spss-生存分析

合集下载

SPSS数据分析—生存分析

SPSS数据分析—生存分析

生存分析是对生存时间进行统计分析的一种技术,所谓生存时间,就是指从某一时间点起到所关心的事件发生的这段时间。

这里的时间不一定就是钟表日历上的时间,也有可能是其他的度量单位,比如长度单位等。

生存时间有两个特点:1.存在删失,是指由于某种原因导致生存时间没用被准确或完整的记录下来,这种情况很常见,如果不存在删失,那么生存分析和一般统计方法没用太大区别,但是一旦出现删失,就必须考虑其影响,一般统计方法将不再适用。

2.生存时间非负,且分布常常右偏,导致基于正态分布理论的常规统计方法不适用。

用生存分析就可以解决以上问题。

生存分析的几个就基本概念1.事件也称为失效事件,是指由研究者所规定的事件的结局,这在生存分析中是一个非常重要的概念,其定义应该非常明确,并且应该在研究开始阶段就要确定。

失效事件并不一定是消极的,也可以是正面、积极的,这取决于研究目的。

2.生存时间指从某一时间点起到所关心的事件也就是实效事件发生前的这段时间,生存时间的起点需要人为规定3.删失是指观察对象的终止观察并不是由于实效事件的发生,而是由于其他原因导致终止,这种情况往往不知道终止的时间点,因此会造成其时间数据不完整,并且删失需要在各组之间随机,如果删失的出现并不随机,则不能用生存分析4.生存函数用于描述生存时间分布的工具,当t=0时,生存函数取值为1,随着时间推移t 增大,生存函数的取值逐渐减小。

5.风险函数也是用于描述生存时间分布,表示随机变量T已至时点t的条件下,在接下来的一瞬间失效事件发生的概率生存分析的基本内有1.刻画生存时间分布2.生存时间分布的组间比较3.评价生存时间分布影响因子的效果生存分析可以分为参数法、半参数法、非参数法三种,参数法相当于非线性回归,半参数法有Cox回归,非参数法有寿命表法和Kaplan-Meier法,SPSS中的生存分析都集中在生存函数过程中,下面我们分别介绍这几种方法一、Kaplan-Meier法分析—生存函数—Kaplan-Meier例:现在有一组临床实验数据,抽取44名患者,被随机分到新药组和对照组,每组22名,对此进行生存分析研究,数据如下可见记录生存时间数据至少需要两个变量,一个是时间变量,另一个是时间状态变量,用于表示该时间点是失效事件发生的时间还是删失的时间,如果有多个组别,还需要加上组别变量,因此本例中一共有三个变量,分别是时间变量,指示变量,组别变量,指示变量中,0表示没有删失,1表示失访,2表示研究结束时仍未发生失效事件以上数据的组成样本量较小,并且每个观察个体的时间能够被准确记录,因此可以使用Kaplan-Meier法二、寿命表法Kaplan-Meier法仅适用于每个观察个体的时间能够被准确记录,但是有时候我们收集的数据组成为分段记录的,这时应该使用寿命表法分析—生存函数—寿命表例,对114名患者进行随访,数据如下这种类型的数据组成形式非常类似于对计数资料分组之后的频数表,在本例中,time为时间变量,died为指示变量,0为删失,1为失效事件,num为人数。

生存分析SPSS

生存分析SPSS
以下7种方法。


2021/10/10
22
三、主要输出结果
1.分析例数描述
案 例 处 理摘 要
分析
事件 a
中可 用的
删失
案例
合计
删除
带有缺失值的案例
的案 例
带有负时间的案例
层中的最早事件之
前删失的案例
合计
N 26 37 63 0 0
0
0
合计
63
a. 因变量: t
2021/10/10
23
百分比 41.3% 58.7% 100.0% .0% .0% .0%
(4)预测:建立cox回归预测模型。
生存分析(Survival Analysis)菜单
寿命表(Life Tables)过程
Life tables 过程用于(小样本和大样本资料): 1. 估计某生存时间的生存率,以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 对某一研究因素不同水平的生存时间分布的比较。 4. 控制另一个因素后对研究因素不同水平的生存时间分
1
35 50 1 0 0 1 0 26
1
36 33 1 1 0 0 0 120
0
37 57 1 1 1 0 0 120
0
38 48 1 0 0 1 0 120
0
39 28 0 0 0 1 0
3
1
40 54 1 0 1 1 0 120
1
41 35 0 1 0 1 1
7
1
42 41)为了比较不同手术方法治疗肾上腺 肿瘤的疗效,某研究者随机将43例病人分成两组,甲组 23例、乙组20例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。

生存分析SPSS

生存分析SPSS

生存分析SPSS生存分析是一种统计分析方法,用于研究个体在其中一种特定事件发生之前的生存时间或其持续时间。

生存数据通常是从健康、病理学或其他研究中收集到的,常见的应用有医学领域的生存率研究、产品的寿命分析等。

SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它提供了强大的功能和易于使用的界面,可以进行生存分析和其他统计分析。

生存分析的目的是探讨事件发生的概率和时间。

与传统的统计分析方法不同,生存分析考虑了数据中的故障时间,即个体的生存时间。

生存时间可以是不同个体之间的差异,也可以是同一个体在不同时间点的变化。

在SPSS中进行生存分析,首先需要准备生存数据集。

生存数据集通常包括以下几个要素:个体的生存时间,事件是否发生,个体的特征变量等。

个体的生存时间可以是连续的,也可以是离散的。

事件是否发生通常用0表示未发生,1表示发生。

个体的特征变量可以是性别、年龄、治疗方式等。

在SPSS中进行生存分析,主要采用的方法是Kaplan-Meier生存曲线和Cox比例风险模型。

Kaplan-Meier生存曲线是一种非参数方法,用于估计生存时间和生存概率。

它将个体的生存时间按照事件是否发生进行分类,并计算每个时间点上的生存概率。

SPSS中可以通过选择“Analyze”菜单下的“Survival”子菜单中的“Nonparametric Tests”来进行Kaplan-Meier 生存曲线分析。

Cox比例风险模型是一种半参数方法,用于估计生存时间和危险因素对生存的影响。

它可以考虑多个危险因素,并通过估计每个危险因素的风险比来评估其对生存的影响。

SPSS中可以通过选择“Analyze”菜单下的“Survival”子菜单中的“Cox Regression”来进行Cox比例风险模型分析。

除了Kaplan-Meier生存曲线和Cox比例风险模型,SPSS还提供了其他生存分析方法,如Log-rank检验、Proportional Hazard模型等。

SPSS生存分析

SPSS生存分析

SPSS生存分析生存分析(Survival Analysis)是一种统计方法,用于研究时间到达一些特定事件的概率。

该方法适用于各种学科领域,包括医学、社会科学、工程等,可以分析个体在不同时间点发生一些事件的风险。

生存分析的基本概念是生存函数和生存时间。

生存函数描述了在给定时间点之前没有发生事件的个体比例。

生存时间是指个体从起始时间点到达特定事件的时间。

生存分析的目标是估计生存函数,并比较不同因素对生存时间的影响。

SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它提供了进行生存分析的功能。

以下将以SPSS进行生存分析为例,介绍生存分析的具体步骤。

首先,需要准备数据。

数据应包括个体的起始时间点和观察时间(或终止时间),以及是否发生特定事件的信息。

数据应按照个体的起始时间点排序。

在SPSS中,选择"Analyze"菜单下的"Survival"子菜单,然后选择"Kaplan-Meier"。

在弹出的窗口中,将起始时间点和观察时间字段分别拖放到"Time"和"Censored Time"框中,将事件发生与否的字段拖放到"Censoring Variable"框中。

点击"OK"按钮运行分析。

SPSS将输出生存函数曲线图和表格。

生存函数曲线图显示了在不同时间点的生存概率,曲线下降表示生存概率下降,即事件发生的风险增加。

生存函数表格列出了不同时间点的生存概率和标准误差。

通过观察曲线和表格,可以初步了解生存情况和影响生存的因素。

如果需要进一步比较不同因素对生存时间的影响,可以使用SPSS的"Analyze"菜单下的"Survival"子菜单中的其他功能,比如"Log-rank"检验、Cox回归模型等。

生存分析 SPSS

生存分析 SPSS
统计学
─从数据到结论
第十七章 生存分析
什么是生存分析的内容?
• “我的期望年龄是多少岁?” • “到底这个新疗法能使得这类绝症 患者多存活多久?”“还有什么别 的因素和存活长短有关?” • 保险公司也要考虑各种人群的寿命, 以确保其人寿保险或医疗保险既具 有竞争力又有利可图。 • 在工程上,人们也会考虑一个材料, 一个原件,甚至一个设备的寿命是 多少。
G roup
. 00 1. 00 0. 8
1. 0
0. 6
0. 4
根据Cox模型所估计的 治疗组(group=1)和对照 组(group=0)的生存函数 图
Cum Survival
0. 2
0. 0 0. 00 20. 00 40. 00 60. 00 80. 00
Survival Time
可以得到各种点图(2)
本章的内容和公式(基本)
本章的内容和公式(Kaplan-Meier)
本章的内容和公式(Cox模型)
组别
1.00
存活时间
治疗组与对照组的生存函数是否不同:三种检验 • 在存在任意右删失(例18.1数据的删失就是右 删失)的情况下,利用SPSS软件可以得到三种 对治疗组和对照组进行比较的检验;检验的 零假设均为:这两组的生存函数相同。这三 种检验是对数秩(logrank)检验(Mantel-Cox 检验)、Breslow检验(对前面Wilcoxon检验的 改进),以及Tarone-Ware检验。通过软件计 算可以得到这三种检验的结果:
• 在上面得到的生存函数的估计下,可 以对治疗组和对照组进行比较。所用 的检验为Wilcoxon (Gehan)检验。 • 这里的零假设是:这两组的生存函数 相同。 • 可以很容易从计算机输出得到检验的 p-值等于0.0564。因此,如取显著性 水平为0.05,就不能拒绝零假设。

SPSS-生存分析

SPSS-生存分析
△t→0
.
Cox回归模型
• 1972年英国统计学家D.R.Cox提出了比例 风险模型(the Proportional Hazard Model), 又称为Cox回归模型。
• 其模型表达式为
.
寿命表和KM方法
• 寿命表和KM方法都是通过比较分布函数来 得出几组观测数据之间是否存在差异。
• 寿命表把观测区间划分为相等的小区间, 然后计算生存函数,适用于大样本数据。
SPSS 生存分析的理论与应用
Cox回归应用演示
.
生存分析和生存数据
• 生存分析广泛应用于生物医学,工业,社 会科学,商业等领域,例如肿瘤患者经过 治疗后生存的时间,电子设备的寿命,罪 犯假释的时间,婚姻的持续时间,保险人 的索赔等。这类问题数据的特点是在研究 期间结束时,所要研究的事件还没有发生, 或过早终止,使要收集的数据发生缺失, 这样的数据称为生存数据,生存分析就是 要处理、分析生存数据。

2 小细胞癌症 3 腺癌
4 大细胞 肺癌
kps
判断标准 ≤30 住院治疗 30 住院和家庭 ≥ 家庭治
~ 治疗
60 疗
60
.
Cox回归分析
• 首先打开工具栏 中Analysis选项 下Survival选项中 的Cox回归的选 项,如左图所示。
.
Cox回归分析
• 从左面的变量中 选择time变量, 送入右面的时间 框中。
• 选择status变量 送入状态框中。
• 单击定义事件按 钮。
.
Cox回归示例
• 在单值选项中填入0, 表示事件发生。
• 点击继续按钮。
.
Cox回归示例
• 选择therapy, cell, kps, diagtime, age, prior 作为协 变量。

19、生存分析SPSS.

19、生存分析SPSS.
生存分析SPSS过程
(SPSS of Survival
Analysis)
生存分析的理论复习 1. 何为生存分析?
生存分析(survival analysis)是将事件的结果(终点事 件)和出现结果经历的时间结合起来分析的一种统计分析方法。
2. 生存分析的目的:
(1)描述生存过程:估计不同时间的总体生存率,计算中位生存期, 绘制生存函数曲线。统计方法包括Kaplan-Meier(K-M)法、寿 命表法。 (2)比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的 生存率,以了解哪种治疗方案较优。统计方法log-rank检验等。 (3)影响因素分析:研究某个或某些因素对生存率或生存时间的影 响作用。如为改善脑瘤病人的预后,应了解影响病人预后的主要 因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。 统计方法cox比例风险回归模型等。 (4)预测:建立cox回归预测模型。
0.2406 0.7594 0.7594 0.0221 0.2676 0.7324 0.5562 0.0257 0.2452 0.7548 0.4198 0.0255 0.1656 0.8344 0.3503 0.0248 0.1702 0.8298 0.2937 0.0239 0.0773 0.9227 0.2682 0.0235 0.0537 0.9463 0.2538 0.0233 0.0155 0.9845 0.2499 0.0233 0.0504 0.9496 0.2373 0.0232 0.0388 0.9612 0.2281 0.0232
一、建立数据文件(data-01.sav)
定义3个变量:
生存时间变量:t,值标签“生存时间(年)”
生存状态变量 :status,取值“1=死亡,0=删失或存活” 频数变量:freq,值标签“人数”

利用spss做生存分析课程设计

利用spss做生存分析课程设计

利用spss做生存分析课程设计一、教学目标本课程的目标是使学生掌握生存分析的基本概念、方法和应用,能够熟练使用SPSS软件进行生存分析,并能够对生存数据分析结果进行解释和报告。

具体的学习目标包括:1.理解生存分析的基本概念,包括生存时间、事件发生时间和风险比等。

2.掌握生存分析的基本方法,包括Kaplan-Meier法、Cox比例风险模型等。

3.熟悉SPSS软件中进行生存分析的操作方法和步骤。

4.能够使用SPSS软件进行生存时间的收集和整理。

5.能够使用SPSS软件进行生存分析,包括Kaplan-Meier法和Cox比例风险模型。

6.能够对生存分析结果进行解释和报告,包括生存曲线、风险比、显著性检验等。

情感态度价值观目标:1.培养学生对生存数据分析的兴趣和主动性,提高学生对数据分析的敏感性和判断力。

2.培养学生对数据的尊重和诚实的态度,要求学生在数据分析中严谨、客观、公正。

二、教学内容本课程的教学内容主要包括生存分析的基本概念、方法和SPSS软件的应用。

具体的教学大纲如下:1.生存分析概述:介绍生存分析的基本概念、定义和应用领域。

2.Kaplan-Meier法:介绍Kaplan-Meier生存曲线及其计算方法,包括生存时间和事件发生时间的收集和整理。

3.Cox比例风险模型:介绍Cox比例风险模型的基本原理和计算方法,包括风险比、显著性检验等。

4.SPSS软件操作:介绍SPSS软件中进行生存分析的操作方法和步骤,包括数据输入、生存分析命令和结果输出。

三、教学方法本课程的教学方法采用讲授法、案例分析法和实验法相结合的方式。

具体方法如下:1.讲授法:通过教师的讲解和演示,向学生传授生存分析的基本概念、方法和SPSS软件的操作技巧。

2.案例分析法:通过分析具体的生存分析案例,使学生能够将理论知识与实际应用相结合,提高学生的分析能力和判断力。

3.实验法:通过实验操作,使学生能够亲自动手进行生存分析,培养学生的实践能力和操作技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果是三组或多组且多组之间有差异,再做两两比较,如下:
试 例 估 : 计下 生表 存是 率对 ? 949 5 名 卵 巢 癌 病 人 的 随 访 结 果 , 时 间 均 为 年 ,
加权后
中位生存期为:3.2148 Nhomakorabea 例:
某医师收集20例脑瘤患者甲、乙两种疗法的生存时间,试估计两疗法组 的生存率,并比较两疗法组生存率有无差异?
甲组 总共11人 存活8人 死亡3人 生存率27.3%
生存时间 状态 累积生存率 标准误 累计死亡例数 剩余存活例数
生存时间 标准误 95%CI(上限 下限)
中位生存时间 标准误 95%CI(上限 下限) 甲乙两种疗法log-Rank比较的卡方值 自由度 p值
相关文档
最新文档