG =FG =12AD ,又EF =22AD ,∴EG 2+FG 2=EF 2,即EG ⊥FG .∴∠EGF =90°.故AD 与BC 所成角为90°.层级一 学业水平达标1.若空间三条直线a ,b ,c 满足a ⊥b ,b ∥c ,则直线a 与c ( ) A .一定平行 B .一定相交 C .一定是异面直线D .一定垂直解析:选D 因为a ⊥b ,b ∥c ,则a ⊥c ,故选D.2.一条直线与两条平行线中的一条成为异面直线,则它与另一条( ) A .相交 B .异面 C .相交或异面D .平行解析:选C 如图所示的长方体ABCD A 1B 1C 1D 1中,直线AA 1与直线B 1C 1是异面直线,与B1C1平行的直线有A1D1,AD,BC,显然直线AA1与A1D1相交,与BC异面.3.在正方体ABCDA1B1C1D1中,E,F分别是平面AA1D1D、平面CC1D1D的中心,G,H分别是线段AB,BC的中点,则直线EF与直线GH的位置关系是( )A.相交B.异面C.平行D.垂直解析:选C 如图,连接AD1,CD1,AC,则E,F分别为AD1,CD1的中点.由三角形的中位线定理,知EF∥AC,GH∥AC,所以EF∥GH,故选C.4.已知直线a,b,c,下列三个命题:①若a与b异面,b与c异面,则a与c异面;②若a∥b,a和c相交,则b和c也相交;③若a⊥b,a⊥c,则b∥c.其中,正确命题的个数是( )A.0 B.1C.2 D.3解析:选 A ①不正确如图;②不正确,有可能相交也有可能异面;③不正确.可能平行,可能相交也可能异面.5.异面直线a,b,有a⊂α,b⊂β且α∩β=c,则直线c与a,b的关系是( )A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交解析:选D 若c与a,b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由公理4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.6.如图,正方体ABCDA1B1C1D1中,AC与BC1所成角的大小是________.解析:连接AD1,则AD1∥BC1.∴∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCDA1B1C1D1中,AC=AD1=CD1,∴∠CAD 1=60°,即AC 与BC 1所成的角为60°. 答案:60°7.如图,点P ,Q ,R ,S 分别在正方体的四条棱上,且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是________(填序号).解析:①中PQ ∥RS ,②中RS ∥PQ ,④中RS 和PQ 相交. 答案:③8.如图,在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.解析:如图,过点M 作ME ∥DN 交CC 1于点E ,连接A 1E ,则∠A 1ME为异面直线A 1M 与DN 所成的角(或其补角).设正方体的棱长为a ,则A 1M =32a ,ME =45a ,A 14E =41a ,所以A 1M 2+ME 2=A 1E 2,所以∠A 1ME =90°,即异面直线A 1M 与DN 所成的角为90°. 答案:90°9.如图所示,E ,F 分别是长方体A 1B 1C 1D 1ABCD 的棱A 1A ,C 1C 的中点.求证:四边形B 1EDF 是平行四边形. 证明:设Q 是DD 1的中点,连接EQ ,QC 1.∵E 是AA 1的中点, ∴EQ 綊A 1D 1.又在矩形A 1B 1C 1D 1中,A 1D 1綊B 1C 1, ∴EQ 綊B 1C 1(平行公理).∴四边形EQC 1B 1为平行四边形.∴B 1E 綊C 1Q . 又∵Q ,F 是DD 1,C 1C 两边的中点,∴QD 綊C 1F . ∴四边形QDFC 1为平行四边形. ∴C 1Q 綊DF .∴B 1E 綊DF . ∴四边形B 1EDF 为平行四边形.10.如图所示,空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角.解:如图所示,取BD 的中点G ,连接EG ,FG . ∵E ,F 分别为BC ,AD 的中点,AB =CD ,∴EG ∥CD ,GF ∥AB ,且EG =12,GF =12AB .∴∠GFE 就是EF 与AB 所成的角,EG =GF .∵AB ⊥CD ,∴EG ⊥GF . ∴∠EGF =90°.∴△EFG 为等腰直角三角形.∴∠GFE =45°,即EF 与AB 所成的角为45°.层级二 应试能力达标1.在正方体ABCD A 1B 1C 1D 1中,E ,F 分别是线段BC ,C 1D 的中点,则直线A 1B 与直线EF 的位置关系是( )A .相交B .异面C .平行D .垂直解析:选A 如图所示,连接BD 1,CD 1,CD 1与C 1D 交于点F ,由题意可得四边形A 1BCD 1是平行四边形,在平行四边形A 1BCD 1中,E ,F 分别是线段BC ,CD 1的中点,所以EF ∥BD 1,所以直线A 1B 与直线EF 相交,故选A.2.在三棱锥A BCD 中,AC ⊥BD ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 是( )A .菱形B .矩形C .梯形D .正方形解析:选B 如图,在△ABD 中,点H ,E 分别为边AD ,AB 的中点,所以HE 綊12BD ,同理GF 綊12,所以HE 綊GF ,所以四边形EFGH 为平行四边形.又AC ⊥BD ,所以HG ⊥HE ,所以四边形EFGH 是矩形,故选B.3.在正三棱柱ABC A 1B 1C 1中,若AB =2BB 1,则AB 1与BC 1所成的角的大小是( ) A .60° B .75° C .90°D .105°解析:选 C 设BB 1=1,如图,延长CC 1至C 2,使C 1C 2=CC 1=1,连接B 1C 2,则B 1C 2∥BC 1,所以∠AB 1C 2为AB 1与BC 1所成的角(或其补角).连接AC 2,因为AB 1=3,B 1C 2=3,AC 2=6,所以AC 22=AB 21+B 1C 22,则∠AB 1C 2=90°.4.在正方体ABCD A 1B 1C 1D 1中,点P 在线段AD 1上运动,则异面直线CP 与BA 1所成的角θ的取值范围是( )A .0°<θ<60°B .0°≤θ<60°C .0°≤θ≤60°D .0°<θ≤60°解析:选D 如图,连接CD 1,AC ,因为CD 1∥BA 1,所以CP 与BA 1所成的角就是CP 与CD 1所成的角,即θ=∠D 1CP .当点P 从D 1向A 运动时,∠D 1CP 从0°增大到60°,但当点P 与D 1重合时,CP ∥BA 1,与CP 与BA 1为异面直线矛盾,所以异面直线CP 与BA 1所成的角θ的取值范围是0°<θ≤60°.5.如图所示,正方体ABCD A 1B 1C 1D 1中, E ,F 分别是棱BC ,CC 1的中点,则异面直线EF 与B 1D 1所成的角为__________.解析:连接BC 1,AD 1,AB 1, 则EF 为△BCC 1的中位线, ∴EF ∥BC 1.又∵AB 綊CD 綊C 1D 1,∴四边形ABC 1D 1为平行四边形. ∴BC 1∥AD 1.∴EF ∥AD 1.∴∠AD 1B 1为异面直线EF 和B 1D 1所成的角或其补角. 在△AB 1D 1中,易知AB 1=B 1D 1=AD 1, ∴△AB 1D 1为正三角形,∴∠AD 1B 1=60°. ∴EF 与B 1D 1所成的角为60°. 答案:60°6.如图,空间四边形ABCD 的对角线AC =8,BD =6,M ,N 分别为AB ,CD 的中点,并且异面直线AC 与BD 所成的角为90°,则MN 等于________.解析:取AD 的中点P ,连接PM ,PN ,则BD ∥PM ,AC ∥PN ,∴∠MPN 即异面直线AC 与BD 所成的角,∴∠MPN =90°,PN =12AC =4,PM =12BD =3,∴MN =5.答案:57.在三棱柱ABC A1B 1C 1中,AA 1与AC ,AB 所成的角均为60°,∠BAC =90°,且AB =AC =AA 1,求异面直线A 1B 与AC 1所成角的余弦值.解:如图所示,把三棱柱补为四棱柱ABDC A 1B 1D 1C 1,连接BD 1,A 1D 1,AD , 由四棱柱的性质知BD 1∥AC 1,则∠A 1BD 1就是异面直线A 1B 与AC 1所成的角. 设AB =a ,∵AA 1与AC ,AB 所成的角均为60°,且AB =AC =AA 1, ∴A 1B =a ,BD 1=AC 1=2AA 1·cos 30°=3a . 又∠BAC =90°,∴在矩形ABCD 中,AD =2a , ∴A 1D 1=2a ,∴A 1D 21+A 1B 2=BD 21,∴∠BA 1D 1=90°, ∴在Rt △BA 1D 1中,cos ∠A 1BD 1=A 1B BD 1=a 3a =33.8.正三棱锥S ABC 的侧棱长与底面边长都为a ,E ,F 分别是SC ,AB 的中点,求直线EF和SA 所成的角.解:如图,取SB 的中点G ,连接EG ,GF ,SF ,CF . 在△SAB 中,F ,G 分别是AB ,SB 的中点, ∴FG ∥SA ,且FG =12SA .于是异面直线SA 与EF 所成的角就是直线EF 与FG 所成的角. 在△SAB 中,SA =SB =a ,AF =FB =12a ,∴SF ⊥AB ,且SF =32a . 同理可得CF ⊥AB ,且CF =32a . 在△SFC 中,SF =CF =32a ,SE =EC , ∴FE ⊥SC 且FE =SF 2-SE 2=22a . 在△SAB 中,FG 是中位线,∴FG =12SA =a2.在△SBC 中,GE 是中位线,∴GE =12BC =a2.在△EGF 中,FG 2+GE 2=a 22=FE 2,∴△EGF 是以∠FGE 为直角的等腰直角三角形, ∴∠EFG =45°.∴异面直线SA 与EF 所成的角为45°.2.1.3&2.1.4 空间中直线与平面之间的位置关系、平面与平面之间的位置关系预习课本P48~50,思考并完成以下问题1.直线与平面的位置关系有哪几种?2.平面与平面的位置关系有哪几种?3.直线与平面的几种位置关系分别是怎样定义与表示的?4.平面与平面的几种位置关系分别是怎样定义与表示的?[新知初探]1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示2.两个平面的位置关系位置关系两平面平行两平面相交公共点没有公共点有无数个公共点(在一条直线上) 符号表示α∥βα∩β=l图形表示[点睛] (1)判断面面位置关系时,要利用好长方体(或正方体)这一模型.(2)画两个互相平行的平面时,要注意使表示平面的两个平行四边形的对应边平行.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若两条直线和同一个平面所成的角相等,则这两条直线平行( )(2)若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行( )(3)若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行( )(4)若两个平面都平行于同一条直线,则这两个平面平行( )答案:(1)× (2)× (3)√(4)×2.如图所示,用符号语言可表示为( )A.α∩β=l B.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D 显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行直线与平面的位置关系[典例] 下列命题中,正确命题的个数是( )①如果a,b是两条平行直线,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b满足a∥α,b∥α,则a∥b;④如果直线a,b和平面α满足a∥b,a∥α,b⊄α,那么b∥α;⑤如果平面α的同侧有两点A,B到平面α的距离相等,则AB∥α.A.0 B.1C.2 D.3[解析] 如图,在正方体ABCDA′B′C′D′中,AA′∥BB′,AA′在过BB′的平面ABB′A′内,故命题①不正确;AA′∥平面BCC′B′,BC⊂平面BCC′B′,但AA′不平行于BC,故命题②不正确;AA′∥平面BCC′B′,A′D′∥平面BCC′B′,但AA′与A′D′相交,所以③不正确;④中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即④正确;⑤显然正确,故答案为C.[答案] C。
(浙江专用)高中数学2.22.2.1直线与平面平行的判定2.2.2平面与平面平行的判定学案新人教A版必修2

2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定目标定位 1.通过直观感知、操作确认,归纳出直线与平面、平面与平面平行的判定定理.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题.自 主 预 习1.直线与平面平行的判定定理即时自测1.判断题(1)直线l平行于平面α内的无数条直线,则l∥α.(×)(2)若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.(√)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行.(√)提示(1)直线l可以在平面α内.(3)如果一个平面内的两条相交直线分别平行于另一个平面,则这两个平面平行.2.三棱台ABC-A1B1C1中,直线AB与平面A1B1C1的位置关系是( )A.相交B.平行C.在平面内D.不确定解析AB∥A1B1,AB⊄平面A1B1C1,A1B1⊂平面A1B1C1,∴AB∥平面A1B1C1.答案 B3.点P是平面α外一点,过P作直线a∥α,过P作直线b∥α,且直线a,b确定一个平面β,则( )A.α∥βB.α与β相交C.α与β异面D.α与β的位置关系不确定解析a∩b=P,a⊂β,b⊂β,b∥α,a∥α,∴α∥β.答案 A4.平面α内任意一条直线均平行于平面β,则平面α与平面β的位置关系是________. 解析平面α内任意一条直线均平行于平面β,所以平面α与平面β无公共点,所以平面α与平面β平行.答案平行类型一线面平行判定定理的应用【例1】如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:(1)EH∥平面BCD;(2)BD∥平面EFGH.证明(1)∵EH为△ABD的中位线,∴EH∥BD.∵EH⊄平面BCD,BD⊂平面BCD,∴EH∥平面BCD.(2)∵BD∥EH,BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.规律方法 1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.【训练1】如图,四边形ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点,求证:SA∥平面MDB.证明连接AC交BD于点O,连接OM.∵M为SC的中点,O为AC的中点,∴OM∥SA∵OM⊂平面MDB,SA⊄平面MDB,∴SA∥平面MDB.类型二面面平行判定定理的应用【例2】如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.证明由棱柱性质知,B1C1∥BC,B1C1=BC,又D,E分别为BC,B1C1的中点,所以C1E綉DB,则四边形C1DBE为平行四边形,因此EB∥C1D,又C1D⊂平面ADC1,EB⊄平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1綉BD,所以四边形EDBB1为平行四边形,则ED綉B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED綉A1A,则四边形EDAA1为平行四边形,所以A1E∥AD,又A1E⊄平面ADC1,AD⊂平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E⊂平面A1EB,EB⊂平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.规律方法 1.要证明两平面平行,只需在其中一个平面内找到两条相交直线平行于另一个平面.2.判定两个平面平行与判定线面平行一样,应遵循先找后作的原则,即先在一个面内找到两条与另一个平面平行的相交直线,若找不到再作辅助线.【训练2】如图,三棱锥P-ABC中,E,F,G分别是AB,AC,AP的中点.证明平面GFE∥平面PCB.证明因为E,F,G分别是AB,AC,AP的中点,所以EF∥BC,GF∥CP.因为EF,GF⊄平面PCB,BC,CP⊂面PCB.所以EF∥平面PCB,GF∥平面PCB.又EF∩GF=F,所以平面GFE∥平面PCB.类型三线面平行、面面平行判定定理的综合应用(互动探究)【例3】如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC 的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.[思路探究]探究点一 判定线面平行与面面平行的思路原则是什么?提示 判定线面平行与面面平行的思路原则是找作一条直线与平面平行或在一个面内找作两条与另一个平面平行的相交直线,应遵循先找后作的原则,若找不到再作辅助线. 探究点二 如何判定(2)中平面EFG ∥平面BDD 1B 1?提示 根据面面平行的判定定理,结合(1)的结论,故在平面EFG 内找到另一条直线与平面BDD 1B 1平行即可.证明 (1)如图,连接SB ,∵E ,G 分别是BC ,SC 的中点,∴EG ∥SB . 又∵SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1, ∴EG ∥平面BDD 1B 1. (2)连接SD ,∵F ,G 分别是DC ,SC 的中点,∴FG ∥SD . 又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, ∴FG ∥平面BDD 1B 1.又EG ∥平面BDD 1B 1,且EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1.规律方法 要证明面面平行,由面面平行的判定定理知需在某一平面内寻找两条相交且与另一平面平行的直线.要证明线面平行,又需根据线面平行的判定定理,在平面内找与已知直线平行的直线,即:【训练3】 如图,S 是平行四边形ABCD 在平面外一点,M ,N 分别是SA ,BD 上的点,且AMSM=DN NB.求证:MN ∥平面SBC .证明 连接AN 并延长交BC 于P ,连接SP ,因为AD ∥BC ,所以DN NB =ANNP ,又因为AM SM =DN NB, 所以AM SM =AN NP,所以MN ∥SP .又MN ⊄平面SBC ,SP ⊂平面SBC ,所以MN ∥平面SBC . [课堂小结]1.直线与平面平行的关键是在已知平面内找一条直线和已知直线平行,即要证直线和平面平行,先证直线和直线平行,即由立体向平面转化,由高维向低维转化.2.证明面面平行的一般思路:线线平行⇒线面平行⇒面面平行.3.准确把握线面平行及面面平行两个判定定理,是对线面关系及面面关系作出正确推断的关键.1.能保证直线a 与平面α平行的条件是( ) A.b ⊂α,a ∥bB.b ⊂α,c ∥α,a ∥b ,a ∥cC.b ⊂α,A 、B ∈a ,C 、D ∈b ,且AC =BDD.a ⊄α,b ⊂α,a ∥b解析 A 错误,若b ⊂α,a ∥b ,则a ∥α或a ⊂α;B 错误,若b ⊂α,c ∥α,a ∥b ,a ∥c ,则a ∥α或a ⊂α;C 错误,若满足此条件,则a ∥α或a ⊂α或a 与α相交;D 正确.答案 D2.在正方体EFGH -E 1F 1G 1H 1中,下列四对截面彼此平行的一对是( ) A.平面E 1FG 1与平面EGH 1 B.平面FHG 1与平面F 1H 1G C.平面F 1H 1H 与平面FHE 1 D.平面E 1HG 1与平面EH 1G解析 如图,∵EG ∥E 1G 1,EG ⊄平面E 1FG 1,E 1G 1⊂平面E 1FG 1, ∴EG ∥平面E 1FG 1,又G 1F ∥H 1E ,同理可证H 1E ∥平面E 1FG 1, 又H 1E ∩EG =E ,∴平面E 1FG 1∥平面EGH 1.答案 A3.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α的位置关系是________.解析因为AB∥CD,AB⊂平面α,CD⊄平面α,由线面平行的判定定理可得CD∥α.答案CD∥α4.如图所示,E,F分别为三棱锥A-BCD的棱BC,BA上的点,且BE∶BC=BF∶BA=1∶3.求证:EF∥平面ACD.证明在△BEF和△BCA中,∵BE∶BC=BF∶BA=1∶3,∴EF∥AC.又EF⊄平面ACD,AC⊂平面ACD,∴EF∥平面ACD基础过关1.下列图形中能正确表示语句“平面α∩β=l,a⊂α,b⊂β,a∥β”的是( )解析A中不能正确表达b⊂β;B中不能正确表达a∥β;C中也不能正确表达a∥β.D正确.答案 D2.已知三个平面α,β,γ,一条直线l,要得到α∥β,必须满足下列条件中的( )A.l∥α,l∥β,且l∥γB.l⊂γ,且l∥α,l∥βC.α∥γ,且β∥γD.l与α,β所成的角相等解析⎭⎪⎬⎪⎫α∥γ⇒α与γ无公共点β∥γ⇒β与γ无公共点⇒α与β无公共点⇒α∥β.答案 C3.在正方体ABCD -A 1B 1C 1D 1中,M 是棱CD 上的动点,则直线MC 1与平面AA 1B 1B 的位置关系是( ) A.相交 B.平行 C.异面D.相交或平行解析 如图,MC 1⊂平面DD 1C 1C ,而平面AA 1B 1B ∥平面DD 1C 1C ,故MC 1∥平面AA 1B 1B .答案 B4.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系为________. 解析 三条平行线段共面时,两平面可能平行也可能相交,当三条平行线段不共面时,两平面一定平行. 答案 平行或相交5.给出下列结论:①若直线a 上有无数个点不在平面α内,则a ∥α;②若直线a 与平面α内的无数条直线平行,则a ∥α;③若平面α,β都与直线a 平行,则α∥β;④若平面α内存在无数条直线平行于平面β,则α∥β.其中错误的是______(填序号). 解析 ①中直线a 与平面α可能相交;②中直线a ∥α或a ⊂α;③中,α∥β或α与β相交;④中,平面α内无数条直线互相平行时,α∥β或α与β相交 .故①②③④均错误.答案 ①②③④6.如图所示的几何体中,△ABC 是任意三角形,AE ∥CD ,且AE =AB =2a ,CD =a ,F 为BE 的中点,求证:DF ∥平面ABC .证明 如图所示,取AB 的中点G ,连接FG ,CG ,∵F ,G 分别是BE ,AB 的中点, ∴FG ∥AE ,FG =12AE .又∵AE =2a ,CD =a ,∴CD =12AE .又AE ∥CD ,∴CD ∥FG ,CD =FG ,∴四边形CDFG 为平行四边形,∴DF ∥CG .又CG ⊂平面ABC ,DF ⊄平面ABC , ∴DF ∥平面ABC .7.如图在正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别为棱AB ,CC 1,AA 1,C 1D 1的中点.求证:平面CEM ∥平面BFN .证明 因为E ,F ,M ,N 分别为其所在各棱的中点,如图连接CD 1,A 1B ,易知FN ∥CD 1. 同理,ME ∥A 1B .易证四边形A 1BCD 1为平行四边形,所以ME ∥NF . 连接MD 1,同理可得MD 1∥BF .又BF ,NF 为平面BFN 中两相交直线,ME ,MD 1为平面CEM 中两相交直线,故平面CEM ∥平面BFN .能 力 提 升8.点E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,则空间四面体的六条棱中与平面EFGH 平行的条数是( )A.0B.1C.2D.3解析如图,由线面平行的判定定理可知,BD∥平面EFGH,AC∥平面EFGH.答案 C9.已知直线l,m,平面α,β,下列命题正确的是( )A.l∥β,l⊂α⇒α∥βB.l∥β,m∥β,l⊂α,m⊂α⇒α∥βC.l∥m,l⊂α,m⊂β⇒α∥βD.l∥β,m∥β,l⊂α,m⊂α,l∩m=M⇒α∥β解析如图所示,在正方体ABCD-A1B1C1D1中,AB∥CD,则AB∥平面DC1,AB⊂平面AC,但是平面AC与平面DC1不平行,所以A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面AC.EF⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以B错误;可证AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,又平面AC与平面BC1不平行,所以C错误;很明显D是面面平行的判定定理,所以D正确.答案 D10.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.答案 ①②③④11.在如图所示的几何体中,四边形ABCD 为平行四边形,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF ,M 是线段AD 的中点,求证:GM ∥平面ABFE .证明 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,所以△ABC ∽△EFG ,由于AB =2EF ,因此BC =2FG .如图,连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC , 因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形,因此GM ∥FA .又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM ∥平面ABFE .探 究 创 新12.如图,在正方体ABCD -A 1B 1C 1D 1中,点E 是棱A 1B 1的中点.(1)求证:A 1C ∥面BEC 1.(2)求异面直线A 1C 与B 1C 1所成的角的正切值.(1)证明 连接B 1C ,交BC 1于点O ,连接OE ,如图.因为几何体是正方体, 所以O 是B 1C 的中点. 又点E 是棱A 1B 1的中点,所以OE ∥A 1C . 因为OE ⊂平面BEC 1,A 1C ⊄平面BEC 1, 所以A 1C ∥平面BEC 1.(2)解 连接A 1B ,因为BC ∥B 1C 1, 所以异面直线A 1C 与B 1C 1所成的角为∠BCA 1. 因为几何体是正方体, 所以BC ⊥A 1B , 所以tan ∠BCA 1=A 1B BC = 2.。
2017-2018学年高中数学人教A版浙江专版必修2讲学案:

空间直角坐标系4.3.1&4.3.2空间直角坐标系空间两点间的距离公式[新知初探]1.空间直角坐标系(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系O-xyz.(2)相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫点M的横坐标,y叫点M的纵坐标,z 叫点M的竖坐标.[点睛]空间直角坐标系的画法(1)x轴与y轴成135°(或45°),x轴与z轴成135°(或45°).(2)y轴垂直于z轴,y轴和z轴的单位长相等,x轴上的单位长则等于y轴单位长的1 2.4.空间两点间的距离公式(1)点P(x,y,z)到坐标原点O(0,0,0)的距离|OP|=x2+y2+z2.(2)任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|= (x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.[点睛] (1)空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.(2)空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式( )(2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2)( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,点P (3,4,5)与Q (3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称D .以上都不对解析:选A 点P (3,4,5)与Q (3,-4,-5)两点的横坐标相同,而纵、竖坐标互为相反数,所以两点关于x 轴对称.3.空间两点P 1(1,2,3),P 2(3,2,1)之间的距离为________. 解析:|P 1P 2|=(-2)2+02+22=2 2. 答案:2 2[典例]在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标. [解] 建立如图所示的空间直角坐标系.点E 在z 轴上,它的x 坐标、y 坐标均为0,而E 为DD 1的中点,故其坐标为⎝⎛⎭⎫0,0,12. 由F 作FM ⊥AD ,FN ⊥DC ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =12,故F 点坐标为⎝⎛⎭⎫12,12,0.点G 在y 轴上,其x ,z 坐标均为0, 又GD =34,故G 点坐标为⎝⎛⎭⎫0,34,0. 由H 作HK ⊥CG 于K ,由于H 为C 1G 的中点. 故HK =12,CK =18,∴DK =78,故H 点坐标为⎝⎛⎭⎫0,78,12.[活学活用]如图,在长方体ABCD -A ′B ′C ′D ′中,|AB |=12,|AD |=8,|AA ′|=5.以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA ′分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.解:因为|AB |=12,|AD |=8,|AA ′|=5,点A 为坐标原点,且点B ,D ,A ′分别在x 轴、y 轴和z 轴上,所以它们的坐标分别为A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5).点C ,B ′,D ′分别在xOy 平面、xOz 平面、yOz 平面内,坐标分别为C (12,8,0),B ′(12,0,5),D ′(0,8,5).点C ′在三条坐标轴上的射影分别是B ,D ,A ′,故点C ′的坐标为(12,8,5).[典例] 已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件.[解] (1)根据空间两点间的距离公式得线段MN 的长度|MN |=(3-1)2+(2-0)2+(1-5)2=26, 所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以有下面等式成立: (x -3)2+(y -2)2+(z -1)2 =(x -1)2+(y -0)2+(z -5)2, 化简得x +y -2z +3=0,因此,到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件是x +y -2z +3=0.[活学活用]已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解:如图,以A 为原点,AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4). 因为M 为BC 1的中点,所以由中点公式得M ⎝⎛⎭⎫4+02,0+42,0+42,即M (2,2,2),又N 为A 1B 1的中点,所以N (2,0,4).所以由两点间的距离公式得|MN |=(2-2)2+(2-0)2+(2-4)2=2 2.[典例] (1)点A (1,2,-1)关于坐标平面xOy 及x 轴的对称点的坐标分别是________. (2)已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________.[解析] (1)如图所示,过A 作AM ⊥xOy 交平面于M ,并延长到C ,使AM =CM ,则A 与C 关于坐标平面xOy 对称且C 的坐标为(1,2,1).过A作AN⊥x轴于N并延长到点B,使AN=NB,则A与B关于x轴对称且B的坐标为(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C的坐标为(1,2,1);A(1,2,-1)关于x轴的对称点B的坐标为(1,-2,1).(2)点P(2,3,-1)关于坐标平面xOy的对称点P1的坐标为(2,3,1),点P1关于坐标平面yOz 的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).[答案](1)(1,2,1),(1,-2,1) (2)(2,-3,1)[活学活用]在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴对称的点在xOz平面上的射影的坐标为( )A.(4,0,6) B.(-4,7,-6)C.(-4,0,-6) D.(-4,7,0)解析:选C点M关于y轴对称的点是M′(-4,7,-6),点M′在xOz平面上的射影的坐标为(-4,0,-6).层级一学业水平达标1.点P(a,b,c)到坐标平面xOy的距离是( )A.a2+b2B.|a|C.|b| D.|c|解析:选D点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.已知A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:选A|AB|=(1+3)2+(1+3)2+(1+3)2=4 3.3.在空间直角坐标系中,点P(3,1,5)关于平面xOz对称的点的坐标为( )A.(3,-1,5) B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)解析:选A由于点关于平面xOz对称,故其横坐标、竖坐标不变,纵坐标变为相反数,即对称点坐标是(3,-1,5).4.若点P(-4,-2,3)关于xOy平面及y轴对称的点的坐标分别是(a,b,c),(e,f,d),则c与e的和为( )A.7 B.-7C.-1 D.1解析:选D由题意,知点P关于xOy平面对称的点的坐标为(-4,-2,-3),点P关于y轴对称的点的坐标为(4,-2,-3),故c=-3,e=4,故c+e=-3+4=1.5.点P(1,2,3)为空间直角坐标系中的点,过点P作平面xOy的垂线,垂足为Q,则点Q的坐标为( )A.(0,0,3) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:选D由空间点的坐标的定义,知点Q的坐标为(1,2,0).6.空间点M(-1,-2,3)关于x轴的对称点的坐标是________.解析:∵点M(-1,-2,3)关于x轴对称,由空间中点P(x,y,z)关于x轴对称点的坐标为(x,-y,-z)知,点M关于x轴的对称点为(-1,2,-3).答案:(-1,2,-3)7.在空间直角坐标系中,点(-1,b,2)关于y轴的对称点是(a,-1,c-2),则点P(a,b ,c)到坐标原点的距离|PO|=________.解析:由点(x,y,z)关于y轴的对称点是点(-x,y,-z)可得-1=-a,b=-1,c-2=-2,所以a=1,c=0,故所求距离|PO|=12+(-1)2+02= 2.答案: 28.在空间直角坐标系中,点M(-2,4,-3)在xOz平面上的射影为点M1,则点M1关于原点对称的点的坐标是________.解析:由题意,知点M1的坐标为(-2,0,-3),点M1关于原点对称的点的坐标是(2,0,3).答案:(2,0,3)9.如图,已知长方体ABCD-A1B1C1D1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1);由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1).10.如图,在长方体ABCD -A 1B 1C 1D 1中,|AB |=|AD |=2,|AA 1|=4,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M ,N 两点间的距离.解析:由已知条件,得|A 1C 1|=2 2.由|MC 1|=2|A 1M |,得|A 1M |=223, 且∠B 1A 1M =∠D 1A 1M =π4.如图,以A 为原点,分别以AB ,AD ,AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则M ⎝⎛⎭⎫23,23,4,C (2,2,0),D 1(0,2,4).由N 为CD 1的中点,可得N (1,2,2).∴|MN |=⎝⎛⎭⎫1-232+⎝⎛⎭⎫2-232+(2-4)2=533.层级二 应试能力达标1.点A (0,-2,3)在空间直角坐标系中的位置是( ) A .在x 轴上 B .在xOy 平面内 C .在yOz 平面内D .在xOz 平面内解析:选C ∵点A 的横坐标为0,∴点A (0,-2,3)在yOz 平面内. 2.在空间直角坐标系中,点P (2,3,4)和点Q (-2,-3,-4)的位置关系是( ) A .关于x 轴对称 B .关于yOz 平面对称 C .关于坐标原点对称D .以上都不对解析:选C 点P 和点Q 的横、纵、竖坐标均相反,故它们关于原点对称. 3.设A (1,1,-2),B (3,2,8),C (0,1,0),则线段AB 的中点P 到点C 的距离为( ) A.132B.534C.532D.532解析:选D 利用中点坐标公式,得点P 的坐标为⎝⎛⎭⎫2,32,3,由空间两点间的距离公式,得|PC |=(2-0)2+⎝⎛⎭⎫32-12+(3-0)2=532. 4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则对角线A C 1的长为( )A .9 B.29 C .5D .2 6解析:选B 由已知,可得C 1(0,2,3),∴|AC 1|=(0-4)2+(2-0)2+(3-0)2=29. 5.已知A (3,5,-7),B (-2,4,3),则线段AB 在yOz 平面上的射影长为________. 解析:点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为A ′(0,5,-7),B ′(0,4,3),∴线段AB 在yOz 平面上的射影长|A ′B ′|=(0-0)2+(4-5)2+(3+7)2=101.答案:1016.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且点M 到点A ,B 的距离相等,则点M 的坐标是________.解析:因为点M 在y 轴上,所以可设点M 的坐标为(0,y,0).由|MA |=|MB |,得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,解得y =-1,即点M 的坐标为(0,-1,0).答案:(0,-1,0)7.在空间直角坐标系中,解答下列各题.(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最短. 解:(1)设P (x,0,0).由题意,得|P 0P |=(x -4)2+1+4=30,解得x =9或x =-1. 所以点P 的坐标为(9,0,0)或(-1,0,0). (2)由已知,可设M (x 0,1-x 0,0).则|MN |=(x 0-6)2+(1-x 0-5)2+(0-1)2 =2(x 0-1)2+51.所以当x 0=1时,|MN |min =51. 此时点M 的坐标为(1,0,0).8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M 为BD 1的中点,N 在A 1C 1上,且|A 1N |=3|N C 1|,试求MN 的长.解:以D 为原点,以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M ⎝⎛⎭⎫a 2,a 2,a 2,取A 1C 1中点O 1,则O 1⎝⎛⎭⎫a 2,a2,a ,因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N ⎝⎛⎭⎫a 4,34a ,a .由两点间的距离公式可得: |MN |= ⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-34a 2+⎝⎛⎭⎫a 2-a 2 =64a .(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0 D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|(-3)2+42=a 2+7-1,解得a =±3.6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10,所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51,∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝⎛⎭⎫2,12,半径长为12(3-1)2+(1-0)2=52.故此圆的方程为(x -2)2+⎝⎛⎭⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2C .2D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB 的面积为12×22×12=1.故选A. 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________. 解析:由题意知圆心坐标为(2,-3),半径r =(2-0)2+(-3+2)2=5,∴圆C 的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1).答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2,则圆C 的半径为2,圆心坐标为(0,2). 点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1, 则直线l 的方程为y =x ,即x -y =0.答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1. 答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y +4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0. 综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-(3)2得a =±15. 答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y -a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =(a +1)2+(-2-a )2=2a 2+6a +5=2⎝⎛⎭⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22 内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P -ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P -ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1). ∴G 点的坐标为G ⎝⎛⎭⎫-1,-1,12 ∴|BG |= 32+32+14=732. 17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程;(2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3),半径为12|OP |= 12 (4-0)2+(6-0)2=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13.(2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线,∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,(x -2)2+(y -3)2=13,得直线AB 的方程为4x +6y -1=0. 18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4).(1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小,即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径. 则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4-(-2)-1-1=-3, 则线段AB 的垂直平分线的方程是y -1=13x , 即x -3y +3=0.由⎩⎪⎨⎪⎧ x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2, 即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20.∴所求圆的方程是(x -3)2+(y -2)2=20.法二:设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧ (1-a )2+(-2-b )2=R 2,(-1-a )2+(4-b )2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧ a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0.(1)求证:对任意实数a ,该圆恒过一定点;(2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0,此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧ x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2. ∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2.①当两圆外切时,d =r 1+r 2,即2+5(a -2)2=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5(a -2)2-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点,所以圆心(0,0)到直线l 的距离d =|3|1+k 2<2, 解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1. 所以|3|1+k2=1,解得k 2=8, 即k =±22,经验证满足条件.所以存在点M ,使得四边形OAMB 为菱形.法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx , 由⎩⎪⎨⎪⎧ y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧ x 0=-3k k 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝ ⎛⎭⎪⎫-6k k 2+12+⎝⎛⎭⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。
2017-2018学年高一数学人教A版必修2课件:2-1-1平面

1
2
3
4
5
(1)用一个希腊字母 α,β,γ 等来表示平面,如上图①中的平面记 为平面 α 记 法 (2)用两个大写的英文字母(表示平面的平行四边形相对的两 个顶点)来表示平面,如上图①中的平面记为平面 AC 或平面 BD (3)用四个大写的英文字母(表示平面的平行四边形的顶点)来 表示平面,如上图①中的平面可记为平面 ABCD
4
5
3.公理1
文字 语言 图形 语言 符号 语言 如果一条直线上的两点在一个平面内,那么 这条直线在此平面内
A∈l,B∈l,且 A∈α,B∈α⇒l⊂α
(1)判断点在平面内 作用 (2)判断直线在平面内 (3)用直线检验平面
1
2
3
4
5
名师点拨公理1的内容反映了直线与平面的位置关系.“线上两点 在平面内”是公理的条件,结论是“线上所有点都在平面内”.从集合 的角度看,这个公理就是说,如果一条直线(点集)中有两个点(元素) 属于一个平面(点集),那么这条直线就是这个平面的真子集.
1
2
3
4
5
【做一做4】 三点可确定平面的个数是( ) A.0 B.1 C.2 D.1或无数个 解析:当这三点共线时,可确定无数个平面;当这三点不共线时,可 确定一个平面. 答案:D
1
2
3
4
5
5.公理3
文字 语言 图形 语言 符号 语言 如果两个不重合的平面有一个公共点,那么它们有且 只有一条过该点的公共直线
1
2
3
4
5
【做一做2-1】 若点M在直线a上,a在平面α内,则M,a,α之间的关 系可记为( ) A.M∈a,a∈α B.M∈a,a⊂α C.M⊂a,a⊂α D.M⊂a,a∈α 答案:B
2017-2018学年人教A版高中数学必修二浙江专版学案:2-

2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定预习课本P64~66,思考并完成以下问题[新知初探]1.直线与平面垂直的定义(1)自然语言:如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.(2)图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.(3)符号语言:任意a⊂α,都有l⊥a⇒l⊥α.[点睛](1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.2.直线与平面垂直的判定定理(1)自然语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(2)图形语言:如图所示.(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.[点睛] 判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.如图,∠PAO就是斜线AP与平面α所成的角.(2)当直线AP与平面垂直时,它们所成的角是90°.(3)当直线与平面平行或在平面内时,它们所成的角是0°.(4)线面角θ的范围:0°≤θ≤90°.[点睛] 把握定义应注意两点:①斜线上不同于斜足的点P的选取是任意的;②斜线在平面上的射影是过斜足和垂足的一条直线而不是线段.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若直线l垂直于平面α,则l与平面α内的直线可能相交,可能异面,也可能平行( )(2)若a∥b,a⊂α,l⊥α,则l⊥b( )(3)若a⊥b,b⊥α,则a∥α( )答案:(1)×(2)√(3)×2.直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是( ) A.平行B.垂直C.在平面α内D.无法确定解析:选D 当平面α内的两条直线相交时,直线l⊥平面α,即l与α相交,当平面α内的两直线平行时,l⊂α或l∥α或l与α垂直或l与α斜交.3.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:(1)与PC垂直的直线有________________________________________________________________________;(2)与AP垂直的直线有________________________________________________________________________.解析:(1)∵PC⊥平面ABC,AB,AC,BC⊂平面ABC.∴PC⊥AB,PC⊥AC,PC⊥BC.(2)∠BCA=90°,即BC⊥AC,又BC⊥PC,AC∩PC=C,∴BC⊥平面PAC,∴BC⊥AP.答案:(1)AB,AC,BC(2)BC[典例] 下列说法正确的有________(填序号).①垂直于同一条直线的两条直线平行;②如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直;③如果一条直线垂直于平面内的两条直线,那么这条直线与这个平面垂直;④若l与平面α不垂直,则平面α内一定没有直线与l垂直.[解析] 因为空间内与一条直线同时垂直的两条直线可能相交,可能平行,也可能异面,故①不正确.由线面垂直的定义可得,故②正确.因为这两条直线可能是平行直线,故③不正确.如图,l与α不垂直,但a⊂α,l⊥a,故④不正确.[答案] ②[活学活用]1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于( )A.平面OAB B.平面OACC.平面OBC D.平面ABC解析:选C ∵OA⊥OB,OA⊥OC,OB∩OC=O,OB,OC⊂平面OBC,∴OA⊥平面OBC.2.如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________(填序号).解析:根据直线与平面垂直的判定定理,平面内这两条直线必须是相交的,①③④中给定的两直线一定相交,能保证直线与平面垂直.而②梯形的两边可能是上、下底边,它们互相平行,不满足定理条件.故填①③④.答案:①③④[典例] 如图,在三棱锥SABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[证明] (1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,所以BD⊥平面SAC.[活学活用]如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM.(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明:(1)∵AB为⊙O的直径,∴AM⊥BM.又PA⊥平面ABM,∴PA⊥BM.又∵PA∩AM=A,∴BM⊥平面PAM.又AN⊂平面PAM,∴BM⊥AN.又AN⊥PM,且BM∩PM=M,∴AN⊥平面PBM.(2)由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A , ∴PB ⊥平面ANQ .又NQ ⊂平面ANQ ,∴PB ⊥NQ .[典例] 三棱锥所成角的余弦值. [解] 如图,过S 作SO ⊥平面ABC 于点O ,连接AO ,BO ,CO .则SO ⊥AO ,SO ⊥BO ,SO ⊥CO .∵SA =SB =SC =a , ∴△SOA ≌△SOB ≌△SOC , ∴AO =BO =CO , ∴O 为△ABC 的外心. ∵△ABC 为正三角形, ∴O 为△ABC 的中心. ∵SO ⊥平面ABC ,∴∠SAO 即为SA 与平面ABC 所成的角. 在Rt △SAO 中,SA =a ,AO =23×32a =33a ,∴cos ∠SAO =AOSA =33, ∴SA 与底面ABC 所成角的余弦值为33.在正方体ABCD A 1B 1C 1D 1中,(1)直线A 1B 与平面ABCD 所成的角的大小为________;(2)直线A 1B 与平面ABC 1D 1所成的角的大小为________; (3)直线A 1B 与平面AB 1C 1D 所成的角的大小为________.解析:(1)由线面角定义知,∠A 1BA 为A 1B 与平面ABCD 所成的角,∠A 1BA =45°.(2)如图,连接A 1D ,设A 1D ∩AD 1=O ,连接BO ,则易证A 1D ⊥平面ABC 1D 1,∴A 1B 在平面ABC 1D 1内的射影为OB ,∴A 1B 与平面ABC 1D 1所成的角为∠A 1BO .∵A 1O =12A 1B ,∴∠A 1BO =30°.(3)∵A 1B ⊥AB 1,A 1B ⊥B 1C 1, ∴A 1B ⊥平面AB 1C 1D ,即A 1B 与平面AB 1C 1D 所成的角的大小为90°. 答案:(1)45° (2)30° (3)90°层级一 学业水平达标1.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m ⊥β的是( )A .α∥β,且m ⊂αB .m ∥n ,且n ⊥βC .m ⊥n ,且n ⊂βD .m ⊥n ,且n ∥β解析:选B A 中,由α∥β,且m ⊂α,知m ∥β;B 中,由n ⊥β,知n 垂直于平面β内的任意直线,再由m ∥n ,知m 也垂直于β内的任意直线,所以m ⊥β,符合题意;C 、D 中,m ⊂β或m ∥β或m 与β相交,不符合题意,故选B.2.若两条不同的直线与同一平面所成的角相等,则这两条直线( ) A .平行 B .相交 C .异面D .以上皆有可能解析:选D 在正方体ABCD A 1B 1C 1D 1中,A 1A ,B 1B 与底面ABCD 所成的角相等,此时两直线平行;A 1B 1,B 1C 1与底面ABCD 所成的角相等,此时两直线相交;A 1B 1,BC 与底面ABCD 所成的角相等,此时两直线异面.故选D.3.下列四个命题中,正确的是( )①若一条直线垂直于一个平面内的无数条直线,则这条直线与这个平面垂直; ②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③若一条直线平行于一个平面,另一条直线垂直于这个平面,则这两条直线互相垂直; ④若两条直线垂直,则过其中一条直线有惟一一个平面与另一条直线垂直. A .①② B .②③ C .②④D .③④解析:选D ①②不正确.4.如图,α∩β=l ,点A ,C ∈α,点B ∈β,且BA ⊥α,BC ⊥β,那么直线l 与直线AC 的关系是( )A .异面B .平行C .垂直D .不确定解析:选C ∵BA ⊥α,α∩β=l ,l ⊂α,∴BA ⊥l .同理BC ⊥l .又BA ∩BC =B ,∴l ⊥平面ABC .∵AC ⊂平面ABC ,∴l ⊥AC .5.如图所示,若斜线段AB 是它在平面α上的射影BO 的2倍,则AB与平面α所成的角是( )A .60°B .45°C .30°D .120°解析:选A ∠ABO 即是斜线AB 与平面α所成的角, 在Rt △AOB 中,AB =2BO ,所以cos ∠ABO =12,即∠ABO =60°.6.已知直线l ,a ,b ,平面α,若要得到结论l ⊥α,则需要在条件a ⊂α,b ⊂α,l ⊥a ,l ⊥b 中另外添加的一个条件是________.答案:a ,b 相交7.如图所示,三棱锥PABC中,PA⊥平面ABC,PA=AB,则直线PB与平面ABC所成的角等于________.解析:因为PA⊥平面ABC,所以斜线PB在平面ABC上的射影为AB,所以∠PBA即为直线PB与平面ABC所成的角.在△PAB中,∠BAP=90°,PA=AB,所以∠PBA =45°,即直线PB与平面ABC所成的角等于45°.答案:45°8.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形ABCD一定是________.解析:如图,∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.又BD⊥PC,PA∩PC=P,∴BD ⊥平面PAC.又AC⊂平面PAC,∴BD⊥AC.∴平行四边形ABCD为菱形.答案:菱形9.如图,在四面体ABCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF= 2.求证:BD⊥平面ACD.证明:取CD的中点为G,连接EG,FG.又∵E,F分别为AD,BC的中点,∴FG∥BD,EG∥AC.∵AC=BD=2,则EG=FG=1.∵EF=2,∴EF2=EG2+FG2,∴EG⊥FG,∴BD⊥EG.∵∠BDC=90°,∴BD⊥CD.又EG∩CD=G,∴BD⊥平面ACD.10.在棱长为1的正方体ABCDA1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成的角的正弦值.解:如图,取CD的中点F,连接EF交平面ABC1D1于O,连接AO,B1C.由ABCDA1B1C1D1为正方体,易得B1C⊥BC1,B1C⊥D1C1,BC1∩D1C1=C1,ABC1D1,D1C1⊂平面ABC1D1,∴B1C⊥平面ABC1D1.BC∵E,F分别为A1B1,CD的中点,∴EF∥B1C,∴EF⊥平面AC1,即∠EAO为直线AE与平面ABC1D1所成的角.在Rt △EOA 中,EO =12EF =12B 1C =22,AE =A 1E 2+AA 21=⎝ ⎛⎭⎪⎫122+12=52, ∴sin ∠EAO =EO AE=105. ∴直线AE 与平面ABC 1D 1所成的角的正弦值为105. 层级二 应试能力达标1.在正方体ABCD A 1B 1C 1D 1中,与AD 1垂直的平面是 ( ) A .平面DD 1C 1C B .平面A 1DB 1 C .平面A 1B 1C 1D 1 D .平面A 1DB答案:B2.下面四个命题:①过一点和一条直线垂直的直线有且只有一条; ②过一点和一个平面垂直的直线有且只有一条; ③过一点和一条直线垂直的平面有且只有一个; ④过一点和一个平面垂直的平面有且只有一个. 其中正确的是( ) A .①④ B .②③ C .①②D .③④ 解析:选B 过一点和一条直线垂直的直线有无数条,故①不正确;过一点和一个平面垂直的平面有无数个,故④不正确;易知②③均正确.故选B.3.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l ⊥m ,m ⊂α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ⊂α,则l ∥mD .若l ∥α,m ∥α,则l ∥m解析:选B 根据两条平行线中的一条直线垂直于一个平面,则另一条直线也垂直于这个平面,知选项B 正确.4.如图,四棱锥S ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( )A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角解析:选D 选项A 正确,因为SD 垂直于平面ABCD ,而AC 在平面ABCD 内,所以AC 垂直于SD ;再由ABCD 为正方形,所以AC 垂直于BD ,而BD 与SD 相交,所以AC 垂直于平面SBD ,进而垂直于SB .选项B 正确,因为AB 平行于CD ,而CD 在平面SCD 内,AB 不在平面SCD 内,所以AB 平行于平面SCD .选项C 正确,设AC 与BD 的交点为O ,连接SO ,则SA 与平面SBD 所成的角就是∠ASO ,SC 与平面SBD 所成的角就是∠CSO ,易知这两个角相等.选项D 错误,AB 与SC 所成的角等于∠SCD ,而DC 与SA 所成的角是∠SAB ,这两个角不相等.5.如图,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E 是AD 的中点,F 是BB 1的中点,则直线EF 与平面ABCD 所成角的正切值为________.解析:连接EB ,由BB 1⊥平面ABCD ,知∠FEB 即直线EF 与平面ABCD 所成的角.在Rt △FBE 中,BF =1,BE =5,则tan ∠FEB =55. 答案:556.如图所示,将平面四边形ABCD 沿对角线AC 折成空间四边形,当平面四边形ABCD 满足________时,空间四边形中的两条对角线互相垂直.(填上你认为正确的一种条件即可,不必考虑所有可能情况)解析:在平面四边形中,设AC 与BD 交于E ,假设AC ⊥BD ,则AC ⊥DE ,AC ⊥BE . 折叠后,AC 与DE ,AC 与BE 依然垂直,所以AC ⊥平面BDE ,所以AC⊥BD .若四边形ABCD 为菱形或正方形,因为它们的对角线互相垂直,同上可证AC ⊥BD .答案:AC ⊥BD (或四边形ABCD 为菱形、正方形等)7.如图,在直三棱柱ABC A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1. (1)求证:AB1⊥平面A 1BC 1.(2)若D 为B 1C 1的中点,求AD 与平面A 1B 1C 1所成角的正弦值. 解:(1)证明:由题意知四边形AA 1B 1B 是正方形, ∴AB 1⊥BA 1.由AA 1⊥平面A 1B 1C 1得AA 1⊥A 1C 1. 又∵A 1C 1⊥A 1B 1,AA 1∩A 1B 1=A 1, ∴A 1C 1⊥平面AA 1B 1B , 又∵AB 1⊂平面AA 1B 1B ,∴A 1C 1⊥AB 1.又∵BA 1∩A 1C 1=A 1,∴AB 1⊥平面A 1BC 1. (2)连接A 1D .设AB =AC =AA 1=1,∵AA 1⊥平面A 1B 1C 1,∴∠A 1DA 是AD 与平面A 1B 1C 1所成的角. 在等腰直角三角形A 1B 1C 1中,D 为斜边的中点, ∴A 1D =12×B 1C 1=22.在Rt △A 1DA 中,AD =A 1D 2+A 1A 2=62. ∴sin ∠A 1DA =A 1A AD =63, 即AD 与平面A 1B 1C 1所成角的正弦值为63.8.如图,直三棱柱ABC A 1B 1C 1中,AC =BC =1,∠ACB =90°,AA 1=2,D 是A 1B 1的中点.(1)求证C 1D ⊥平面AA 1B 1B ;(2)当点F 在BB 1上的什么位置时,会使得AB 1⊥平面C 1DF ?并证明你的结论.证明:(1)∵ABC A 1B 1C 1是直三棱柱, ∴A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°. 又D 是A 1B 1的中点, ∴C 1D ⊥A 1B 1.∵AA 1⊥平面A 1B 1C 1,C 1D ⊂平面A 1B 1C 1, ∴AA 1⊥C 1D ,又A 1B 1∩C 1D =D , ∴C 1D ⊥平面AA 1B 1B .(2)作DE ⊥AB 1交AB 1于E ,延长DE 交BB 1于F ,连接C 1F ,则AB 1⊥平面C 1DF ,点F 为所求.∵C 1D ⊥平面AA 1B 1B ,AB 1⊂平面AA 1B 1B ,∴C 1D ⊥AB 1. 又AB 1⊥DF ,DF ∩C 1D =D ,∴AB 1⊥平面C 1DF . ∵AA 1=A 1B 1=2,∴四边形AA 1B 1B 为正方形. 又D 为A 1B 1的中点,DF ⊥AB 1,∴F 为BB 1的中点, ∴当点F 为BB 1的中点时,AB 1⊥平面C 1DF .2.3.2 平面与平面垂直的判定预习课本P67~69,思考并完成以下问题[新知初探]1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角(如图).直线AB叫做二面角的棱,半平面α和β叫做二面角的面.记法:αABβ,在α,β内,分别取点P,Q时,可记作PABQ;当棱记为l时,可记作αlβ或PlQ.(2)二面角的平面角:①定义:在二面角αlβ的棱l上任取一点O,如图所示,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.②直二面角:平面角是直角的二面角.[点睛] 二面角的平面角的定义是两条“射线”的夹角,不是两条直线的夹角,因此,二面角θ的取值范围是0°≤θ≤180°.2.平面与平面垂直(1)面面垂直的定义①定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:记作:α⊥β.(2)两平面垂直的判定定理:①文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.②图形语言:如图.③符号语言:AB⊥β,AB∩β=B,AB⊂α⇒α⊥β.[点睛] 定理的关键词是“过另一面的垂线”,所以应用的关键是在平面内寻找另一个面的垂线.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若l⊥α,则过l有无数个平面与α垂直( )(2)两垂直的平面的二面角的平面角大小为90°()答案:(1)√(2)√2.在二面角αlβ的棱l上任选一点O,若∠AOB是二面角αlβ的平面角,则必须具有的条件是( )A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β答案:D3.对于直线m,n和平面α,β,能得出α⊥β的一组条件是( )A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂βC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β解析:选C A与D中α也可与β平行,B中不一定α⊥β,故选C.[典例] 如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .证明:平面AEC ⊥平面AFC .[证明] 如图,连接BD ,设BD ∩AC 于点G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22, 可得EF =322.从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .[活学活用]1.如图,已知PA ⊥矩形ABCD 所在的平面,则图中互相垂直的平面有( )A.1对B.2对C.3对D.5对解析:选D ∵DA⊥AB,DA⊥PA,∴DA⊥平面PAB.同理BC⊥平面PAB,又AB⊥平面PAD,∴DC⊥平面PAD,∴平面PAD⊥平面AC,平面PAB⊥平面AC,平面PBC⊥平面PAB,平面PAB ⊥平面PAD,平面PDC⊥平面PAD,共5对.2.如图,四边形ABCD是边长为a的菱形,PC⊥平面ABCD,E是PA的中点,求证:平面BDE⊥平面ABCD.证明:连接AC,设AC∩BD=O,连接OE.因为O为AC中点,E为PA的中点,所以EO是△PAC的中位线,所以EO∥PC.因为PC⊥平面ABCD,所以EO⊥平面ABCD.又因为EO⊂平面BDE,所以平面BDE⊥平面ABCD.[典例] (1)如图,在正方体ABCDA′B′C′D′中:①二面角D′ABD的大小为________.②二面角A′ABD的大小为________.(2)如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角ABCO的大小.[解析] (1)①在正方体ABCDA′B′C′D′中,AB⊥平面AD′,所以AB⊥AD′,AB⊥AD,因此∠D′AD为二面角D′ABD的平面角.在Rt△D′DA中,∠D′AD=45°,所以二面角D′ABD的大小为45°.②因为AB⊥平面AD′,所以AB⊥AD,AB⊥AA′,因此∠A′AD为二面角A′ABD的平面角,又∠A′AD=90°,所以二面角A′ABD的大小为90°.[答案] ①45°②90°(2)解:如图,在平面α内,过O作OD⊥BC,垂足为点D,连接AD,设CO=a.∵AO⊥α,BC⊂α,∴AO⊥BC.又AO∩OD=O,∴BC⊥平面AOD.而AD ⊂平面AOD ,∴AD ⊥BC ,∴∠ADO 是二面角A BC O 的平面角. 由AO ⊥α,OB ⊂α,OC ⊂α,知AO ⊥OB ,AO ⊥OC . ∵∠ABO =30°,∠ACO =45°,CO =a , ∴AO =a ,AC =2a ,AB =2a .在Rt △ABC 中,∠BAC =90°,∴BC =AC 2+AB 2=6a , ∴AD =AB ·AC BC =2a ·2a 6a=233a . 在Rt △AOD 中,sin ∠ADO =AO AD =a 233a=32. ∴∠ADO =60°,即二面角A BC O 的大小是60°.(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线. (2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.[活学活用]如图,把等腰直角三角形ABC 沿斜边AB 旋转至△ABD 的位置,使CD =AC .(1)求证:平面ABD ⊥平面ABC . (2)求二面角C BD A 的余弦值. 解:(1)证明:取AB 的中点O ,连接OD ,∵△ABD 是等腰直角三角形, ∴DO ⊥AB ,且DO =22AD . 连接OC ,同理得CO ⊥AB , 且CO =22AC , ∵AD =AC ,∴DO =CO =22AC . ∵CD =AC ,∴DO 2+CO 2=CD 2, ∴△CDO 为等腰直角三角形,DO ⊥CO , 又AB ∩CO =O ,∴DO ⊥平面ABC .又∵DO ⊂平面ABD ,∴平面ABD ⊥平面ABC . (2)取BD 的中点E ,连接CE ,OE . ∵△BCD 为等边三角形,∴CE ⊥BD . 又∵△BOD 为等腰直角三角形,∴OE ⊥BD . ∴∠OEC 为二面角C BD A 的平面角. 由(1)可证得OC ⊥平面ABD ,∴OC ⊥OE . ∴△COE 为直角三角形. 设BC =1,则CE =32,OE =12, ∴cos ∠OEC =OE CE=33, 即二面角C BD A 的余弦值为33.[典例] ABE 和△CDE 分别沿AE ,DE 折起,使点B 与点C 重合于点P .(1)求证:平面PDE ⊥平面PAD ; (2)求二面角P AD E 的大小. [解] (1)证明:由AB ⊥BE , 得AP ⊥PE , 同理,DP ⊥PE .又∵AP ∩DP =P ,∴PE ⊥平面PAD . 又PE ⊂平面PDE , ∴平面PDE ⊥平面PAD .(2)如图所示,取AD 的中点F ,连接PF ,EF ,则PF ⊥AD ,EF ⊥AD , ∴∠PFE 就是二面角P AD E 的平面角. 又PE ⊥平面PAD ,∴PE ⊥PF . ∵EF =AB =2,PF =22-1=1,∴cos ∠PFE =PF EF =22. ∴二面角P AD E 的大小为45°.[活学活用]如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N , 连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E .∴A ′N ⊥BE .∵A ′C =A ′D ,∴A ′M ⊥CD . 在四边形BCDE 中,CD ⊥MN , 又∵MN ∩A ′M =M ,∴CD ⊥平面A ′MN ,∴CD ⊥A ′N .∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又∵A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又∵A ′N ⊂平面A ′BE ,∴平面A ′BE ⊥平面BCDE .层级一 学业水平达标1.从空间一点P 向二面角αl β的两个面α,β分别作垂线PE ,PF ,E ,F 为垂足,若∠EPF =60°,则二面角αl β的平面角的大小是( )A .60°B .120°C .60°或120°D .不确定解析:选C 若点P 在二面角内,则二面角的平面角为120°;若点P 在二面角外,则二面角的平面角为60°.2.如果直线l ,m 与平面α,β,γ满足:β∩γ=l ,l ∥α,m ⊂α和m ⊥γ,那么必有( )A .α⊥γ且l ⊥mB .α⊥γ且m ∥βC .m ∥β且l ⊥mD .α∥β且α⊥γ解析:选A B 错,有可能m 与β相交;C 错,有可能m 与β相交;D 错,有可能α与β相交.3.已知直线a ,b 与平面α,β,γ,下列能使α⊥β成立的条件是( ) A .α⊥γ,β⊥γ B .α∩β=a ,b ⊥a ,b ⊂β C .a ∥β,a ∥αD .a ∥α,a ⊥β解析:选D 由a ∥α,知α内必有直线l 与a 平行.而a ⊥β,∴l ⊥β,∴α⊥β. 4.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成几何体A BCD ,则在几何体A BCD 中,下列结论正确的是()A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC解析:选D 由已知得BA ⊥AD ,CD ⊥BD , 又平面ABD ⊥平面BCD ,∴CD ⊥平面ABD , 从而CD ⊥AB ,故AB ⊥平面ADC .又AB ⊂平面ABC ,∴平面ABC ⊥平面ADC .5.在正方体ABCD A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1BD A 的正切值为( ) A.32B.22C. 2D. 3解析:选C 如图所示,连接AC 交BD 于点O ,连接A 1O ,O 为BD 中点, ∵A 1D =A 1B ,∴在△A 1BD 中,A 1O ⊥BD . 又∵在正方形ABCD 中,AC ⊥BD , ∴∠A 1OA 为二面角A 1BD A 的平面角. 设AA 1=1,则AO =22. ∴tan ∠A 1OA =122= 2.6.如果规定:x =y ,y =z ,则x =z ,叫作x ,y ,z 关于相等关系具有传递性,那么空间三个平面α,β,γ关于相交、垂直、平行这三种关系中具有传递性的是________.解析:由平面与平面的位置关系及两个平面平行、垂直的定义、判定定理,知平面平行具有传递性,相交、垂直都不具有传递性.答案:平行7.在正方体ABCDA1B1C1D1中,E是CC1的中点,则平面EBD与平面AA1C1C的位置关系是________.(填“垂直”“不垂直”其中的一个)解:如图,在正方体中,CC1⊥平面ABCD,∴CC1⊥BD.AC=C,又AC⊥BD,CC∴BD⊥平面AA1C1C.又BD⊂平面EBD,∴平面EBD⊥平面AA1C1C.答案:垂直8.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,PA=6,那么二面角PBCA的大小为________.解析:如图,取BC的中点O,连接OA,OP,则∠POA为二面角PBCA的平面角,OP=OA=3,PA=6,所以△POA为直角三角形,∠POA=90°.答案:90°9.如图,在圆锥PO中,AB是⊙O的直径,C是A B上的点,D为AC的中点.证明:平面POD⊥平面PAC.证明:如图,连接OC,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面ABC,AC⊂底面ABC,所以AC⊥PO.因为OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.又AC⊂平面PAC,所以平面POD⊥平面PAC.10.如图所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC于点D,E,又SA=AB,SB=BC,求二面角EBDC的大小.解:∵E为SC中点,且SB=BC,∴BE⊥SC.又DE⊥SC,BE∩DE=E,∴SC⊥平面BDE,∴BD⊥SC.又SA⊥平面ABC,可得SA⊥BD.又SC∩SA=S,∴BD⊥平面SAC,从而BD⊥AC,BD⊥DE,∴∠EDC为二面角EBDC的平面角.设SA=AB=1.在△ABC中,∵AB⊥BC,∴SB=BC=2,AC=3,∴SC=2.在Rt△SAC中,∠DCS=30°,∴∠EDC=60°,即二面角EBDC为60°.层级二应试能力达标1.(浙江高考)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析:选A ∵l⊥β,l⊂α,∴α⊥β(面面垂直的判定定理),故A正确.2.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系为( )A.相等B.互补C.相等或互补D.不确定解析:选D 反例:如图,在正方体ABCDA1B1C1D1中,E,F分别是CD,C1D1的中点,二面角DAA1E与二面角B1ABD的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补,故选D.3.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折.给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折的过程中,可能成立的结论是( )A.①③B.②③C.②④D.③④解析:选B 对于①,因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,故①不可能成立;对于②,如图,设点D的在平面BCF上的射影为点P,当BP⊥CF时,有BD⊥FC,而AD∶BC∶AB=2∶3∶4可使条件满足,故②可能成立;对于③,当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,故③可能成立;对于④,因为点D的射影不可能在FC上,故④不可能成立.故选B.4.如图,在四面体P ABC 中,AB =AC ,PB =PC ,D ,E ,F 分别是棱AB ,BC ,CA 的中点,则下列结论中不一定成立的是( )A .BC ∥平面PDFB .DF ⊥平面PAEC .平面PDF ⊥平面PAED .平面PDF ⊥平面ABC解析:选D 因为D ,F 分别为AB ,AC 的中点,则DF 为△ABC 的中位线,则BC ∥DF ,依据线面平行的判定定理,可知BC ∥平面PDF ,A 成立.又E 为BC 的中点,且PB =PC ,AB =AC ,则BC ⊥PE ,BC ⊥AE ,依据线面垂直的判定定理,可知BC ⊥平面PAE .因为BC ∥DF ,所以DF ⊥平面PAE ,B 成立.又DF ⊂平面PDF ,则平面PDF ⊥平面PAE ,C 成立.要使平面PDF ⊥平面ABC ,已知AE ⊥DF ,则必须有AE ⊥PD 或AE ⊥PF ,由条件知此垂直关系不一定成立,故选D.5.正四棱锥的侧棱长为23,侧棱与底面所成角为60°,则该四棱锥的高为__________. 解析:如图,过点S 作SO ⊥平面ABCD ,连接OC ,则∠SCO =60°,∴SO =sin 60°·SC =32×23=3. 答案:36.如图,二面角αl β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________.解析:如图,作AO ⊥β于O ,AC ⊥l 于C ,连接OB ,OC ,则OC ⊥l .设AB 与β所成的角为θ,则∠ABO =θ,由图得sin θ=AOAB =AC AB ·AO AC=sin 30°·sin 60°=34. 答案:347.已知正方形ABCD 的边长为2,AC ∩BD =O .将正方形ABCD 沿对角线BD 折起,使AC =a ,得到三棱锥A BCD ,如图.(1)当a =2时,求证:AO ⊥平面BCD .(2)当二面角A BD C 的大小为120°时,求二面角A BC D 的正切值.解:(1)证明:在△AOC 中,AC =a =2,AO =CO = 2.∴AC 2=AO 2+CO 2,∴AO ⊥CO .∵AO ⊥BD ,BD ∩CO =O ,∴AO ⊥平面BCD .(2)折叠后,BD ⊥AO ,BD ⊥CO ,∴∠AOC 是二面角A BD C 的平面角,即∠AOC =120°.在△AOC 中,AO =CO =2, ∴AC = 6.如图,过点A 作CO 的垂线交线段CO 的延长线于点H . ∵BD ⊥CO ,BD ⊥AO ,CO ∩AO =O , ∴BD ⊥平面AOC .∵AH ⊂平面AOC ,∴BD ⊥AH .又∵CO ⊥AH ,CO ∩BD =O ,∴AH ⊥平面BCD . ∴AH ⊥BC .过点A 作AK ⊥BC ,垂足为K ,连接HK . ∵AK ∩AH =A ,∴BC ⊥平面AHK . ∵HK ⊂平面AHK ,∴BC ⊥HK . ∴∠AKH 为二面角A BC D 的平面角. 在△AHO 中,AH =62,OH =22, ∴CH =CO +OH =2+22=322. 在Rt △CKH 中,HK =22CH =32. 在Rt △AHK 中,tan ∠AKH =AH HK =6232=63.∴二面角A BC D的正切值为63.8.如图,在四棱锥P ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =1,AD =2,PA ⊥底面ABCD ,PD 与底面成45°角,点E 是PD 的中点.(1)求证:BE ⊥PD .(2)求二面角P CD A 的余弦值. 解:(1)证明:连接AE .∵PA ⊥底面ABCD ,∴∠PDA 是PD 与底面ABCD 所成的角, ∴∠PDA =45°.∴PA =DA . 又∵点E 是PD 的中点,∴AE ⊥PD .∵PA ⊥底面ABCD ,AB ⊂底面ABCD ,∴PA ⊥AB . ∵∠BAD =90°,∴BA ⊥DA . 又∵PA ∩AD =A ,∴BA ⊥平面PDA . 又∵PD ⊂平面PDA ,∴BA ⊥PD . 又∵BA ∩AE =A ,∴PD ⊥平面ABE . ∵BE ⊂平面ABE ,∴BE ⊥PD . (2)连接AC .在直角梯形ABCD 中,AB =BC =1,AD =2,∴AC =CD = 2.∵AC 2+CD 2=AD 2,∴AC ⊥CD . 又∵PA ⊥底面ABCD ,CD ⊂底面ABCD ,∴PA ⊥CD . ∵AC ∩PA =A ,∴CD ⊥平面PAC . 又∵PC ⊂平面PAC ,∴PC ⊥CD , ∴∠PCA 为二面角P CD A 的平面角. 在Rt △PCA 中,PC =PA 2+AC 2=22+22= 6.∴cos ∠PCA =AC PC=26=33. ∴所求的二面角的余弦值为33. 2.3.3&2.3.4 直线与平面垂直的性质、平面与平面垂直的性质预习课本P70~72,思考并完成以下问题[新知初探]1.直线与平面垂直的性质定理(1)文字语言:垂直于同一个平面的两条直线平行. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b . (4)作用:①线面垂直⇒线线平行; ②作平行线.[点睛] (1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法. (2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.2.平面与平面垂直的性质定理 (1)文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂αa ⊥l⇒a ⊥β.(4)作用:①面面垂直⇒线面垂直; ②作面的垂线.[点睛] 对面面垂直的性质定理的理解(1)定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直. (2)已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.[小试身手]1.若a,b表示直线,α表示平面,下列命题中正确的个数为( )①a⊥α,b∥α⇒a⊥b;②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b ⊥α⇒a∥b.A.1 B.2 C.3 D.0解析:选B 由线面垂直的性质知①、④正确.②中b可能满足b⊂α,故②错误;③中b可能与α相交(不垂直),也可能平行,故③不正确.2.两个平面互相垂直,一个平面内的一条直线与另一个平面( )A.垂直B.平行C.斜交D.以上都有可能答案:D3.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是________.解析:由题意知n⊥α,而m⊥α,∴m∥n.答案:平行[典例] 如图,已知正方体A1C.(1)求证:A1C⊥B1D1.(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.[证明] (1)如图,连接A1C1.∵CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,∴CC1⊥B1D1.∵四边形A1B1C1D1是正方形,∴A1C1⊥B1D1.又∵CC1∩A1C1=C1,∴B1D1⊥平面A1C1C.又∵A1C⊂平面A1C1C,∴B1D1⊥A1C.(2)如图,连接B1A,AD1.∵B1C1綊AD,∴四边形ADC 1B 1为平行四边形, ∴C 1D ∥AB 1.∵MN ⊥C 1D ,∴MN ⊥AB 1. 又∵MN ⊥B 1D 1,AB 1∩B 1D 1=B 1, ∴MN ⊥平面AB 1D 1.由(1)知A 1C ⊥B 1D 1.同理可得A 1C ⊥AB 1. 又∵AB 1∩B 1D 1=B 1, ∴A 1C ⊥平面AB 1D 1. ∴A 1C ∥MN .[活学活用]如图所示,在正方体ABCD A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明:(1)∵四边形ADD 1A 1为正方形,∴AD 1⊥A 1D . 又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC ,∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中,A1O =OD ,A 1N =NC ,∴ON 綊12CD 綊12AB .∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形.∴ON =AM . ∵ON =12AB ,∴AM =12AB .∴M 是AB 的中点.[典例] 已知P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC ,求证:BC ⊥AC .[证明] 如图,在平面PAC 内作AD ⊥PC 于点D , ∵平面PAC ⊥平面PBC ,AD ⊂平面PAC ,且AD ⊥PC ,∴AD ⊥平面PBC ,又BC ⊂平面PBC ,∴AD ⊥BC . ∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA ⊥BC ,∵AD ∩PA =A ,∴BC ⊥平面PAC , 又AC ⊂平面PAC ,∴BC ⊥AC .[活学活用]如图所示,P 是四边形ABCD 所在平面外的一点,四边形ABCD 是边长为a 的菱形,且∠DAB =60°.侧面PAD 为正三角形,其所在平面垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB .证明:(1)如图,在菱形ABCD 中, 连接BD ,由已知∠DAB =60°,∴△ABD 为正三角形, ∵G 是AD 的中点,∴BG ⊥AD .。
2017-2018学年高中数学人教A版浙江专版必修2讲学案:

直线的倾斜角与斜率3.1.1 倾斜角与斜率[新知初探]1.直线的倾斜角 (1)倾斜角的定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.如图所示,直线l 的倾斜角是∠APx ,直线l ′的倾斜角是∠BPx .(2)倾斜角的范围:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x 轴平行或重合的直线的倾斜角为0°.[点睛] (1)倾斜角定义中含有三个条件:①x 轴正方向;②直线向上的方向;③小于180°的非负角.(2)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.2.直线的斜率 (1)斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母k 表示,即k =tan_α. (2)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.当x 1=x 2时,直线P 1P 2没有斜率.(3)斜率的作用:用实数反映了平面直角坐标系内的直线的倾斜程度.[点睛] 直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是90°时,直线的斜率不存在,此时,直线垂直于x 轴(平行于y 轴或与y 轴重合).[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)任一直线都有倾斜角,都存在斜率( ) (2)倾斜角为135°的直线的斜率为1( )(3)若一条直线的倾斜角为α,则它的斜率为k =tan α( ) (4)直线斜率的取值范围是(-∞,+∞)( ) 答案:(1)× (2)× (3)× (4)√2.若直线l 经过原点和(-1,1),则它的倾斜角是( ) A .45° B .135° C .45°或135°D .-45°解析:选B 作出直线l ,如图所示,由图易知,应选B.3.已知直线l 的倾斜角为30°,则直线l 的斜率为( ) A.33B. 3 C .1D.22解析:选A 由题意可知,直线l 的斜率k =tan 30°=33.[典例] 设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l1的倾斜角为( )A.α+45°B.α-135°C.135°-αD.α+45°或α-135°[解析]由倾斜角的取值范围知,只有当0°≤α+45°<180°(0°≤α<180°),即0°≤α<135°时,l1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l1的倾斜角为α-135°(如图).[答案] D[活学活用]已知直线l经过第二、四象限,则直线l的倾斜角α的取值范围是( )A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°解析:选C直线倾斜角的取值范围是0°≤α<180°,又直线l经过第二、四象限,所以直线l的倾斜角α的取值范围是90°<α<180°.[典例] 经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的倾斜角α.(1)A(2,3),B(4,5);(2)C(-2,3),D(2,-1);(3)P (-3,1),Q (-3,10).[解] (1)存在.直线AB 的斜率k AB =5-34-2=1,即tan α=1,又0°≤α<180°,所以倾斜角α=45°.(2)存在.直线CD 的斜率k CD =-1-32-(-2)=-1,即tan α=-1,又 0°≤α<180°,所以倾斜角α=135°.(3)不存在.因为x P =x Q =-3,所以直线PQ 的斜率不存在,倾斜角α=90°.[活学活用]1.直线经过点(0,2)和点(3,0),则它的斜率为( ) A.23 B.32 C .-23D .-32解析:选C 斜率k =0-23-0=-23.2.已知坐标平面内△ABC 的三个顶点的坐标分别是A (-1,1),B (1,1),C (1,-1),求直线AB ,BC ,AC 的斜率.解:已知点的坐标,可代入过两点的直线的斜率公式求斜率,但应先验证两点的横坐标是否相等.k AB =1-11-(-1)=0,k AC =-1-11-(-1)=-1.∵B ,C 两点的横坐标相等,∴直线BC 的斜率不存在.(1)利用斜率公式求直线的斜率应注意的事项题点一:三点共线问题1.如果A ⎝⎛⎭⎫2m ,52,B (4,-1),C (-4,-m )三点在同一条直线上,试确定常数m 的值.解:由于A ,B ,C 三点所在直线不可能垂直于x 轴,因此可设直线AB ,BC 的斜率分别为k AB ,k BC .由斜率公式,得k AB =52+12m -4=74m -8,k BC =-1+m 4+4=m -18.∵点A ,B ,C 在同一条直线上,∴k AB =k BC . ∴74m -8=m -18,即m 2-3m -12=0,解得m 1=3+572,m 2=3-572. ∴m 的值是3+572或3-572.题点二:数形结合法求倾斜角或斜率范围2.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,求直线l 的斜率和倾斜角的范围.解:如图所示. ∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞), ∴45°≤α≤120°.层级一学业水平达标1.直线x=1的倾斜角和斜率分别是( )A.45°,1 B.135°,-1 C.90°,不存在D.180°,不存在解析:选C作出图象,故C正确.2.给出下列说法:①若α是直线l的倾斜角,则0°≤α<180°;②若k是直线的斜率,则k∈R;③任一条直线都有倾斜角,但不一定有斜率;④任一条直线都有斜率,但不一定有倾斜角.其中说法正确的个数是( ) A.1 B.2C.3 D.4解析:选C显然①②③正确,④错误.3.已知直线经过点A(-2,0),B(-5,3),则该直线的倾斜角为( ) A.150°B.135°C.75°D.45°解析:选B∵直线经过点A(-2,0),B(-5,3),∴其斜率k=3-0-5-(-2)=-1.设其倾斜角为θ(0°≤θ<180°),则tan θ=-1,∴θ=135°.4.过两点A(4,y),B(2,-3)的直线的倾斜角为45°,则y=( )A.-32 B.32C.-1 D.1解析:选C tan 45°=k AB=y+34-2,即y+34-2=1,所以y=-1.5.已知直线l经过点A(1,2),且不经过第四象限,则直线l的斜率k的取值范围是( ) A.(-1,0] B.[0,1]C.[1,2]D.[0,2]解析:选D 由图,可知当直线位于如图阴影部分所示的区域内时,满足题意,所以直线l 的斜率满足0≤k ≤2.故选D.6.如图,已知直线l 1的倾斜角是150°,l 2⊥l 1,垂足为B .l 1,l 2与x 轴分别相交于点C ,A ,l3平分∠BAC ,则l 3的倾斜角为________.解析:因为直线l 1的倾斜角为150°,所以∠BCA =30°,所以l 3的倾斜角为12×(90°-30°)=30°.答案:30°7.一束光线射到x 轴上并经x 轴反射.已知入射光线的倾斜角α1=30°,则反射光线的倾斜角α2=________.解析:作出入射光线和反射光线如图.因为入射光线的倾斜角α1=30°,所以入射角等于60°.又因反射角等于入射角,由图易知,反射光线的倾斜角为60°+60°+30°=150°.答案:150°8.已知点A (2,-1),若在坐标轴上存在一点P ,使直线PA 的倾斜角为45°,则点P 的坐标为________.解析:设x 轴上点P (m,0)或y 轴上点P (0,n ).由k PA =1,得0+1m -2=n +10-2=1,得m =3,n =-3.故点P 的坐标为(3,0)或(0,-3).答案:(3,0)或(0,-3)9.已知A (m ,-m +3),B (2,m -1),C (-1,4),直线AC 的斜率等于直线BC 的斜率的3倍,求m 的值.解:由题意直线AC 的斜率存在,即m ≠-1. ∴k AC =(-m +3)-4m +1,k BC =(m -1)-42-(-1).∴(-m +3)-4m +1=3·(m -1)-42-(-1).整理得:-m -1=(m -5)(m +1),即(m +1)(m -4)=0, ∴m =4或m =-1(舍去). ∴m =4.10.已知两点A (-3,4),B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点,求直线l 的斜率k 的取值范围.解:∵直线l 与线段AB 有公共点,∴直线l 的倾斜角介于直线PB 与PA 的倾斜角之间.当l 的倾斜角小于90°时,k ≥k PB ;当l 的倾斜角大于90°时,k ≤k PA .∵k PA =-1-42-(-3)=-1,k PB =-1-22-3=3,∴直线l 的斜率k 的取值范围是(-∞,-1]∪[3,+∞).层级二 应试能力达标1.在平面直角坐标系中,正三角形ABC 的BC 边所在直线的斜率是0,则AC ,AB 边所在直线的斜率之和为( )A .-2 3B .0 C. 3D .2 3解析:选B 由BC 边所在直线的斜率是0,知直线BC 与x 轴平行,所以直线AC ,AB 的倾斜角互为补角,根据直线斜率的定义,知直线AC ,AB 的斜率之和为0.故选B.2.已知经过点P (3,m )和点Q (m ,-2)的直线的斜率等于2,则m 的值为( ) A .-1 B .1 C .2D.43解析:选D 由直线的斜率公式,得m +23-m =2,∴m =43.3.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 直线l 2,l 3的倾斜角为锐角,且直线l 2的倾斜角大于直线l 3的倾斜角,所以0<k 3<k 2.直线l 1的倾斜角为钝角,斜率k 1<0,所以k 1<k 3<k 2.4.若点P (x ,y )在以A (-3,1),B (-1,0),C (-2,0)为顶点的△ABC 的内部运动(不包含边界),则y -2x -1的取值范围是( )A.⎣⎡⎦⎤12,1B.⎝⎛⎭⎫12,1 C.⎣⎡⎦⎤14,1D.⎝⎛⎭⎫14,1解析:选D 根据已知的条件,可知点P (x ,y )是点A ,B ,C 围成的△ABC 内一动点,那么所求y -2x -1的几何意义是过动点P (x ,y )与定点M (1,2)的直线的斜率.由已知,得k AM =14,k BM =1,k CM =23.利用图象,可得y -2x -1的取值范围是⎝⎛⎭⎫14,1.故选D. 5.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,则1a +1b 的值为________. 解析:∵A ,B ,C 三点共线,∴k AB =k AC ,即2-02-a =2-b2-0.∴2(a +b )=ab ,∴a +b ab =12,∴1a +1b =12.答案:126.若三点A (3,1),B (-2,k ),C (8,1)能构成三角形,则实数k 的取值范围为________. 解析:k AB =k -1-2-3=1-k 5,k AC =1-18-3=05=0.要使A ,B ,C 三点能构成三角形,需三点不共线, 即k AB ≠k AC ,∴1-k5≠0.∴k ≠1. 答案(-∞,1)∪(1,+∞)7.设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是函数y =x 3的图象上任意三个不同的点.求证:若A ,B ,C 三点共线,则x 1+x 2+x 3=0.证明:∵A ,B ,C 是三个不同的点, ∴x 1,x 2,x 3互不相等. ∵A ,B ,C 三点共线, ∴k AB =k AC ,即y 1-y 2x 1-x 2=y 1-y 3x 1-x 3, ∴x 31-x 32x 1-x 2=x 31-x 33x 1-x 3, 整理,得x 21+x 1x 2+x 22=x 21+x 1x 3+x 23,即(x 2-x 3)(x 1+x 2+x 3)=0. ∵x 2≠x 3, ∴x 1+x 2+x 3=0.8.已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1),试求y +3x +2的最大值和最小值.解:如图,可知y +3x +2表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k .由已知条件,可得A (1,1),B (-1,5).易知k PA≤k≤k PB.由斜率公式得k PA=43,k PB=8,所以43≤k≤8.故y+3x+2的最大值是8,最小值是43.3.1.2两条直线平行与垂直的判定[新知初探]1.两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1∥l2⇔k1=k2.[点睛](1)l1∥l2⇔k1=k2成立的前提条件是:①两条直线的斜率都存在;②l1与l2不重合.(2)当两条直线不重合且斜率都不存在时,l1与l2的倾斜角都是90°,则l1∥l2.2.两条直线垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l1⊥l2⇔k1·k2=-1.[点睛]l1⊥l2⇔k1·k2=-1成立的前提条件是:①两条直线的斜率都存在;②k1≠0且k2≠0.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若两条直线的斜率相等,则这两条直线平行( )(2)若l1∥l2,则k1=k2( )(3)若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直( )(4)若两条直线的斜率都不存在且两直线不重合,则这两条直线平行( ) 答案:(1)× (2)× (3)× (4)√2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A .平行 B .重合 C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.l 1过点A (m,1),B (-3,4),l 2过点C (0,2),D (1,1),且l 1∥l 2,则m =________. 解析:∵l 1∥l 2,且k 2=1-21-0=-1,∴k 1=4-1-3-m=-1, ∴m =0. 答案:0[典例] 判断下列各题中直线l 1与l 2是否平行.(1)l 1经过点A (-1,-2),B (2,1),l 2经过点M (3,4),N (-1,-1); (2)l 1经过点A (-3,2),B (-3,10),l 2经过点M (5,-2),N (5,5). [解] (1)k 1=1-(-2)2-(-1)=1,k 2=-1-4-1-3=54.∵k 1≠k 2,∴l 1与l 2不平行.(2)∵l 1与l 2都与x 轴垂直,且l 1与l 2不重合,∴l 1∥l 2.[活学活用]1.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知点A (-2,0),B (6,8),C (8,6),则点D 的坐标为________.解析:根据AB ∥DC ,AD ∥BC ,利用平行直线的斜率相等求解.设点D (x ,y ),则由AB ∥DC ,AD ∥BC 可得k AB =k DC ,k AD =k BC ,即86-(-2)=y -6x -8,y x -(-2)=8-66-8,解得x =0,y =-2.答案:(0,-2)2.在△ABC 中,A (0,3),B (2,-1),E ,F 分别为边AC ,BC 的中点,则直线EF 的斜率为________.解析:∵E ,F 分别为边AC ,BC 的中点,∴EF ∥AB . ∴k EF =k AB =-1-32-0=-2.答案:-2[典例] 判断下列各题中l 1与l 2是否垂直.(1)l 1经过点A (-3,-4),B (1,3),l 2经过点M (-4,-3),N (3,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,10),l 2经过点M (-10,40),N (10,40). [解] (1)k 1=3-(-4)1-(-3)=74,k 2=1-(-3)3-(-4)=47,k 1k 2=1,∴l 1与l 2不垂直. (2)k 1=-10,k 2=3-220-10=110,k 1k 2=-1,∴l 1⊥l 2. (3)l 1的倾斜角为90°,则l 1⊥x 轴;k 2=40-4010-(-10)=0,则l 2∥x 轴,∴l 1⊥l 2.[活学活用]1.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线的斜率为________.解析:由过两点的直线的斜率公式可得k PQ =3-a -b3-b -a=1,所以线段PQ 的垂直平分线的斜率为-1.答案:-12.已知△ABC 的顶点坐标分别为A (1,2),B (-1,1),C (0,2),求BC 边上的高所在直线的斜率与倾斜角.解:设BC 边上的高所在直线的斜率为k , 则有k ·k BC =-1.∵k BC =2-10-(-1)=1,∴k =-1.∴BC 边上的高所在直线的倾斜角为135°.[典例] 已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2). (1)若l 1∥l 2,求a 的值; (2)若l 1⊥l 2,求a 的值. [解] 设直线l 2的斜率为k 2, 则k 2=2-(a +2)1-(-2)=-a3.(1)若l 1∥l 2,则l 1的斜率k 1=-a3.∵k 1=2-a a -4,∴2-a a -4=-a3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2)若l 1⊥l 2.①当k 2=0时,此时a =0,k 1=-12,不符合题意;②当k 2≠0时,l 1的斜率存在,此时k 1=2-aa -4.由k 1k 2=-1可得2-a a -4·⎝⎛⎭⎫-a 3=-1,解得a =3或a =-4. ∴当a =3或a =-4时,l 1⊥l 2.[活学活用]已知四边形ABCD 的顶点A (m ,n ),B (5,-1),C (4,2),D (2,2),求m 和n 的值,使四边形ABCD 为直角梯形.解:∵四边形ABCD 是直角梯形,∴有2种情形:(1)AB ∥CD ,AB ⊥AD ,由图可知,A (2,-1). (2)AD ∥BC ,AD ⊥AB ,⎩⎪⎨⎪⎧k AD =k BC ,k AD ·k AB =-1⇒⎩⎪⎨⎪⎧n -2m -2=3-1,n -2m -2·n +1m -5=-1,∴⎩⎨⎧m =165,n =-85.综上可知,⎩⎪⎨⎪⎧m =2,n =-1或⎩⎨⎧m =165,n =-85.层级一 学业水平达标1.设点P (-4,2),Q (6,-4),R (12,6),S (2,12),下面四个结论:①PQ ∥SR ;②PQ ⊥P S ;③PS ∥QS ;④PR ⊥QS .其中正确的个数是( )A .1B .2C .3D .4 解析:选C 由斜率公式知k PQ =-4-26+4=-35,k SR =12-62-12=-35,k PS =12-22+4=53,k QS=12+42-6=-4,k PR =6-212+4=14,∴PQ ∥SR ,PQ ⊥PS ,PR ⊥QS .而k PS ≠k QS ,∴PS 与QS 不平行,①②④正确,故选C.2.直线l 过(m ,n ),(n ,m )两点,其中m ≠n ,mn ≠0,则( ) A .l 与x 轴垂直 B .l 与y 轴垂直 C .l 过原点和第一、三象限 D .l 的倾斜角为135°解析:选D 直线的斜率k =m -nn -m=-1,∴直线l 的倾斜角为135°. 3.经过点P (-2,m )和Q (m,4)的直线平行于斜率等于1的直线,则m 的值是( ) A .4 B .1 C .1或3D .1或4解析:选B 由题意,知4-mm -(-2)=1,解得m =1.4.若直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,则实数a 的值为( )A .1B .3C .0或1D .1或3 解析:选D ∵l 1⊥l 2,∴k 1·k 2=-1,即34×a 2+1-(-2)0-3a=-1,解得a =1或a =3.5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( )A .梯形B .平行四边形C .菱形D .矩形解析:选B 如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-316,故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直,所以四边形ABCD 为平行四边形.6.已知直线l 1的斜率为3,直线l 2经过点A (1,2),B (2,a ),若直线l 1∥l 2,则a =________;若直线l 1⊥l 2,则a =________.解析:l 1∥l 2时,a -22-1=3,则a =5;l 1⊥l 2时,a -22-1=-13,则a =53.答案:5537.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-4k +m =0的两根,若l 1⊥l 2,则m =________.若l 1∥l 2,则m =________.解析:由一元二次方程根与系数的关系得k 1·k 2=m2,若l 1⊥l 2,则m2=-1,∴m =-2.若l 1∥l 2则k 1=k 2,即关于k 的二次方程2k 2-4k +m =0有两个相等的实根, ∴Δ=(-4)2-4×2×m =0,∴m =2. 答案:-2 28.已知△ABC 的三个顶点分别是A (2,2+22),B (0,2-22),C (4,2),则△ABC 是________.(填△ABC 的形状)解析:因为AB 边所在直线的斜率k AB =(2-22)-(2+22)0-2=22,CB 边所在直线的斜率k CB =(2-22)-20-4=22,AC 边所在直线的斜率k AC =2-(2+22)4-2=-2,k CB ·k AC =-1,所以CB ⊥AC ,所以△ABC 是直角三角形.答案:直角三角形9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行.解:(1)由k AB =m -32m 2=-1,得2m 2+m -3=0, 解得m =-32或1.(2)由-7-20-3=3及垂直关系,得m -32m 2=-13, 解得m =32或-3.(3)令m -32m 2=9+3-4-2=-2,解得m =34或-1. 10.已知△ABC 的顶点分别为A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,求m 的值.解:若∠A 为直角,则AC ⊥AB ,∴k AC ·k AB =-1,即m +12-5×1+11-5=-1,解得m =-7;若∠B 为直角,则AB ⊥BC ,∴k AB ·k BC =-1,即1+11-5×m -12-1=-1,解得m =3;若∠C 为直角,则AC ⊥BC ,∴k AC ·k BC =-1,即m +12-5×m -12-1=-1,解得m =±2.综上,m 的值为-7,-2,2或3.层级二 应试能力达标1.若直线l 1,l 2的倾斜角分别为α1,α2,且l 1⊥l 2,则有( ) A .α1-α2=90° B .α2-α1=90° C .|α2-α1|=90°D .α1+α2=180°解析:选C 由题意,知α1=α2+90°或α2=α1+90°,所以|α2-α1|=90°.2.已知四点A (m,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( )A .1B .0C .0或2D .0或1解析:选D 当m =0时,直线AB 与直线CD 的斜率都不存在,且不重合,此时直线AB 与直线CD 平行;当m ≠0时,k AB =m +1m ,k CD =2m ,由m +1m =2m ,解得m =1.综上,m 的值为0或1.3.已知直线l 1,l 2,l 3的斜率分别是k 1,k 2,k 3,其中l 1∥l 2,且k 1,k 3是方程2x 2-3x -2=0的两根,则k 1+k 2+k 3的值是( )A .1 B.32 C.72D .1或72解析:选D 由k 1,k 3是方程2x 2-3x -2=0的两根,解方程得⎩⎪⎨⎪⎧ k 1=-12,k 3=2或⎩⎪⎨⎪⎧k 1=2,k 3=-12.又l 1∥l 2,所以k 1=k 2,所以k 1+k 2+k 3=1或72.4.已知△ABC 的顶点B (2,1),C (-6,3),其垂心为H (-3,2),则其顶点A 的坐标为( ) A .(-19,-62) B .(19,-62) C .(-19,62)D .(19,62)解析:选A 设A (x ,y ),由已知,得AH ⊥BC ,BH ⊥AC ,且直线AH ,BH 的斜率存在,所以⎩⎪⎨⎪⎧k AH ·k BC =-1,k BH ·k AC =-1,即⎩⎪⎨⎪⎧y -2x +3×⎝⎛⎭⎫-14=-1,y -3x +6×⎝⎛⎭⎫-15=-1,解得⎩⎪⎨⎪⎧x =-19,y =-62,即A (-19,-62).5.已知A (2,3),B (1,-1),C (-1,-2),点D 在x 轴上,则当点D 坐标为________时,A B ⊥CD .解析:设点D (x,0),因为k AB =-1-31-2=4≠0, 所以直线CD 的斜率存在.则由AB ⊥CD 知,k AB ·k CD =-1,所以4·-2-0-1-x =-1,解得x =-9.答案:(-9,0)6.已知直线l 1经过点A (0,-1)和点B ⎝⎛⎭⎫-4a ,1,直线l 2经过点M (1,1)和点N (0,-2),若l 1与l 2没有公共点,则实数a 的值为________.解析:由题意得l 1∥l 2,∴k AB =k MN . ∵k AB =2-4a =-a 2,k MN =-2-10-1=3,∴-a2=3,∴a =-6.答案:-67.在平面直角坐标系xOy 中,四边形OPQR 的顶点坐标分别为O (0,0),P (1,t ),Q (1-2t,2+t ),R (-2t,2),其中t >0.试判断四边形OPQR 的形状.解:由斜率公式,得k OP =t -01-0=t , k QR =2-(2+t )-2t -(1-2t )=-t-1=t ,k OR =2-0-2t -0=-1t ,k PQ =2+t -t 1-2t -1=2-2t=-1t .∴k OP =k QR ,k OR =k PQ , ∴OP ∥QR ,OR ∥PQ , ∴四边形OPQR 为平行四边形. 又k OP ·k OR =-1,∴OP ⊥OR , ∴四边形OPQR 为矩形.8.直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,此时直线l 1与l 2平行,且l 2是线段AB 的垂直平分线,其中A (1,m -1),B (m,2),试求m 的值.解:如图,直线l 1的倾斜角为30°+30°=60°,∴直线l 1的斜率k 1=tan 60°= 3.当m =1时,直线AB 的斜率不存在,此时l 2的斜率为0,不满足l 1∥l 2.当m ≠1时,直线AB 的斜率k AB =m -1-21-m =m -31-m,∴线段AB的垂直平分线l 2的斜率为k 2=m -1m -3. ∵l 1与l 2平行, ∴k 1=k 2,即3=m -1m -3,解得m =4+ 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 直线、平面平行的判定及其性质2.2.1&2.2.2 直线与平面平行的判定、平面与平面平行的判定预习课本P54~57,思考并完成以下问题[新知初探]1.直线与平面平行的判定[点睛] 用该定理判断直线a 和平面α平行时,必须同时具备三个条件: (1)直线a 在平面α外,即a ⊄α; (2)直线b 在平面α内,即b ⊂α;(3)两直线a ,b 平行,即a ∥b . 2.平面与平面平行的判定[点睛] (1)平面与平面平行的判定定理中的平行于一个平面内的“两条相交直线”是必不可少的.(2)面面平行的判定定理充分体现了等价转化思想,即把面面平行转化为线面平行.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)若直线l 上有两点到平面α的距离相等,则l ∥平面α( ) (2)若直线l 与平面α平行,则l 与平面α内的任意一条直线平行( ) (3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行( ) 答案:(1)× (2)× (3)×2.能保证直线a 与平面α平行的条件是( )A .b ⊂α,a ∥bB .b ⊂α,c ∥α,a∥b ,a ∥cC .b ⊂α,A ,B ∈a ,C ,D ∈b ,且AC ∥BD D .a ⊄α,b ⊂α,a ∥b解析:选D 由线面平行的判定定理可知,D 正确.3.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是( )A .一定平行B .一定相交C .平行或相交D .以上判断都不对解析:选C 可借助于长方体判断两平面对应平行或相交.[典例] 如图,在正方体ABCD A 1B 1C 1D 1中,E ,F ,G 分别是BC ,CC 1,BB 1的中点,求证:EF ∥平面AD 1G .[证明] 连接BC 1,则由E ,F 分别是BC ,CC 1的中点,知EF ∥BC 1. 又AB 綊A 1B 1綊D 1C 1,所以四边形ABC 1D 1是平行四边形, 所以BC 1∥AD 1,所以EF ∥AD 1.又EF ⊄平面AD 1G ,AD 1⊂平面AD 1G , 所以EF ∥平面AD 1G .已知有公共边AB 的两个全等的矩形ABCD 和ABEF 不同在一个平面内,P ,Q 分别是对角线AE ,BD 上的点,且AP =DQ .求证:PQ ∥平面CBE .证明:如图,作PM ∥AB 交BE 于点M ,作QN ∥AB 交BC 于点N ,连接MN ,则PM ∥QN ,PM AB=EP EA ,QN CD =BQ BD. ∵EA =BD ,AP =DQ ,∴EP =BQ . 又∵AB =CD ,∴PM 綊QN ,∴四边形PMNQ 是平行四边形,∴PQ ∥MN . 又∵PQ ⊄平面CBE ,MN ⊂平面CBE , ∴PQ ∥平面CBE .[典例] 已知,点P 是△ABC 所在平面外一点,点A ′,B ′,C ′分别是△PBC ,△PAC ,△PAB 的重心.(1)求证:平面A ′B ′C ′∥平面ABC . (2)求A ′B ′∶AB 的值.[解] (1)证明:如图,连接PA ′,并延长交BC 于点M ,连接PB ′,并延长交AC 于点N ,连接PC ′,并延长交AB 于点Q ,连接MN ,NQ .∵A ′,B ′,C ′分别是△PBC ,△PAC ,△PAB 的重心, ∴M ,N ,Q 分别是△ABC 的边BC ,AC ,AB 的中点,且PA ′A ′M =PB ′B ′N=2,∴A ′B ′∥MN .同理可得B ′C ′∥NQ .∵A ′B ′∥MN ,MN ⊂平面ABC ,A ′B ′⊄平面ABC , ∴A ′B ′∥平面ABC . 同理可证B ′C ′∥平面ABC .又∵A ′B ′∩B ′C ′=B ′,A ′B ′⊂平面A ′B ′C ′,B ′C ′⊂平面A ′B ′C ′, ∴平面A ′B ′C ′∥平面ABC . (2)由(1)知A ′B ′∥MN ,且A ′B ′MN =PA ′PM =23, 即A ′B ′=23MN .∵M ,N 分别是BC ,AC 的中点,∴MN =12AB .∴A ′B ′=23MN =23×12AB =13AB ,∴A ′B ′AB =13,即A ′B ′∶AB 的值为13.如图,在三棱柱ABC A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点. 求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA 1∥平面BCHG .证明:(1)∵GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC . ∵EF ⊄平面BCHG ,BC ⊂平面BCHG , ∴EF ∥平面BCHG .∵A 1G 綊EB ,∴四边形A 1EBG 是平行四边形, ∴A 1E ∥GB .∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG , ∴A 1E ∥平面BCHG .∵A 1E ∩EF =E ,∴平面EFA 1∥平面BCHG .[典例] 在三棱柱ABC A 1B 1C 1中,D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.[解] 如图,取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线, 所以MD 綊12AC ,OE 綊12AC ,因此MD 綊OE .连接OM ,从而四边形MDEO 为平行四边形,则DE ∥MO . 因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC , 所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .[活学活用]如图所示,在正方体ABCD A1B 1C 1D 1中,E ,F ,G ,H 分别为CC 1,C 1D 1,DD 1,CD 的中点.N 为BC 的中点.试在E ,F ,G ,H 四个点中找两个点,使这两个点与点N 确定一个平面α,且平面α∥平面BB 1D 1D .解:由面面平行的判定定理,若使平面α∥平面BB 1D 1D ,只需在平面α内有两条相交直线平行于平面BB 1D 1D ,或在平面α内有两条相交直线平行于平面BB 1D 1D 内的两条相交直线即可.连接HN ,HF ,NF ,易知HN ∥BD ,HF ∥DD 1,所以平面NHF ∥平面BB 1D 1D ,即在E ,F ,G ,H 四个点中,由H ,F 两点与点N 确定的平面α满足条件.层级一学业水平达标1.下列选项中,一定能得出直线m与平面α平行的是( )A.直线m在平面α外B.直线m与平面α内的两条直线平行C.平面α外的直线m与平面内的一条直线平行D.直线m与平面α内的一条直线平行解析:选C 选项A不符合题意,因为直线m在平面α外也包括直线与平面相交;选项B与D不符合题意,因为缺少条件m⊄α;选项C中,由直线与平面平行的判定定理,知直线m 与平面α平行,故选项C符合题意.2.已知α,β是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是( )A.平面α内有一条直线与平面β平行B.平面α内有两条直线与平面β平行C.平面α内有一条直线与平面β内的一条直线平行D.平面α与平面β不相交解析:选D 选项A、C不正确,因为两个平面可能相交;选项B不正确,因为平面α内的这两条直线必须相交才能得到平面α与平面β平行;选项D正确,因为两个平面的位置关系只有相交与平行两种.故选D.3.在三棱锥ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=2∶5,则直线AC与平面DEF的位置关系是( )A.平行B.相交C.直线AC在平面DEF内D.不能确定解析:选A ∵AE∶EB=CF∶FB=2∶5,∴EF∥AC.又EF⊂平面DEF,AC⊄平面DEF,∴AC ∥平面DEF.4.已知a,b,c,d是四条直线,α,β是两个不重合的平面,若a∥b∥c∥d,a⊂α,b⊂α,c⊂β,d⊂β,则α与β的位置关系是( )A.平行B.相交C.平行或相交D.以上都不对解析:选C 根据图1和图2可知α与β平行或相交.5.如图,下列正三棱柱ABCA1B1C1中,若M,N,P分别为其所在棱的中点,则不能得出AB∥平面MNP的是( )解析:选C 在图A、B中,易知AB∥A1B1∥MN,所以AB∥平面MNP;在图D中,易知AB ∥PN,所以AB∥平面MNP.故选C.6.已知l,m是两条直线,α是平面,若要得到“l∥α”,则需要在条件“m⊂α,l ∥m”中另外添加的一个条件是________.解析:根据直线与平面平行的判定定理,知需要添加的一个条件是“l⊄α”.答案:l⊄α7.已知A,B两点是平面α外两点,则过A,B与α平行的平面有________个.解析:当A,B两点在平面α异侧时,不存在这样的平面.当A,B两点在平面同侧时,若直线AB∥α,则存在一个,否则不存在.答案:0或18.如图,在五面体FEABCD中,四边形CDEF为矩形,M,N分别是BF,BC的中点,则MN与平面ADE的位置关系是________.解析:∵M,N分别是BF,BC的中点,∴MN∥CF.又四边形CDEF为矩形,∴CF∥DE,∴MN∥DE.又MN⊄平面ADE,DE⊂平面ADE,∴MN∥平面ADE.答案:平行9.如图所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使点P∉平面ABCD.求证:平面PAB∥平面EFG.证明:∵PE=EC,PF=FD,∴EF∥CD,又∵CD∥AB,∴EF∥AB.又EF⊄平面PAB,∴EF∥平面PAB.同理可证EG∥平面PAB.又∵EF∩EG=E,∴平面PAB∥平面EFG.10.已知正方形ABCD,如图(1)E,F分别是AB,CD的中点,将△ADE沿DE折起,如图(2)所示,求证:BF∥平面ADE.证明:∵E,F分别为AB,CD的中点,∴EB=FD.又∵EB∥FD,∴四边形EBFD为平行四边形,∴BF∥ED.∵DE⊂平面ADE,而BF⊄平面ADE,∴BF∥平面ADE.层级二应试能力达标1.若直线l不平行于平面α,且l⊄α,则( )A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交解析:选B 若在平面α内存在与直线l平行的直线,因l⊄α,故l∥α,这与题意矛盾.2.在正方体EFGHE1F1G1H1中,下列四对截面彼此平行的一对是( )A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G解析:选A 画出相应的截面如图所示,即可得答案.3.已知P是正方体ABCDA1B1C1D1的棱DD1上任意一点(不是端点),则在正方体的12条棱中,与平面ABP平行的有( )A.3个B.6个C.9个D.12个解析:选A 因为棱AB在平面ABP内,所以只要与棱AB平行的棱都满足题意,即A1B1,D1C1,DC.4.A,B是直线l外的两点,过A,B且和l平行的平面有( )A.0个B.1个C.无数个D.以上都有可能解析:选D 若AB与l平行,则和l平行的平面有无数个;若AB与l相交,则和l平行的平面没有;若AB与l异面,则和l平行的平面有一个.5.已知三棱柱ABCA1B1C1,D,E,F分别是棱AA1,BB1,CC1的中点,则平面DEF与平面ABC的位置关系是________.解析:∵D,E,F分别是棱AA1,BB1,CC1的中点,∴在平行四边形AA1B1B与平行四边形BB1C1C中,DE∥AB,EF∥BC,∴DE∥平面ABC,EF∥平面ABC.又DE∩EF=E,∴平面DEF∥平面ABC.答案:平行6.如图是一几何体的平面展开图,其中ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点.在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②直线PA∥平面BDG;③直线EF∥平面PBC;④直线EF∥平面BDG.其中正确的序号是________.解析:作出立体图形,可知平面EFGH∥平面ABCD;PA∥平面BDG;EF∥HG,所以EF∥平面PBC;直线EF与平面BDG不平行.答案:①②③7.如图所示,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点.求证:平面EFG∥平面BDD1B1.证明:如图所示,连接SB,SD,∵F,G分别是DC,SC的中点,∴FG ∥SD .又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1,∴FG ∥平面BDD 1B 1. 同理可证EG ∥平面BDD 1B 1, 又∵EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G ,∴平面EFG ∥平面BDD 1B 1.8.如图,已知底面是平行四边形的四棱锥P ABCD ,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?若存在,请证明你的结论,并说出点F 的位置;若不存在,请说明理由.解:当F 是棱PC 的中点时,BF ∥平面AEC .证明如下:取PE 的中点M ,连接FM ,则FM ∥CE .因为FM ⊄平面AEC ,EC ⊂平面AEC ,所以FM ∥平面AEC .由EM =12PE =ED ,得E 为MD 的中点,连接BM ,BD ,设BD ∩AC =O ,则O 为BD 的中点. 连接OE ,则BM ∥OE .因为BM ⊄平面AEC ,OE ⊂平面AEC , 所以BM ∥平面AEC .又因为FM ⊂平面BFM ,BM ⊂平面BFM ,FM ∩BM =M , 所以平面BFM ∥平面AEC ,所以平面BFM 内的任何直线与平面AEC 均没有公共点. 又BF ⊂平面BFM ,所以BF 与平面AEC 没有公共点, 所以BF ∥平面AEC .2.2.3&2.2.4 直线与平面平行的性质、平面与平面平行的性质预习课本P58~61,思考并完成以下问题1.直线与平面平行的性质 (1)文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b . [点睛] 定理中有三个条件:①直线a 和平面α平行,即a ∥α;②直线a 在平面β内,即a ⊂β;③平面α,β相交,即α∩β=b .三个条件缺一不可.2.平面与平面平行的性质 (1)文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . [点睛] (1)已知两个平面平行,虽然一个平面内的任何直线都平行于另一个平面,但是这两个平面内的所有直线并不一定相互平行,它们可能是平行直线,也可能是异面直线,但不可能是相交直线.(2)该定理提供了证明线线平行的另一种方法,应用时要紧扣与两个平行平面都相交的第三个平面.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若直线a∥平面α,直线a∥直线b,则直线b∥平面α( )(2)若直线a∥平面α,则直线a与平面α内任意一条直线都无公共点( )(3)若α∥β,则平面α内有无数条互相平行的直线平行于平面β( )答案:(1)×(2)√(3)√2.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系只能是( )A.平行B.平行或异面C.平行或相交D.异面或相交解析:选B 由题意,CD∥α,则平面α内的直线与CD可能平行,也可能异面.3.过正方体ABCDA1B1C1D1的顶点A1,C1,B的平面与底面ABCD所在的平面的交线为l,则l与A1C1的位置关系是________.解析:由于平面ABCD∥平面A1B1C1D1,平面A1B1C1D1∩平面A1C1B=A1C1,平面ABCD∩平面A1C1B=l,所以l∥A1C1.答案:平行[典例] 如图,P是平行四边形ABCD所在平面外的一点,M是PC的中点,在DM上取一点G,过点G和AP作平面,交平面BDM于GH.求证:AP∥GH.[证明] 如图,连接AC,交BD于点O,连接MO.∵四边形ABCD是平行四边形,∴点O是AC的中点.又∵点M是PC的中点,∴AP∥OM.又∵AP⊄平面BDM,OM⊂平面BDM,∴AP∥平面BDM.∵平面PAHG∩平面BDM=GH,AP⊂平面PAHG,∴AP∥GH.线面平行的性质和判定经常交替使用,也就是通过线线平行得到线面平行,再通过线面平行得线线平行.利用线面平行的性质定理解题的具体步骤:(1)确定(或寻找)一条直线平行于一个平面;(2)确定(或寻找)过这条直线且与这个平行平面相交的平面;(3)确定交线;(4)由性质定理得出线线平行的结论.[活学活用]如图所示,已知两条异面直线AB与CD,平面MNPQ与AB,CD都平行,且点M,N,P,Q依次在线段AC,BC,BD,AD上,求证:四边形MNPQ是平行四边形.证明:∵AB∥平面MNPQ,且过AB的平面ABC交平面MNPQ于MN,∴AB∥MN.又过AB的平面ABD交平面MNPQ于PQ,∴AB∥PQ,∴MN∥PQ.同理可证NP∥MQ.∴四边形MNPQ为平行四边形.[典例] 如图所示,已知三棱柱ABCA′B′C′中,D是BC的中点,D′是B′C′的中点,设平面A′D′B∩平面ABC=a,平面ADC′∩平面A′B′C′=b,判断直线a,b的位置关系,并证明.[解] 直线a,b的位置关系是平行.∵平面ABC∥平面A′B′C′,平面A′D′B∩平面ABC=a,平面A′D′B∩平面A′B′C′=A′D′,∴A′D′∥a,同理可得AD∥b.又D是BC的中点,D′是B′C′的中点,∴DD′綊BB′,而BB′綊AA′,∴DD′綊AA′,∴四边形AA′D′D为平行四边形,∴A′D′∥AD,因此a∥b.[活学活用]如图,平面α∥平面β,AB ,CD 是两异面直线,且A ,C ∈β,B ,C∈α,M ,N 分别在线段AB ,CD 上,且AM MB =CNND.求证:MN ∥α. 证明:如图,过点A 作AE ∥CD ,AE ∩α=E ,连接BE ,在平面ABE 内作MP ∥BE ,MP 交AE 于P ,连接NP ,DE ,则AM MB =APPE.∵AM MB =CN ND ,∴AP PE =CN ND. ∵平面α∥平面β,平面ACDE ∩α=ED , 平面ACDE ∩β=AC , ∴AC ∥ED ,∴PN ∥ED . ∵PN ⊄α,ED ⊂α,∴PN ∥α. ∵PM ∥BE ,PM ⊄α,BE ⊂α,∴PM ∥α. 又PM ∩PN =P , ∴平面PMN ∥平面α. ∵MN ⊂平面PMN ,∴MN ∥α.[典例] 在正方体ABCD A 1B 1C 1D 1中,如图. (1)求证:平面AB 1D 1∥平面C 1BD ;(2)试找出体对角线A 1C 与平面AB 1D 1和平面C 1BD 的交点E ,F ,并证明:A 1E =EF =FC .[证明] (1)因为在正方体ABCD A 1B 1C 1D 1中,AD 綊B 1C 1, 所以四边形AB 1C 1D 是平行四边形,所以AB 1∥C 1D . 又因为C 1D ⊂平面C 1BD ,AB 1⊄平面C 1BD . 所以AB 1∥平面C 1BD . 同理B 1D 1∥平面C 1BD .又因为AB 1∩B 1D 1=B 1,AB 1⊂平面AB 1D 1,B 1D 1⊂平面AB 1D 1, 所以平面AB 1D 1∥平面C 1BD .(2)如图,连接A1C 1交B 1D 1于点O 1,连接AO 1与A 1C 交于点E .又因为AO 1⊂平面AB 1D 1,所以点E 也在平面AB 1D 1内, 所以点E 就是A 1C 与平面AB 1D 1的交点;连接AC 交BD 于O ,连接C 1O 与A 1C 交于点F ,则点F 就是A 1C 与平面C 1BD 的交点.下面证明A 1E =EF =FC .因为平面A 1C 1C ∩平面AB 1D 1=EO 1, 平面A 1C 1C ∩平面C 1BD =C 1F , 平面AB 1D 1∥平面C 1BD ,所以EO 1∥C 1F .在△A 1C 1F 中,O 1是A 1C 1的中点,所以E 是A 1F 的中点,即A 1E =EF ; 同理可证OF ∥AE ,所以F 是CE 的中点, 即CF =FE , 所以A 1E =EF =FC .[活学活用]如图,在正方体ABCD A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN .求证:MN ∥平面AA 1B 1B .证明:如图,作MP ∥BB 1交BC 于点P ,连接NP , ∵MP ∥BB 1,∴CM MB 1=CPPB. ∵BD =B 1C ,DN =CM , ∴B 1M =BN , ∴CM MB 1=DN NB , ∴CP PB =DN NB, ∴NP ∥CD ∥AB .∵NP ⊄平面AA 1B 1B ,AB ⊂平面AA 1B 1B , ∴NP ∥平面AA 1B 1B .∵MP ∥BB 1,MP ⊄平面AA 1B 1B ,BB 1⊂平面AA 1B 1B , ∴MP ∥平面AA 1B 1B .又∵MP⊂平面MNP,NP⊂平面MNP,MP∩NP=P,∴平面MNP∥平面AA1B1B.∵MN⊂平面MNP,∴MN∥平面AA1B1B.层级一学业水平达标1.若直线l∥平面α,则过l作一组平面与α相交,记所得的交线分别为a,b,c,…,那么这些交线的位置关系为( )A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点解析:选A 因为直线l∥平面α,所以根据直线与平面平行的性质知l∥a,l∥b,l∥c,…,所以a∥b∥c∥…,故选A.2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH∥平面SCD,则( )A.GH∥SAB.GH∥SDC.GH∥SCD.以上均有可能解析:选B 因为GH∥平面SCD,GH⊂平面SBD,平面SBD∩平面SCD=SD,所以GH∥SD,显然GH与SA,SC均不平行,故选B.3.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH 时,下列结论中正确的是( )A.E,F,G,H一定是各边的中点B.G,H一定是CD,DA的中点C.BE∶EA=BF∶FC,且DH∶HA=DG∶GCD.AE∶EB=AH∶HD,且BF∶FC=DG∶GC解析:选D 由于BD∥平面EFGH,由线面平行的性质定理,有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.4.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,现给出四个命题:①⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β;②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;③⎭⎪⎬⎪⎫α∥c a ∥c⇒a ∥α; ④⎭⎪⎬⎪⎫a ∥γβ∥γ⇒a ∥β. 其中正确的命题是( ) A .①②③ B .①④ C .②D .①③④解析:选C ①α与β有可能相交;②正确;③有可能a ⊂α;④有可能a ⊂β.故选C. 5.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且PA =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245C .14D .20解析:选B 由α∥β得AB ∥CD .分两种情况:若点P 在α,β的同侧,则PA PC =PBPD,∴PB =165,∴BD =245;若点P 在α,β之间,则有PA PC =PBPD,∴PB =16,∴BD =24.6.如图,在正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵在正方体ABCD A 1B 1C 1D 1中,AB =2,∴AC =2 2.又E 为AD 的中点,EF ∥平面AB 1C ,EF ⊂平面ADC ,平面ADC ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 的中点,∴EF =12AC = 2.答案: 27.过三棱柱ABC A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.解析:记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共有6条.答案:68.已知a ,b 表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题: ①若α∩γ=a ,β∩γ=b ,且a ∥b ,则α∥β;②若a ,b 相交且都在α,β外,a ∥α,b ∥β,则α∥β; ③若a ∥α,a ∥β,则α∥β; ④若a ⊂α,a ∥β,α∩β=b ,则a ∥b .其中正确命题的序号是________.解析:①错误,α与β也可能相交;②正确,设a ,b 确定的平面为γ,依题意,得γ∥α,γ∥β,故α∥β;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.答案:②④9.如图,S 是平行四边形ABCD 所在平面外一点,M ,N 分别是SA ,BD 上的点,且AM SM =DNNB,求证:MN ∥平面SBC .证明:在AB 上取一点P ,使AP BP =AMSM,连接MP ,NP ,则MP ∥SB . ∵SB ⊂平面SBC ,MP ⊄平面SBC ,∴MP ∥平面SBC .又AM SM =DN NB ,∴AP BP =DNNB,∴NP ∥AD . ∵AD ∥BC ,∴NP ∥BC .又BC ⊂平面SBC ,NP ⊄平面SBC , ∴NP ∥平面SBC . 又MP ∩NP =P ,∴平面MNP ∥平面SBC ,而MN ⊂平面MNP , ∴MN ∥平面SBC .10.如图所示,四边形ABCD 是矩形,P ∉平面ABCD ,过BC 作平面BCFE 交AP 于点E ,交DP 于点F ,求证:四边形BCFE 为梯形.证明:∵四边形ABCD 是矩形, ∴BC ∥AD .∵AD ⊂平面APD ,BC ⊄平面APD , ∴BC ∥平面APD .又平面BCFE ∩平面APD =EF , ∴BC ∥EF ,∴AD ∥EF .又E ,F 是△APD 边上的点,∴EF ≠AD ,∴EF ≠BC . ∴四边形BCFE 是梯形.层级二 应试能力达标1.已知平面α,β,直线a ,b ,c ,若a ⊂α,b ⊂α,c ⊂α,a ∥b ∥c ,且a ∥β,b ∥β,c ∥β,则平面α与β的位置关系是( )A .平行B .相交C .平行或相交D .以上都不对解析:选C 由题意可知,平面α内不一定有两条相交直线与平面β平行,所以平面α与β有可能平行,也有可能相交.2.已知直线a ∥平面α,直线b ⊂平面α,则( ) A .a ∥b B .a 与b 异面 C .a 与b 相交D .a 与b 无公共点解析:选D 由题意可知直线a 与平面α无公共点,所以a 与b 平行或异面,所以两者无公共点.3.已知平面α∥平面β,a ⊂α,b ⊂β,则直线a ,b 的位置关系是( ) A .平行 B .相交 C .异面D .平行或异面解析:选D ∵平面α∥平面β,∴平面α与平面β没有公共点.∵a ⊂α,b ⊂β,∴直线a ,b 没有公共点,∴直线a ,b 的位置关系是平行或异面.4.如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段PA ,PB ,PC 于A ′,B ′,C ′,若PA ′∶AA ′=2∶3,则△A ′B ′C ′与△ABC 面积的比为( )A .2∶5B .3∶8C .4∶9D .4∶25解析:选D ∵平面α∥平面ABC ,平面PAB ∩α=A ′B ′,平面PAB ∩平面ABC =AB ,∴A ′B ′∥AB .又∵PA ′∶AA ′=2∶3,∴A ′B ′∶AB =PA ′∶PA =2∶5.同理B ′C ′∶BC =A ′C ′∶AC =2∶5.∴△A ′B ′C ′与△ABC 相似,∴S △A ′B ′C ′∶S △ABC =4∶25.5.如图,四边形ABDC 是梯形,AB ∥CD ,且AB ∥平面α,M 是AC 的中点,BD 与平面α交于点N ,AB =4,CD =6,则MN =________.解析:∵AB ∥平面α,AB ⊂平面ABDC ,平面ABDC ∩平面α=MN ,∴AB ∥MN .又M 是AC 的中点,∴MN 是梯形ABDC 的中位线,故MN =12(AB+CD )=5.答案:56.如图,四边形ABCD 是空间四边形,E ,F ,G ,H 分别是四边上的点,它们共面,且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,则当四边形EFGH 是菱形时,AE ∶EB =________.解析:∵AC ∥平面EFGH ,∴EF ∥AC ,HG ∥AC ,∴EF =HG =BE ABm .同理,EH =FG =AE AB n ,∴BE AB m =AEABn ,∴AE ∶EB =m ∶n . 答案:m ∶n7.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,E ,F ,P ,Q 分别是BC ,C 1D 1,AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1; (2)求PQ 的长;(3)求证:EF ∥平面BB 1D 1D . 解:(1)证明:如图所示.连接AC ,CD 1,∵P ,Q 分别是AD 1,AC 的中点, ∴PQ ∥CD 1. 又PQ ⊄平面DCC 1D 1,CD 1⊂平面DCC 1D 1,∴PQ ∥平面DCC 1D 1.(2)由(1)易知PQ =12D 1C =22a .(3)证明:取B 1C 1的中点E 1,连接EE 1,FE 1,则有FE 1∥B 1D 1,EE 1∥BB 1,又FE 1∩EE 1=E 1,B 1D 1∩BB 1=B 1,∴平面EE 1F ∥平面BB 1D 1D .又EF ⊂平面EE 1F ,所以EF ∥平面BB 1D 1D .8.如图,在三棱柱ABC A 1B 1C 1中,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2,若MB ∥平面AEF ,试判断点M 在何位置.解:若MB ∥平面AEF ,过F ,B ,M 作平面FBMN 交AE 于N ,连接MN ,NF .因为BF ∥平面AA 1C 1C ,BF ⊂平面FBMN ,平面FBMN ∩平面AA 1C 1C =MN ,所以BF ∥MN .又MB ∥平面AEF ,MB ⊂平面FBMN ,平面FBMN ∩平面AEF=FN ,所以MB ∥FN ,所以BFNM 是平行四边形, 所以MN ∥BF ,MN =BF =1. 而EC ∥FB ,EC =2FB =2, 所以MN ∥EC ,MN =12EC =1,故MN 是△ACE 的中位线. 所以M 是AC 的中点时,MB ∥平面AEF .。