高二立体几何复习
新高二数学总复习(4)--立体几何知识要点讲义

新高二数学总复习(4)—必修二立体几何知识要点归纳讲义第一章空间几何体一、柱、锥、台、球的结构特征(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.(2) 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.二,空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
三、空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)2、空间几何体的体积 ①柱体的体积V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π= 考题精炼1、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( ) A 长方体或圆柱 B 正方体或圆柱 C 长方体或圆台 D 正方体或四棱锥2.直角三角形绕它最长边(即斜边)旋转一周得到的几何体为( )A. B . C . D .3.有一个几何体的正视、侧视、俯视图分别如图所示,则该几何体的表面积为( ) A .π12 B .π24 C .π36 D .π48222r rl Sππ+= 656 54【2012高考浙江文3】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是A.1cm 3B.2cm 3C.3cm 3D.6cm 35.已知三个球的体积之比为1:8:27,则它们的表面积之比为( ) A .1:2:3 B .1:4:9 C .2:3:4 D .1:8:276、一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A ππ221+B ππ441+C ππ21+D ππ241+7、若圆锥的侧面展开图是圆心角为1200,半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A 3:2B 2:1C 4:3D 5:38、已知长方体一个顶点上三条棱分别是3、4、5,且它的顶点都在同一个球面上,则这个球的表面积是( ) A 220 B π225 C π50 D π2009、已知正方体外接球的体积是π332,则正方体的棱长为( ) A 22 B332 C 324 D 33410.【2012高考新课标文8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π 11【2012高考广东文7】某几何体的三视图如图1所示,它的体积为A. 72πB. 48πC. 30πD. 24π12.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B .16162+C .48D .16322+第二章、空间点、线、面、的位置关系一、基本公理1.平面的基本性质公理1如果一条直线上的两个点都在一个平面内,那么这条直线上的所有点都在这个平面内,,A B l A B α∈⎫⎬∈⎭l α⇒⊂2.平面的基本性质公理2(确定平面的依据) 经过不在一条直线上的三个点,有且只有一个平面3.平面的基本性质公理2的推论(1)经过一条直线和直线外的一点,有且只有一个平面 (2)经过两条相交直线,有且只有一个平面 (3)经过两条平行直线,有且只有一个平面4.平面的基本性质公理3如果两个不重合的平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线图1正视图 俯视图侧视图55635563 侧(左)视图俯视图 4 4正(主)视图2A A αβ∈⎫⎬∈⎭⇒lA lαβ=∈5.异面直线的定义与判定(1)定义:不同在任何一个平面内的两条直线,既不相交也不平行(2)判定:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线二、空间直线与平面平行的判定及其性质【知识点总结】 空间中的平行问题 1.直线与直线平行(1)平行四边形ABCD (矩形,菱形,正方形)对边平行且相等,//AB CD ,//BC AD (2)三角形的中位线,E F 分别是,AB AC 的中点中位线平行且等于底边的一半,//EF BC 2.直线与平面平行(1)线面平行的判定定理如果不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 a α⊄,b α⊂,////a b a α⇒ (2)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行 //l α,l β⊂,//m l m αβ=⇒ 3.平面与平面平行1,面面平行的判定定理(1)如果一个平面内有两条相交直线,分别平行于另一个平面,那么这两个平面平行a α⊂,b α⊂,a b A = ,//a β,////b βαβ⇒(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
高二数学立体几何知识点

高二数学立体几何知识点立体几何是数学中一个重要的分支,它主要研究空间中的图形和体积。
在高二数学中,我们学习了许多关于立体几何的知识点,下面将逐一介绍。
一、平行线与平面1. 平行线与平面的关系平行线与平面的关系是立体几何中的基础概念。
当一条直线与平面上的两条平行线相交时,我们称这条直线与平面平行。
2. 平面的方程我们可以通过线的方程得到平面的方程。
常见的平面方程有点法式、两平行线式和一般式等形式。
根据实际情况,我们可以选择合适的方法来表示平面。
二、点与线的位置关系1. 点与直线的位置关系点与直线的位置关系有三种情况,即点在线上、点在线外以及点在线的延长线上。
通过判断点与直线的位置关系,可以解决很多几何问题。
2. 点与平面的位置关系点与平面的位置关系也有三种情况,即点在平面上、点在平面外以及点在平面的垂线上。
这些位置关系对于求解立体几何问题非常重要。
三、直线与平面的交点1. 直线与平面的交点当一条直线与平面相交时,交点的性质与直线和平面的位置关系有关。
如果直线在平面上,交点将是一个点;如果直线与平面平行,则没有交点。
2. 直线与平面的距离直线与平面之间的距离是指从直线上的一点到平面的最短距离。
我们可以利用向量、垂线等方法来求解直线与平面的距离。
四、多面体的表面积和体积1. 多面体的表面积多面体的表面积是指多个平面所围成的立体图形的周长之和。
对于不同形状的多面体,我们可以采用不同的方法来计算其表面积。
2. 多面体的体积多面体的体积是指多个平面所围成的立体图形的体积。
通过计算底面积和高度,可以得到多面体的体积。
五、圆柱、圆锥和球体1. 圆柱的性质圆柱是一个底面为圆形的立体图形,圆柱的侧面是由两个平行于圆底的矩形组成。
我们可以通过计算底面积和高度来求解圆柱的表面积和体积。
2. 圆锥的性质圆锥是一个底面为圆形且顶点与底面圆心连线垂直的立体图形。
我们可以根据底面积和高度来计算圆锥的表面积和体积。
3. 球体的性质球体是一个所有点到球心的距离都相等的立体图形,球体的表面积和体积的计算公式与圆的相关公式有很大的类似性。
高中数学必修二立体几何笔记整理

高中数学必修二立体几何笔记整理一、空间几何体。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类。
- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
- 正棱柱:底面是正多边形的直棱柱。
- 性质。
- 侧棱都平行且相等。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类。
- 按底面多边形的边数分为三棱锥(四面体)、四棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面中心的棱锥。
- 性质。
- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥等截得的棱台分别叫做三棱台、四棱台等。
- 性质。
- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,且对应边互相平行。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫做圆柱。
- 性质。
- 圆柱的轴截面是全等的矩形。
- 圆柱的侧面展开图是矩形。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫做圆锥。
- 性质。
- 圆锥的轴截面是等腰三角形。
- 圆锥的侧面展开图是扇形。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
- 性质。
- 圆台的轴截面是等腰梯形。
- 圆台的侧面展开图是扇环。
7. 球。
- 定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
- 性质。
高二立体几何单元复习

高二数学立体几何全章复习基础知识1. 平面图形直观图的画法(斜二测画法):我们为了使平面图形具有立体感觉,我们会用斜二侧画法来作图; 具体规则如下:① 在已知图形中取互相垂直的x 轴和y 轴,两轴交于O ;② 画直观图时,把它们画成对应的x ’轴和y ’轴‘两轴交于O ’,使得∠x ’y ’O ’= ; ③ 已知图形中平行x 轴和y 轴的线段,在直观图中分别画成 x ’轴或y ’轴的线段;④ 已知图形中平行于x 轴的线段,在直观图中长度 ;已知图形中平行于y 轴的线段,在直观图中 长度 。
例1:画出水平放置边长为2的正三角形的直观图。
例2:右图是⊿AOB 用斜二测画法画出的直观图⊿A ′O ′B ′,则⊿AOB 的面积是2. 关于多面体的概念辨析:1)底面是正多边形的棱柱是正棱柱; 2)多面体至少四个面;3)长方体的长宽高分别为a,b,c ,则它的对角线长d =4)如果一个多面体的两个面相互平行,其他面都是平行四边形,那么这个多面体是棱柱; 5)底面是平行四边形的四棱柱是平行六面体;6)有一个面是多边形,其余各面都是三角形的多面体是棱锥;7)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;8)一个棱锥的各条棱都相等,那么这个棱锥一定不是六棱锥;9)各侧棱相等的了棱锥是正棱锥;10)正四面体一定是正棱锥;3.有关几何体的计算:1)正三棱锥P-ABC中,侧棱长为3,侧面三角形的顶角为450,从A绕棱锥侧面一周后回到A点,最近的距离为;2)正四面体的棱长为a,则它的高为;3)一个棱锥被平行底面的平面截成两部分,下面的棱台的上下底的对应边长之比为2︰5,已知原棱锥的高为10,则棱台高为;4)侧面都是直角三角形的正三棱锥,底面边长为a,该三棱锥的表面积为。
5)如图,已知ABCD-A1B1C1D1是棱长为a的正方体,①棱锥A1-ABCD的体积为;②棱锥C1-ABD的体积为;③C1D1的中点为Q,则棱锥Q- AA1C的体积为;1 B1 B1 B④ E 、F 分别是冷AA 1和CC 1的中点,则四棱锥A 1-EBFD 1的体积为 ;⑤ P 是上底面上任一点,棱锥P-ABCD 的体积为 ;⑥ 棱锥A 1-BC 1D 的体积为6)三棱锥A-BCD 的两条棱AB ,CD ,满足AB=CD=6,其余各棱长均为5, (1)求三棱锥的全面积和体积; (2)求三棱锥内切球的半径。
立体几何专题复习(自己精心整理)

专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
(完整版)必修2立体几何复习(知识点+经典习题)(可编辑修改word版)

必修二立体几何知识点与复习题一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行1、定义:两面成直二面角,则两面垂直2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质1、二面角的平面角为90︒2、在一个平面内垂直于交线的直线必垂直于另一个平面3、相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面1、异面直线所成的角的取值范围是:0︒<≤ 90︒2、直线与平面所成的角的取值范围是:0︒≤≤90︒3、斜线与平面所成的角的取值范围是:0︒<≤90︒(0︒,90︒][0︒,90︒](0︒,90︒]4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面4、二面角的大小用它的平面角来度量;取值范围是:0︒<≤180︒十、三角形的心1、内心:内切圆的圆心,角平分线的交点2、外心:外接圆的圆心,垂直平分线的交点3、重心:中线的交点4、垂心:高的交点考点一,几何体的概念与性质【基础训练】1.判定下面的说法是否正确:(1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱.(2)有两个面平行,其余各面为梯形的几何体叫棱台.2.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形。
高二上册立体几何知识点

高二上册立体几何知识点一、几何体的定义和分类几何体是指由许多平面图形组成的立体图形,主要包括以下几种分类:1. 三棱柱:由两个底面和三个矩形的侧面组成。
2. 四棱柱:由两个底面和四个矩形的侧面组成。
3. 五棱柱:由两个底面和五个等边三角形的侧面组成。
4. 六棱柱(正六棱柱):由两个底面和六个全等的正三角形的侧面组成。
5. 正四棱锥:由一个底面(正四边形)和四个全等的三角形的侧面组成。
6. 正四面体:由四个全等的正三角形的面组成。
7. 正六面体(立方体):由六个全等的正方形的面组成。
8. 正八面体:由八个全等的正三角形的面组成。
9. 正十二面体:由十二个全等的正五边形的面组成。
10. 正二十面体:由二十个全等的正三角形的面组成。
二、常见几何体的性质1. 体积和表面积:体积是指几何体所占的三维空间大小,表面积是指几何体外表面的总面积。
2. 相交关系:几何体之间可以相交、相切或者不相交。
3. 对称性:一些几何体具有对称性,可以根据某些轴或平面进行对称。
4. 轴对称几何体:具有轴对称性的几何体可以围绕某个轴进行旋转,使得旋转后的形状与原始形状完全相同。
5. 平面对称几何体:具有平面对称性的几何体可以通过平面反射,使得反射后的形状与原始形状完全相同。
三、立体几何的计算公式1. 三棱柱的体积计算公式:V = 底面积 ×高,其中底面积指底面的面积,高指垂直于底面的高度。
2. 四棱柱的体积计算公式:V = 底面积 ×高,其中底面积指底面的面积,高指垂直于底面的高度。
3. 六棱柱(正六棱柱)的体积计算公式:V = 底面积 ×高,其中底面积指底面的面积,高指垂直于底面的高度。
4. 正四棱锥的体积计算公式:V = (底面积 ×高)/ 3,其中底面积指底面的面积,高指锥的高度。
5. 正四面体的体积计算公式:V = (底面积 ×高)/ 3,其中底面积指底面的面积,高指四面体的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节简单几何体A组1.下列命题中,不正确的是______.①棱长都相等的长方体是正方体②有两个相邻侧面为矩形的棱柱为直棱柱③有两个侧面与底面垂直的棱柱为直棱柱④底面为平行四边形的四棱柱叫平行六面体解析:由平行六面体、正方体的定义知①④正确;对于②,相邻两侧面垂直于底面,则侧棱垂直于底面,所以该棱柱为直棱柱,因而②正确;对于③,若两侧面平行且垂直于底面,则不一定是直棱柱.答案:③2.(2009年高考全国卷Ⅱ改编)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图的平面图形,则标“△”的面的方位是________.解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.答案:北3.(2009年高考安徽卷)对于四面体ABCD,下列命题正确的是________.(写出所有正确命题的编号).①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.解析:②中的四面体如果对棱垂直,则垂足是△BCD的三条高线的交点;③中如果AB与CD垂直,则两条高的垂足重合.答案:①④⑤4.下列三个命题,其中正确的有________个.①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余各面都是等腰梯形的六面体是棱台.解析:①中的平面不一定与底面平行,②③可用反例图去验证.答案:0 5.下面命题正确的有________个.①长方形绕一条直线旋转一周所形成的几何体是圆柱②过圆锥侧面上一点有无数条母线③三棱锥的每个面都可以作为底面④圆锥的轴截面(过轴所作的截面)是等腰三角形解析:①②错,③④正确.①错在绕一条直线,应该是绕长方形的一条边所在的直线;②两点确定一条直线,圆锥的母线必过圆锥的顶点,因此过圆锥侧面上一点只有一条母线.答案:26.如图所示,长方体的长、宽、高分别为4 cm,3 cm,5 cm,一只蚂蚁从A到C1点沿着表面爬行的最短距离是多少?解:长方体ABCD-A1B1C1D1的表面可如下图三种方法展开后,A、C1两点间的距离分别为:(5+4)2+32=310,(5+3)2+42=45,(3+4)2+52=74,三者比较得74是从点A沿表面到C1的最短距离,∴最短距离是74 cm.B组2.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是______.(写出所有真命题的编号)解析:对于①,设四面体为D-ABC,过棱锥顶点D作底面的垂线DE,过E分别作AB,BC,CA边的垂线,其垂足依次为F,G,H,连结DF,DG,DH,则∠DFE,∠DGE,∠DHE分别为各侧面与底面所成的角,所以∠DFE=∠DGE =∠DHE,于是有FE=EG=EH,DF=DG=DH,故E为△ABC的内心,又因△ABC为等边三角形,所以F,G,H为各边的中点,所以△AFD≌△BFD≌△BGD≌△CGD≌△AHD,故DA=DB=DC,故棱锥为正三棱锥.所以为真命题.对于②,侧面为等腰三角形,不一定就是侧棱为两腰,所以为假命题.对于③,面积相等,不一定侧棱就相等,只要满足斜高相等即可,所以为假命题.对于④,由侧棱与底面所成的角相等,可以得出侧棱相等,又结合①知底面应为正三角形,所以为真命题.综上,①④为真命题.答案:①④3.关于如图所示几何体的正确说法为________.①这是一个六面体②这是一个四棱台③这是一个四棱柱④这是一个四棱柱和三棱柱的组合体⑤这是一个被截去一个三棱柱的四棱柱答案:①②③④⑤5.给出以下命题:①底面是矩形的四棱柱是长方体;②直角三角形绕着它的一边旋转一周形成的几何体叫做圆锥;③四棱锥的四个侧面可以都是直角三角形.其中说法正确的是__________.解析:命题①不是真命题,因为底面是矩形,若侧棱不垂直于底面,这时四棱柱是斜四棱柱;命题②不是真命题,直角三角形绕着它的一条直角边旋转一周形成的几何体叫做圆锥,如果绕着它的斜边旋转一周,形成的几何体则是两个具有共同底面的圆锥;命题③是真命题,如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,则可以得到四个侧面都是直角三角形.故填③.答案:③6.下列结论正确的是①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:①错误.如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.②错误.如图(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥.③错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.④正确.答案:④7.过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则该截面的面积是________.解析:设截面的圆心为O ′,由题意得:∠OAO ′=60°,O ′A =1,S =π·12=π.答案:π8.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是________.①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补③等腰四棱锥的底面四边形必存在外接圆④等腰四棱锥的各顶点必在同一球面上解析:①如图,∵SA=SB=SC=SD ,∴∠SAO=∠SBO=∠SCO=∠SDO ,即等腰四棱锥腰与底面所成的角相等,正确;②等腰四棱锥的侧面与底面所成的二面角相等或互补不一定成立(若底面为矩形);③如图,由SA=SB=SC=SD 得OA=OB=OC=OD ,即等腰四棱锥的底面四边形存在外接圆,正确;④等腰四棱锥各顶点在同一个球面上,正确.故选②.答案:②9.(2008年高考江西卷)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图(2))有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好经过点PD .若往容器内再注入a 升水,则容器恰好能装满.其中真命题的代号是:______(写出所有真命题的代号).解析:设正四棱柱底面边长为b ,高为h 1,正四棱锥高为h 2,则原题图(1)中水的体积为b 2h 2-13b 2h 2=23b 2h 2, 图(2)中水的体积为b 2h 1-b 2h 2=b 2(h 1-h 2),所以23b 2h 2=b 2(h 1-h 2),所以h 1=53h 2,故A 错误,D 正确.对于B ,当容器侧面水平放置时,P 点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P点,故B 正确.对于C ,假设C 正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为2536b 2h 2>23b 2h 2,矛盾,故C 不正确.答案:BD 10.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h 1,h 2,h 3,求h 1∶h 2∶h 3的值.解:选依题意,四棱锥为正四棱锥,三棱锥为正三棱锥,且棱长均相等, 设为a ,h 2=h 3,h 1=a 2-(22a )2=22a ,h 2=a 2-(33a )2=63a , 故h 1∶h 2∶h 3=3∶2∶2.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,求该三角形的斜边长.解:如图,正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF为等腰直角三角形,DF 为斜边,设DF 长为x ,则DE =EF =22x ,作DG ⊥BB 1,HG ⊥CC 1,EI ⊥CC 1,则EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4, FH =FI +HI =FI +EG =2x 22-4,在Rt △DHF 中,DF 2=DH 2+FH 2, 即x 2=4+(2x 22-4))2,解得x =2 3.即该三角形的斜边长为2 3.第二节 空间图形的基本关系与公理A 组1.以下四个命题中,正确命题的个数是________.①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则A 、B 、C 、D 、E 共面; ③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面;④依次首尾相接的四条线段必共面.解析:①正确,可以用反证法证明;②从条件看出两平面有三个公共点A 、B 、C ,但是若A 、B 、C 共线,则结论不正确;③不正确,共面不具有传递性;④不正确,因为此时所得的四边形四条边可以不在一个平面上.答案:12.给出下列四个命题:①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若M∈α,M∈β,α∩β=l,则M∈l;④空间中,相交于同一点的三条直线在同一平面内.其中真命题的个数为________.解析:根据平面的基本性质知③正确.答案:13.(2009年高考湖南卷改编)平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为________.解析:根据两条平行直线、两条相交直线确定一个平面,可得CD、BC、BB1、AA1、C1D1符合条件.答案:54.正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点.那么,正方体的过P、Q、R的截面图形是________.解析:边长是正方体棱长的22倍的正六边形.答案:正六边形5.(原创题)已知直线m、n及平面α,其中m∥n,那么平面α内到两条直线m、n距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集.其中正确的是________.解析:如图1,当直线m或直线n在平面α内且m、n所在平面与α垂直时不可能有符合题意的点;如图2,直线m、n到已知平面α的距离相等且两直线所在平面与已知平面α垂直,则已知平面α为符合题意的点;如图3,直线m、n所在平面与已知平面α平行,则符合题意的点为一条直线.答案:(1)(2)(4)6.如图,已知平面α、β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点(相交于一点).证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两腰,∴AB,CD必定相交于一点.如图,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β,∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点B组1.有以下三个命题:①平面外的一条直线与这个平面最多有一个公共点;②直线l在平面α内,可以用符号“l∈α”表示;③若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交,其中所有正确命题的序号是______________.解析:表示线与面的关系用“⊂”或“⊄”表示,故②错误.答案:①③2.(2010年黄冈调研)下列命题中正确的是________.①若△ABC在平面α外,它的三条边所在的直线分别交α于P、Q、R,则P、Q、R三点共线;②若三条直线a、b、c互相平行且分别交直线l于A、B、C三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面.解析:在①中,因为P、Q、R三点既在平面ABC上,又在平面α上,所以这三点必在平面ABC与α的交线上,即P、Q、R三点共线,故①正确;在②中,因为a∥b,所以a与b确定一个平面α,而l上有A、B两点在该平面上,所以l⊂α,即a、b、l三线共面于α;同理a、c、l三线也共面,不妨设为β,而α、β有两条公共的直线a、l,∴α与β重合,即这些直线共面,故②正确;在③中,不妨设其中有四点共面,则它们最多只能确定7个平面,故③错.答案:①②3.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点②三条直线两两平行③三条直线共点④有两条直线平行,第三条直线和这两条直线都相交其中使三条直线共面的充分条件有:________.解析:易知①中的三条直线一定共面,④中两条直线平行可确定一个平面,第三条直线和这两条直线相交于两点,则第三条直线也在这个平面内,故三条直线共面.答案:①④4.(2008年高考浙江卷改编)对两条不相交的空间直线a与b,必存在平面α,使得________.①a⊂α,b⊂α②a⊂α,b∥α③a⊥α,b⊥α④a⊂α,b⊥α解析:不相交的直线a、b的位置有两种:平行或异面.当a、b异面时,不存在平面α满足①、③;又只有当a⊥b时④才成立.答案:②5.正方体AC1中,E、F分别是线段C1D、BC的中点,则直线A1B与直线EF 的位置关系是________.解析:直线AB与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.答案:相交6.(2010年湖南郴州调研)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.解析:①错误,l 可能在平面α内;②正确,l ∥β,l ⊂γ,β∩γ=n ⇒l ∥n ⇒n ⊥α,则α⊥β;③错误,直线可能与平面相交;④正确.故填②④.答案:②④7.(2009年高考广东卷改编)给定下列四个命题:①若一个平面内的两条直线与另一个平面平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是________.解析:当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故①不对;由平面与平面垂直的判定定理可知②正确;空间中垂直于同一条直线的两条直线可以平行,相交也可以异面,故③不对;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.答案:②④8.(2009年高考宁夏、海南卷改编)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论中正确的是________.①AC ⊥BE②EF ∥平面ABCD③三棱锥A -BEF 的体积为定值解析:∵AC ⊥平面BB 1D 1D ,又BE ⊂平面BB 1D 1D ,∴AC ⊥BE .故①正确.∵B 1D 1∥平面ABCD ,又E 、F 在直线D 1B 1上运动,∴EF ∥平面ABCD .故②正确.③中由于点B 到直线B 1D 1的距离不变,故△BEF 的面积为定值.又点A 到平面BEF (即面B 1D )的距离为22,故V A -BEF 为定值. 答案:①②③9.如图,已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为D 1C 1、B 1C 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q ,若A 1C 交平面DBFE 于R 点,试确定R 点的位置.解:在正方体AC 1中,连结PQ ,∵Q ∈A 1C 1,∴Q ∈平面A 1C 1CA .又Q ∈EF ,∴Q ∈平面BDEF ,即Q 是平面A 1C 1CA 与平面BDEF 的公共点,同理,P 也是平面A 1C 1CA 与平面BDEF 的公共点.∴平面A 1C 1CA ∩平面BDEF =PQ .又A 1C ∩平面BDEF =R ,∴R ∈A 1C ,∴R ∈平面A 1C 1CA ,R ∈平面BDEF .∴R 是A 1C 与PQ 的交点.如图.10.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为AB 的中点,N 为BB 1的中点,O 为平面BCC 1B 1的中心.(1)过O 作一直线与AN 交于P ,与CM 交于Q (只写作法,不必证明);(2)求PQ 的长.解:(1)连结ON ,由ON ∥AD 知,AD 与ON 确定一个平面α.又O 、C 、M 三点确定一个平面β(如图所示).∵三个平面α,β和ABCD 两两相交,有三条交线OP 、CM 、DA ,其中交线DA 与交线CM 不平行且共面.∴DA 与CM 必相交,记交点为Q ,∴OQ 是α与β的交线.连结OQ 与AN 交于P ,与CM 交于Q ,故直线OPQ 即为所求作的直线.(2)在Rt △APQ 中,易知AQ =1,又易知△APQ ∽△OPN ,∴AP PN =AQ NO =2,AN =52,∴AP =53, ∴PQ =AQ 2+AP 2=143. 12.(2008年高考四川卷)如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD=∠F AB =90°,BC //=12AD ,BE //=12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C 、D 、F 、E 四点是否共面?为什么?(3)设AB =BE ,证明:平面ADE ⊥平面CDE .解:(1)证明:由题设知,FG =GA ,FH =HD ,所以GH //=12AD .又BC //=12AD ,故GH 綊BC .所以四边形BCHG是平行四边形.(2)C、D、F、E四点共面.理由如下:由BE //12AF,G是F A的中点知,BE綊GF,所以EF∥BG.由(1)知BG∥CH,所以EF∥CH,故EC、FH共面.又点D在直线FH上,所以C、D、F、E四点共面.(3)证明:连结EG.由AB=BE,BE綊AG及∠BAG=90°知ABEG是正方形,故BG⊥EA.由题设知,F A、AD、AB两两垂直,故AD⊥平面F ABE,因此EA是ED在平面F ABE内的射影.根据三垂线定理,BG⊥ED.又ED∩EA=E,所以BG⊥平面ADE.由(1)知,CH∥BG,所以CH⊥平面ADE.由(2)知F∈平面CDE,故CH⊂平面CDE,得平面ADE⊥平面CDE.第三节平行关系A组1.已知m、n是两条不同直线,α,β是两个不同平面,下列命题中的真命题是_.①如果m⊂α,n⊂β,m∥n,那么α∥β②如果m⊂α,n⊂β,α∥β,那么m∥n③如果m⊂α,n⊂β,α∥β且m,n共面,那么m∥n④如果m∥n,m⊥α,n⊥β,那么α⊥β解析:m⊂α,n⊂β,α∥β⇒m,n没有公共点.又m,n共面,所以m∥n.答案:③2.已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:①若m∥α,则m平行于平面α内的无数条直线;②若α∥β,m⊂α,n⊂β,则m∥n;③若m⊥α,n⊥β,m∥n,则α∥β;④若α∥β,m⊂α,则m∥β.其中,真命题的序号是________.(写出所有真命题的序号)解析:②中α∥β,m⊂α,n⊂β⇒m∥n或m,n异面,所以②错误.而其它命题都正确.答案:①③④3.(2010年苏北四市调研)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m, 则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β.其中为真命题的是________.解析:③中若l⊂β,m⊂α,α∥β⇒l∥m或l,m异面,所以②错误.而其它命题都正确.答案:①②④4.(2009年高考福建卷改编)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是________.①m∥β且l1∥α②m∥l1且n∥l2③m∥β且n∥β④m∥β且n∥l2解析:∵m∥l1,且n∥l2,又l1与l2是平面β内的两条相交直线,∴α∥β,而当α∥β时不一定推出m∥l1且n∥l2,可能异面.答案:②5.(原创题)直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有________条.答案:1或06.如图,ABCD为直角梯形,∠C=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.(1)求证:P A⊥BD;(2)若PC与CD不垂直,求证:P A≠PD;(3)若直线l过点P,且直线l∥直线BC,试在直线l上找一点E,使得直线PC∥平面EBD.解:(1)证明:∵ABCD为直角梯形,AD=2AB=2BD,∴AB⊥BD,PB⊥BD,AB∩PB=B,AB,PB⊂平面P AB,BD⊥平面P AB,P A⊂平面P AB,∴P A⊥BD.(2)证明:假设P A=PD,取AD中点N,连结PN,BN,则PN⊥AD,BN⊥AD,AD⊥平面PNB,得PB⊥AD,又PB⊥BD,得PB⊥平面ABCD,∴PB⊥CD.又∵BC⊥CD,∴CD⊥平面PBC,∴CD⊥PC,与已知条件PC与CD不垂直矛盾.∴P A≠PD.(3)在l上取一点E,使PE=BC,连结BE,DE,∵PE∥BC,∴四边形BCPE是平行四边形,∴PC∥BE,PC⊄平面EBD,BE⊂平面EBD,∴PC∥平面EBD.B组1.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是________.①若α⊥γ,α⊥β,则γ∥β②若m∥n,m⊂α,n⊂β,则α∥β③若m∥n,m∥α,则n∥α④若n⊥α,n⊥β,则α∥β解析:①错,两平面也可相交;②错,不符合面面平行的判定定理条件,需两平面内有两条相交直线互相平行;③错,直线n不一定在平面内;④由空间想象知垂直于同一直线的两平面平行,命题正确.答案:④2.已知m,n是两条不同的直线,α,β是两个不同的平面,有下列4个命题:①若m∥n,n⊂α,则m∥α;②若m⊥n,m⊥α,n⊄α,则n∥α;③若α⊥β,m⊥α,n⊥β,则m⊥n;④若m,n是异面直线,m⊂α,n⊂β,m∥β,则n∥α.其中正确的命题有_.解析:对于①,m有可能也在α上,因此命题不成立;对于②,过直线n作垂直于m的平面β,由m⊥α,n⊄α可知β与α平行,于是必有n与α平行,因此命题成立;对于③,由条件易知m平行于β或在β上,n平行于α或在α上,因此必有m⊥n;对于④,取正方体中两异面的棱及分别经过此两棱的不平行的正方体的两个面即可判断命题不成立.综上可知②③正确.答案:②③3.已知m,n是平面α外的两条直线,且m∥n,则“m∥α”是“n∥α”的________条件.解析:由于直线m,n在平面外,且m∥n,故若m∥α,则必有n∥α,反之也成立.答案:充要4.设l1,l2是两条直线,α,β是两个平面,A为一点,下列命题中正确的命题是________.①若l1⊂α,l2∩α=A,则l1与l2必为异面直线②若α⊥β,l1⊂α,则l1⊥β③l1⊂α,l2⊂β,l1∥β,l2∥α,则α∥β④若l1∥α,l2∥l1,则l2∥α或l2⊂α解析:①错,两直线可相交于点A;②错,不符合面面垂直的性质定理的条件;③错,不符合面面平行的判定定理条件;④正确,空间想象即可.答案:④5.(2010年广东深圳模拟)若a不平行于平面α,且a⊄α,则下列结论成立的是________.①α内的所有直线与a异面②α内与a平行的直线不存在③α内存在唯一的直线与a平行④α内的直线与a都相交解析:由题设知,a和α相交,设a∩α=P,如图,在α内过点P的直线与a共面,①错;在α内不过点P的直线与a异面,④错;(反证)假设α内直线b∥a,∵a⊄α,∴a∥α,与已知矛盾,③错.答案:②6.设m、n是异面直线,则(1)一定存在平面α,使m⊂α且n∥α;(2)一定存在平面α,使m⊂α且n⊥α;(3)一定存在平面γ,使m、n到γ的距离相等;(4)一定存在无数对平面α与β,使m ⊂α,n ⊂β,且α∥β.上述4个命题中正确命题的序号为________.解析:(1)成立;(2)不成立,m 、n 不一定垂直;(3)过m 、n 公垂线段中点分别作m 、n 的平行线所确定平面到m 、n 距离就相等,(3)正确;满足条件的平面只有一对,(4)错.答案:(1)(3)7.如图,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =______. 答案:223a 8.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).解析:①∵面AB ∥面MNP ,∴AB ∥面MNP .②若下底面中心为O ,易知NO ∥AB ,NO ⊄面MNP ,∴AB 与面MNP 不平行. ③易知AB ∥MP ,∴AB ∥面MNP .④易知存在一直线MC ∥AB ,且MC ⊄平面MNP ,∴AB 与面MNP 不平行. 答案:①③9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、CD 的中点,N 是BC 中点.点M 在四边形EFGH 上及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.答案:M ∈FH10.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,AD =2,E 为BC 的中点,点M 为棱AA 1的中点.(1)证明:DE ⊥平面A 1AE ;(2)证明:BM ∥平面A 1ED .证明:(1)在△AED 中,AE =DE =2,AD=2,∴AE ⊥DE .∵A 1A ⊥平面ABCD ,∴A 1A ⊥DE ,∴DE⊥平面A1AE.(2) 设AD的中点为N,连结MN、BN.在△A1AD中,AM=MA1,AN=ND,∴MN∥A1D,∵BE∥ND且BE=ND,∴四边形BEDN是平行四边形,∴BN∥ED,∴平面BMN∥平面A1ED,∴BM∥平面A1ED.11.(2010年扬州调研)在正方体ABCD-A1B1C1D1中,M,N分别是AB,BC 的中点.(1)求证:平面B1MN⊥平面BB1D1D;(2)若在棱DD1上有一点P,使BD1∥平面PMN,求线段DP与PD1的比解:(1)证明:连结AC,则AC⊥BD,又M,N分别是AB,BC的中点,∴MN∥AC,∴MN⊥BD.∵ABCD-A1B1C1D1是正方体,∴BB1⊥平面ABCD,∵MN⊂平面ABCD,∴BB1⊥MN,∵BD∩BB1=B,∴MN⊥平面BB1D1D,∵MN⊂平面B1MN,∴平面B1MN⊥平面BB1D1D.(2)设MN与BD的交点是Q,连结PQ,PM,PN∵BD1∥平面PMN,BD1⊂平面BB1D1D,平面BB1D1D∩平面PMN=PQ,∴BD1∥PQ,∴DP∶PD1=DQ∶QB=3∶1.12.如图,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设点M为线段AB的中点,点N为线段CE的中点.求证:MN∥平面DAE.证明:(1)因为BC⊥平面ABE,AE⊂平面ABE,所以AE⊥BC,又BF⊥平面ACE,AE⊂平面ACE,。