计量经济

合集下载

计量经济学

计量经济学

名词解释1、 因果效应:在理想化随机对照实验中得到的,某一给定的行为或处理对结果的影响2、 实验数据:来源于为评价某种处理(某项政策)抑或某种因果效应而设计的实验3、 观测数据:通过观察实验之外的实际行为而获得的数据4、 截面数据:对不同个体如工人、消费者、公司或政府机关等在某一特定时间段内收集到的数据5、 时间序列数据:对同一个体(个人、公司、国家等)在多个时期内收集到的数据6、 面板数据:即纵向数据,是多个个体分别在两个或多个时期内观测到的数据7、 离散型随机变量:一些随机变量是离散的连续型随机变量:一些随机变量是连续的8、 期望值:随机变量经过多次重复实验出现的长期平均值,记作E (Y )9、 期望:Y 的长期平均值,记作μY10、方差:是Y 距离其均值的偏差平方的期望值,记作var (Y )11、标准差:方差的平方根来表示偏差程度,记作σY12、独立性:两个随机变量X 和Y 中的一个变量无法提供另一个变量的相关信息13、标准正态分布:指那些均值102==σμ、方差的正态分布,记作N (0,1)14、简单随机抽样:n 个对象从总体中抽取,且总体中的每一个个体都有相等的可能性被选入样本15、独立分布:两个随机变量X 和Y 中的一个变量无法提供另一个变量的相关信息,那么这两个变量X 和Y 独立分布 16、偏差:设Y Y E Y Y μμμμ-ˆˆ)(为的一个估计量,则偏差是; 一致性:当样本容量增大时,Y μˆ落入真实值Y μ的微小领域区间内的概率接近于1,即Y Y μμ与ˆ是一致的 有效性:如果Y μˆ的方差比Y μ~更小,那么可以说Y Y μμ~ˆ比更有效 17、最小二乘估计量:21)(m ini -Y ∑=最小化误差m -i Y 平方和的估计量m 18、P 值:即显著性概率,指原假设为真的情况下,抽取到的统计量与原假设之间的差异程度至少等于样本计算值与 原假设之间差异程度的概率19、第一类错误:拒绝了实际上为真的原假设20、一元线性回归模型:i i 10i μββ+X +=Y ;1β代表1X 变化一个单位所导致Y 的变化量21、普通最小二乘(OLS )估:选择使得估计的回归线与观测数据尽可能接近的回归系数,其中近似程度用给定X 时预 测Y 的误差的平方和来度量22、回归2R :可以由i X 解释(或预测)的i Y 样本方差的比例,即TSSSSR TSS ESS R -==12 23、最小二乘假设:①给定i X 时误差项i μ的条件均值为零:0)(i i =X μE ;②从联合总体中抽取的,,,,),,(n ...21i i i =Y X 满足独立同分布;③大异常值不存在:即i i Y X 和具有非零有限的四阶距24、1β置信区间:以95%的概率包含1β真值的区间,即在所有可能随机抽取的样本中有95%包含了1β的真值25、同方差:若对于任意i=1,2,...,n ,给定)(条件分布的方差时χμμ=X X i i i i var 为常数且不依赖于χ,则 称误差项i μ是同方差26、异方差:若对于任意i=1,2,...,n ,给定)(条件分布的方差时χμμ=X X i i i i var 为常数且依赖于χ,则称 误差项i μ是异方差27、遗漏变量偏差:指OLS 估计量中存在的偏差,它是在回归变量X 与遗漏变量相关时产生的28、多元回归模型:n ...1i ...i k i k i 22i 110i ,,,=+X ++X +X +=Y μββββ;1β代表在其他影响Y 的因素2X 不变的 前提下,1X 变化一个单位所导致Y 的变化量29、调整2R (2R ):是2R 的一种修正形式,由于加入新变量后2R 不一定增大,即22ˆ211-k -n 1-n 1Y s s TSS SSR R μ-=⨯-= 30、虚拟变量陷阱:如果有G 个二元变量,且每个观测都只属于其中一类,又如果回归中包含截距项以及所有G 个二 元变量,则会因为完全多重共线性而无法进行回归31、控制变量:回归中保持某些因素不变的回归量32、二次回归模型:i 2i 2i 10i ncome ncome core est μβββ+++=I I S T 33、非线性回归函数:i k i i 2i 1i ...f μ+X X X =),,,(Y ,i=1,...,n ;其中f (k i i 2i 1...X X X ,,,)为非线性回归函数 34、多项式回归模型:i r i r 2i 2i 10i ...μββββ+X ++X +X +=Y35、双对数模型:i i 10i ln ln μββ+X +=Y )()(填空题1、 计量经济学提供了利用观测数据(而非实验数据)或者来自现实世界不太完美的实验数据估计因果效应的方法2、 截面数据 是多个个体在同一时间点上收集到的数据;时间序列数据是一个个体在多个时间点上收集到的数据;面板数据 是多个个体分别在多个时间点上收集到的数据3、 随机变量Y 的期望值(也可称为均值,μY )记作E (Y ),是变量的概率加权平均值;Y 的方差为[]2)(2Y Y E μσ-=Y ,Y 的标准差是方差的平方根4、 两个随机变量X 和Y 的联合概率由它们的联合概率分布所表示;给定X=χ下Y 的条件概率分布是指给定X 取值为χ的条件时,Y 的概率分布5、 正态分布随机变量具有钟形概率密度;若要计算有关正态随机变量的概率,首先需要对其标准化,然后再查阅附录表1的标准正态累积分布表6、 简单随机抽样可以产生n 个随机观测值1Y ,...,n Y ,它们是独立分布的7、 样本均值n 1...Y Y Y Y ,,的估计量;当是总体均值μ为独立分布时,有: ①Y 的抽样分布均值为n 22Y=Y Y σσμ,方差为;②Y 是无偏的;③根据大数定律,Y 是一致的; ④根据中心极限定理,当样本容量较大时,Y 的抽样分布是近似正态的8、 t 统计量可以用来计算和原假设相关的p 值;较小的p 值意味着原假设是错误的9、 Y μ的95%置信区间是指在95%全部可能样本中包含Y μ真值的区间10、样本相关系数是总体相关系数的估计量,它度量了两个变量之间的线性关系—它们的散点图究竟有多近似于一条直线11、总体回归线X X +是10ββ的函数,表示Y 的均值:斜率1β表示X 变化一个单位时对应Y 的预期变化;截距0β决定了回归线的水平(或高低)12、利用样本观测数据(i i Y X ,),i=1,2,... ,n 使用普通最小二乘法可以估计总体回归线;回归截距和斜率的OLS 估计量分别记为10ˆˆββ和 13、2R 和回归标准误差(SER )度量了i Y 与总体回归线的接近程度;其中2R 的取值范围为0到1;2R 取值较大表明i Y 接近总体回归线;回归标准误差是回归误差的标准差的估计量14、线性回归模型中有三个重要假设:①给定i X 时误差项i μ的条件均值为零:0)(i i =X μE ; ②从联合总体中抽取的,,,,),,(n ...21i i i =Y X 满足独立同分布;③大异常值不存在:即i i Y X 和具有非零有限的四阶距;若这些假设成立,则OLS 估计量10ˆˆββ和是①无偏的②一致的③大样本时服从正态分布 15、对回归系数的假设检验类似于对总体均值的假设检验,都是利用t 统计量来计算p 值,从而确定是接受还是拒绝 原假设;类似于总体均值的置信区间,回归系数的95%置信区间为估计量±1.96标准误差16、如果三个最小二乘假设成立,回归误差同方差并且服从正态分布,则利用同方差适用标准误差计算的t 统计量在原假设下服从学生t 分布;当样本容量足够大时,学生t 分布和正态分布之间的差异可忽略不计17、若遗漏变量(1)与回归中的回归变量相关;(2)是Y 的决定因素之一,则会产生遗漏变量偏差(同时满足)18、多元回归模型是包含多个回归变量的线性回归模型,,,k 21...X X X ,每个回归变量都对应一个回归系数 ,,,,k 21...βββ其中系数1β表示在其他回归变量不变的情况下,1X 变化一个单位时Y 的预期变化,其他回归系数的解释与之类似19、可通过OLS 估计多元回归中的系数;当满足四个最小二乘假设时,OLS 估计量是无偏一致估计量,并且在i 大样本 下服从正态分布①给定i k i i 2i 1...μ时,,,X X X 的条件均值为零,即0...k i i 2i 1i =X X X ),,,(μE ;②从联合分布中抽取的i Y ),...i k i i 2i 1,,,,(X X X =1,...,n 满足独立同分布; ③不存在大异常值,即具有及,,i k i i 1...Y X X 非零有限四阶距; ④不存在完全多重共线性20、在多元回归中,当某个回归变量是其他回归变量的完全线性组合时就产生了完全多重共线性,通常是有选择回归变量时的错误引起的,因此处理完全多重共线性的方法是改变回归变量集21、回归标准误差、22R R 及都表示多元回归模型的拟合优度22、当系数涉及多个约束时的假设称为联合假设,可利用F 统计量进行检验23、在非线性回归中,总体回归函数的斜率依赖于一个或多个解释变量的取值24、两个变量的乘积项称为交互项,在回归中加入交互项可以使其中一个变量的回归斜率依赖于另一个变量的取值计算题P41 2.2 使用表2-2中的概率密度计算E(Y)和E(X)Pr(X=0)=0.30 Pr(X=1)=0.70Pr(Y=0)=0.20 Pr(Y=1)=0.78E(X)=0*0.30+1*0.70=0.70E(Y)=0*0.22+1*0.78=0.782.6下面的表格给出了基于2008年美国适龄人口从业状况和接受大学教育的联合分布(1)E(Y)=0*0.046+1*0.954=0.954(2)失业率=Pr(Y=0)=0.046(3)E(Y丨X=1)=0*Pr(Y=0丨X=1)+1*Pr(Y=1丨X=1)=0.332/0.341=0.9736E(Y丨X=0)=0*Pr(Y=0丨X=0)+1*Pr(Y=1丨X=0)=0.622/0.659=0.94385(4)大学毕业生的失业率=1-E(Y丨X=1)=1-0.9736=0.0264非大学毕业生的失业率=1-E(Y丨X=0)=1-0.94385=0.5615(5)Pr(X=1丨Y=0)=0.009/0.046=0.196Pr(X=0丨Y=0)=0.037/0.046=0.804(6)P(X=Xi,Y=Yi)=P(X=Xi)*P(Y=Yi)独立反之不独立P71 3.8对1000个随机抽取的高三学生安排一项新版的SAT测试。

计量经济学概念

计量经济学概念
13
第二节 计量经济学方法
一. 计量经济学方法的内容
任何计量经济研究包含两个基本要素:理论和事实, 计量经济学的主要功能就是将这两个要素结合在一起。 计量经济研究既使用理论,也使用事实,将二者结合 起来,用统计技术估计经济关系,如图1.1所示。
14
理论统计理论
计量经济模型
加工好的数据
10
3. 学科发展环境 同时,随着科学技术的发展,各门学科相互渗透,数
学、系统论、信息论、控制论等相继进入经济研究领 域,使经济科学进一步数量化,有助于计量经济学的 发展。高速电子计算机的出现和发展,为计量经济技 术的广泛应用铺平了道路。
11
4. 发展过程
上世纪三十年代,侧重于个别商品供给与需求的计 量,基本上属于个量分析或微观分析。
1. 需求函数的数学模型
尽管需求定律假定价格(P)与需求量(Q)之间 呈反向关系,但并没有给出二者之间关系的精 确形式。例如,该定律并没有告诉我们价格与 需求量之间关系是线性的还是非线性的,如图 1.2中(a)和 (b) 所示。
21
Q
Q
(a)
P
(b)
P
图1.2 线性和非线性的需求函数
22
事实上,斜率为负的曲线有千千万万,在它们 之中选择正确的函数是计量经济学家的任务。
7
计量经济学的艺术成分
计量经济学虽然以科学原理为基础,但仍保留了一 定的艺术成分,主要体现在试图找出一组合适的假设 ,这些假设既严格又现实,使得我们能够使用可获得 的数据得到最理想的结果,而现实中这种严格的假设 条件往往难以满足。
“艺术”成分的存在使得计量经济学有别于传统 的科学,是使人对它提供准确预测的能力产生怀疑的 主要原因。
31

计量经济学

计量经济学

计量经济学计量经济学,是一门使用统计方法分析经济现象的学科。

计量经济学主要通过收集、处理、分析和解释经济数据,以确认和识别经济核心问题,比如需求和供给、价格变动、市场结构和经济增长等。

这门学科的进步和应用在各种政策制定和经济决策上有着广泛的应用领域,比如经济政策的分析,股票市场的预测和企业的经营决策等。

接下来,本文将解释计量经济学的主要内容和方法,并探讨计量经济学在实践中的应用。

一、计量经济学的主要内容计量经济学分析的主要对象是经济现象和经济数据。

这些现象和数据可以描述为变量和关系,比如价格,工资,利润和经济增长等。

计量经济学主要研究的是这些变量及其之间的相互关系,以便为决策者提供更好的政策建议。

在计量经济学中,通常会涉及到如下的主要内容:1. 变量的含义和测量。

计量经济学要求研究者对变量的含义进行明确界定,以便能够对其进行测量,并进行数据收集和分析。

例如,如果要研究通货膨胀的影响因素,通货膨胀就是一个重要的变量,需要进行合理的测量。

2. 经济关系的建模。

计量经济学则进一步探索变量之间的数量关系,并通过数学模型来描述它们之间的联系。

例如,经济学家可以建立一个供求模型来研究商品价格的形成。

3. 假设检验。

计量经济学通过提出假设并使用统计检验方法来验证假设。

通过检验结果,经济学家可以同样的推理得出各种假设是否成立。

4. 统计分析。

该领域强调通过统计分析方法检验模型的假设,这是检验数据和变量关系的重要手段。

统计分析包括回归分析、时间序列分析以及多元统计分析等方法。

二、计量经济学方法计量经济学的重要方法包括统计分析、回归分析、时间序列分析、概率论和经济实验等。

其中最常使用的方法是回归分析。

1. 回归分析回归分析是计量经济学的核心方法。

回归分析将一个自变量与因变量相关联。

例如,如果我们想知道变量X与变量Y的相关性,我们就会回归一个X对Y的方程。

这个方程告诉我们,当X发生变化时,Y的变化程度。

回归分析需要建立方程,并根据现有数据的信息来确定系数。

[经济学]计量经济学

[经济学]计量经济学

名词解释1,计量经济学;计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2,虚拟变量数据;虚拟变量数据是人们构造的,用来表征政策定性事实的数据。

3,计量经济学检验;计量经济学检验主要是检验模型是否符合计量经济学方法的基本假定。

4,回归平方和;回归平方和用ESS表示,是被解释变量的样本估计值与其平均值得离差平方和5,拟合优度检验;拟合优度检验是指检验模型对样本观测值的拟合程度,用R²表示,该值越接近1,模型对样本观测值拟合得越好。

6,总体回归函数;将总体被解释变量的条件期望表现为解释变量的函数,这个函数称为总体回归函数。

7,样本回归函数;是指被解释变量的样本条件均值也是随解释变量的变化而又规律的变化,如果把被解释变量的样本均值比奥斯为解释变量的某种函数,称这个函数为样本回归函数8,回归方程的显著性检验(F检验);是指对模型中北解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

9,回归参数的显著性检验(t检验);是指对其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

10, 多重共线性;是指解释变量之间精确的线性关系和解释变量之间近似的线性关系。

11, 完全的多重共线性;是指解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。

12,不完全的多重共线性;指对解释变量k X X X ,,,32 ,存在不全为0的数k λλλλ,,,,321 ,使得 033221=+++++i ki k i i v X X X λλλλ ),,2,1(n i =,其中,i v 为解释变量。

13,异方差性;是指随即变量的方差不是确定的常数,即被解释变量观测值的分散程度随解释变量的变化而变化。

14,序列相关性;指总体回归模型的随机误差项之间存在相关关系。

15.滞后效应;是指由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。

计量经济学

计量经济学

计量经济学计量经济学是:指通过计量工具来研究具有统计意义的经济问题的经济学科。

计量经济学的工具:数学(如优化理论,微分方程),概率与统计分析,计算机及其应用软件,数据分析等学科的相关知识。

计量经济学的研究对象:经济问题,包括各种经济现象。

经量经济学的研究目的:对所关心的经济问题做适当的经济预测,政策评估,评价或建议1.计量经济学的发展历程:经济学的一个分支学科 1926年挪威经济学家R.Frish 提出Econometrics1930年成立世界计量经济学会 1933年创刊《Econometrica 》20世纪40、50年代的大发展和60年代的扩张20世纪70年代以来非经典(现代)计量经济学的发展2.计量经济学模型的步骤:(1)、理论模型的设计 (2)、样本数据的收集 (3)、模型参数的估计(4)、模型的检验 (5)、计量经济学模型成功的三要素:理论,数据,方法3.随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响;3)模型关系的设定误差的影响; 4)其它随机因素的影响。

4.产生并设计随机误差项的主要原因:(1)理论的含糊性;2)数据的欠缺;3)节省原则。

5.参数的普通最小二乘估计(OLS )给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS )给出的判断标准是:二者之差的平方和最小。

由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量。

6.最小二乘估计量的性质:一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。

这三个准则也称作估计量的小样本性质。

拥有这类性质的估计量称为最佳线性无偏估计量。

计量经济学(共33张PPT)

计量经济学(共33张PPT)

假定3>2,其几何意义:
问题:
虚拟变量为何只选“0”, ‘1“,选择0,1,2 等 可以吗
同一种属性,两个变量能够表示几种状态? 思考,如果在模型中引入季节效应?月份效应?
(3)多个虚拟变量的引入——多种因素
例:研究学历(本科及以上,本科以下),性别(男、女)对员工工资的 影响。
在例1基础上,再引入代表学历的虚拟变量D2:
离散选择模型(离散被解释变量)
D (2)多个虚拟变量的设定和引入 0 女职工本科以上学历的平均薪金:
本科以下
当回归模型有截距项时,只能引入 m-1 个虚拟变量
注意:加法方式引入虚拟变量,考察了截距的不同。
交互作用的引入方法:在模型中引入相关变量的乘积。
反映性别的虚拟变量可取为: 女职工本科以下学历的平均薪金:
几何意义:
•两个函数有相同的斜率,说明男女职工平均薪金对工龄的变 化率是一样的。
•如果2>0,表明两个函数截距不相同,且男职工平均薪金比 女职工高,两者平均薪金水平相差2。 •如果2<0,表明两个函数截距不相同,且男职工平均薪金比女 职工低,两者平均薪金水平相差2。 •如果2=0,表明两个函数截距相同,即男职工,女职工的平
均薪金没有显著差异。
可以通过传统的回归检验,对2的统计显著性进行 检验,以判断企业男女职工的平均薪金水平是否有 显著差异。
2
0
(2)多个虚拟变量的设定和引入
——一种因素多种状态(水平):
例:研究收入和教育水平(分为高,中,低三类)对个人保健支出的影响。
教育水平考虑三个层次:
低学历:高中以下,
中等学历:高中,及大中专 高学历:大学及其以上。
2、基本概念
定量因素——可直接测度,数值性的因素 定性因素——属性因素,表征某种属性存在

计量经济学

计量经济学

第二讲

第一章 绪论 第3节 计量经济模型及其应用 第4节 统计和计量经济分析软件

第二章 计量经济分析的统计学基楚 第1节 概率和概率分布
一、计量经济模型的分类
● 单方程模型和连立方程模型:单方程模型描述一个因变量和若干自变量间 的结构关系;连立方程模型则是由多个方程组成的方程组,描述整个经济 系统或子系统。 例:① 消費函数就是一个单方程模型。
实证分析 实证分析
三、 计量经济分析的步骤(1)
● 下面通过一个实例来说明计量经济分析的步骤 例: 一空调生产商請计量经济学家为他研究价格上涨対空调需求的影响。下 面対该问题进行计量经济分析。 步骤1 陈述理论 根据需求定律:一商品的价格与其需求量成反比。 步骤2 建立计量经济模型 (1)根据需求定律建立需求函数的数学模型。需求定律只是说一商品 的价格与其需求量成反比,但没有说明具体的关系(图1-2,图1-3)。
三、 计量经济分析的步骤(6)
● 通过本次课的学习,主要了解计量经济学的定义、计量经济学研究的内容 和方法,重点把握计量经济分析的步骤:
1.陈述理论或假说 需求定律 2.建立计量经济模型 Q=α+βP+u 3.収集数据 表1-1 4.估计参数 5.假设检验 Q*=76.05-3.88P 是否β<0
〇 1979年,成立了“中国数量经济研究会”和“数量经学研究所”, 出版了《数量经济技术经济研究》 〇 1982年,召开了第一届数量经济研究学会 〇 1992年,开始毎年対中国宏观经济进行分析和预测,11月出版 《中国经济蓝皮书》 〇 1998年,经教育部审定,计量经济学确定为经济类各専业八门核 心课程之一
--1935年,J.Tinbergen建立了世界上第一个宏观经济模型,开創了微观转向宏观模 型的新阶段 --1936,Keynes《就业、利息和货币通论》为计量经济学提供了理论根据 --1950年代,H.Theil发表了二阶段最小二乗法、计算机技术的迅速发展为计量经济 学提供了重要手段 〇 发展应用时期(20世纪70年代后)

计量经济学

计量经济学

1、什么是计量经济学?计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。

(同一)3、建立与应用计量经济学模型的主要步骤。

①理论模型的建立;②收集数据,参数估计;③模型检验;④模型应用;4、并说明时间序列数据和横截面数据有和异同?时间序列:同一个统计指标,在同一时间点上,不同的对象所得的数据;横截面积:同一指标,同一对象在不同时间点上所得的数据5、试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。

6、常用的样本数据有哪些?(同第四题)1、最基础的:经典单方程计量经济学模型;2、运用最小二乘法,3、最基本假定:简单线性回归;对随机扰动项的假定:①零均值;②同方差;③无自相关4、统计检验:一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度5、后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

6、总体回归函数是对总体变量间关系的定量表述7、样本估计量优劣的最主要的衡量准则:无偏性、有效性与一致性8、Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

9、运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

10、总体回归函数:将总体被解释变量Y的条件均值表现为解释变量X 的某种函数11、样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。

总体回归函数与样本回归函数的区别与联系12、随机扰动项:被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。

13、引入随机扰动项的原因:未知影响因素的代表●无法取得数据的已知影响因素的代表●众多细小影响因素的综合代表●模型的设定误差●变量的观测误差●变量内在随机性14、为什么要作基本假定:模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计●只有具备一定的假定条件,所作出的估计才具有较好的统计性质15、拟合优度:样本回归线对样本观测数据拟合的优劣程度,16、可决系数:在总变差分解基础上确定的,模型解释了的变差在总变差中的比重1、多元线性回归模型基本假定:①零均值;②同方差;③无自相关;④不存在相关性2、在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是异方差性?异方差产生的后果是什么?检验异方差性的三种方法和步骤是什么?异方差性:回归模型的随机扰动项ui在不同的观测值中的方差不等于一个常数,Var(ui)= 常数(i=1,2,…,n),或者Var(u )Var(u )(i j),这时我们就称随机扰动项ui具有异方差性异方差性产生的后果:1.参数估计量仍然是线性无偏的,但不是有效的2.异方差模型中的方差不再具有最小方差性3.t检验失去作用4.模型的预测作用遭到破坏检验异方差性的方法和步骤1)图示检验法。

①相关图分析。

方差为随机变量的离散程度,通过观察y和x的相关图,可以观察的离散程度和解释变量之间的相关关系。

若随x的增加,y的离散程度呈逐渐增加或减少的趋势则表明模型存在着递增或者递减的异方差性。

②残差图分析。

通过对模型残差分布的观察,如果分布的离散程度有明显扩大的趋势,则表明存在异方差性。

图示检验法只能较简单粗略判断模型是否存在着异方差性。

2)G- Q 检验法。

将解释变量排序,分成两个部分利用样本1 和样本2 分别建立回归模型,并求出各自残差平方和,若误差项的离散程度相同,则和的值大致相同,若两者之间存在显著差异,则表明存在差异性。

为在检验过程中“夸大”差异性,在样本中去掉c 个样本数据(c= n/4) ,则构造F 统计量对于给定显著水平,若,则表明模型存在异方差性,反之,则不存在。

3)怀特检验。

White 检验是通过建立辅助回归模型的方法来判断异方差性。

假设回归模型为二元线性回归模型则White 检验的步骤为:估计回归模型,计算残差;估计辅助回归模型:即将残差平方关于解释变量的一次项,二次项和交叉乘积项进行回归;计算辅助回归模型的判断系数,可以证明在同方差的假定下(),其中q 为辅助回归模型中自变量的个数:给定显著水平,若,则认为至少有一个不为0(),存在异方差性。

4)帕克检验和格里瑟检验。

通过建立残差序列对解释变量的辅助回归模型,判断随机项的误差和解释变量之间是否有较强的相关关系,以此来判断模型是否存在异方差性。

h=±1,±2,±1/2,……,其中是随机误差项,给定显著水平,若经检验其中的某个辅助回归方程是显著的,则证明原模型存在异方差性。

什么是序列相关性?举例说明经济现象中序列相关性的存在。

什么是自相关?解决自相关问题的几种方法和步骤?若有5个解释变量的多元线性回归模型,用容量为93的样本数据进行回归分析。

若根据回归残差序列计算的D.W.值为1.1,应得出什么结论?若D.W.值为2.35呢?序列相关性与自相关:在计量经济学中指对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。

又称自相关,是指总体回归模型的随机误差项之间存在相关关系。

在回归模型的古典假定中是假设随机误差项是无自相关的,即在不同观测点之间是不相关的。

如果该假定不能满足,就称与存在自相关,即不同观测点上的误差项彼此相关。

自相关的程度可用自相关系数去表示,根据自相关系数的符号可以判断自相关的状态,如果<0,则ut与ut-1为负相关;如果>0,则ut与ut-1为正关;如果= 0,则ut与ut-1不相关。

实际经济问题中的序列相关性1、经济变量固有的惯性2、模型设定的偏误3、数据的“编造”解决自相关性的几种方法和步骤1)、图示法2)、回归检验法3)、德宾-沃森检验法①解释变量X非随机;②随机误差项μi为一阶自回归形式:③回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式④回归含有截距项D.W检验步骤:①计算DW值②给定α,由n和k的大小查DW分布表,得临界值dL和dU③比较、判断若0<D.W.<dL 存在正自相关dL<D.W.<dU 不能确定dU <D.W.<4-dU 无自相关4-dU <D.W.<4- dL 不能确定4-dL <D.W.<4 存在负自相关当D.W.值在2左右时,模型不存在一阶自相关。

如果存在完全一阶正相关,即ρ=1,则 D.W.≈ 0 完全一阶负相关,即ρ= -1, 则 D.W.≈ 4完全不相关,即ρ=0,则D.W.≈24)、拉格朗日乘数检验什么是多重共线性?产生多重共线性的经济背景是什么?多重共线性的危害是什么?为什么会造成这些危害?检验多重共线性的方法思路是什么?有哪些克服方法?多重共线性:是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。

一般来说,由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。

如果某两个或多个解释变量之间出现了相关性,则称为多重共线性产生多重共线的经济背景:(1)经济变量相关的共同趋势(2)滞后变量的引入(3)样本资料的限制多重共线性的危害造成危害的原因:(1)完全共线性下参数估计量不存在(2)近似共线性下OLS估计量非有效(3)参数估计量经济含义不合理(4)变量的显著性检验失去意义,可能将重要的解释变量排除在模型之外(5)模型的预测功能失效。

变大的方差容易使区间预测的“区间”变大,使预测失去意义。

检验多重共线性:多重共线性检验的任务是:(1)检验多重共线性是否存在;1)对两个解释变量的模型,采用简单相关系数法2)对多个解释变量的模型,采用综合统计检验法(2)估计多重共线性的范围,即判断哪些变量之间存在共线性。

1) 判定系数检验法2)逐步回归法克服多重共线性的方法:(1)排除引起共线性的变量找出引起多重共线性的解释变量,将它排除出去,以逐步回归法得到最广泛的应用。

(2)差分法时间序列数据、线性模型:将原模型变换为差分模型。

(3)减小参数估计量的方差:零回归法随机解释变量的来源有哪些?随机解释变量可以造成哪些结果?如何选取工具变量?工具变量法的步骤?随机解释变量的来源:经济管理问题中的变量取值不仅往往难以人为控制,而且对其观测也往往难以十分精确。

这是因为对经济变量的观测一般只能在经济系统的实际运行中进行,而不能在人为控制的实验环境中进行,并且许多经济变量的统计数据只是其理论值的估计值,因而表现为解释变量的某种随机性。

如果存在一个或多个随机变量作为解释变量,则称原模型出现随机解释变量问题。

如何选取工具变量工具变量的选取应满足以下条件:①工具变量应该与所替代的随机解释变量高度相关;②工具变量应该与随机误差项不相关;③工具变量应该与模型中其他解释变量不相关,以避免出现多重共线性。

间接最小二乘法步骤:第一步:将结构式模型化为简化式模型。

也就是把每一个内生变量表示为先决变量和随机干扰项的函数。

第二步:对简化式模型的各方程用最小二乘法估计参数,从而得到简化式参数估计值。

注意,由于模型满足间接最小二乘法的假设,因此,用最小二乘法估计是恰当的。

第三步:把简化式参数的估计值代入结构式参数与简化式参数的关系式,求得结构式参数的估计值。

由于方程是恰好识别的,所以,结构式参数的估计值是唯一的。

二阶段最小二乘法步骤:第一阶段:将待估计方程中的内生解释变量对联立方程模型中的全部先决变量回归,即估计简化式方程,计算内生解释变量的估计值。

第二阶段:用第一阶段得到的内生解释变量的估计值代替内生解释变量,对该结构方程使用普通最小二乘法估计结构式参数简述时间序列数据平稳性的条件,以及什么是白噪声过程和随机游走过程?时间序列平稳性条件:1)均值E(Xt)=μ是与时间t 无关的常数;2)方差V ar(Xt)=σ2是与时间t 无关的常数;3)协方差Cov(Xt,Xt+k)=γk 是只与时期间隔k有关,与时间t 无关的常数白噪声:一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=μt ,μt~N(0,σ2)随机游走:Xt=Xt-1+μt这里,μt是一个白噪声简述利用自相关函数(ACF)和偏自相关函数(PACF)识别时间序列模型AR(p)、MA(q)以及ARMA(p,q)的方法和步骤。

若Xt的偏自相关函数在p以后截尾,即k>p时,ρk*=0,而它的自相关函数ρk是拖尾的,则此序列是自回归AR(p)序列。

MA(q)模型的识别规则:若随机序列的自相关函数截尾,即自q以后,ρk=0(k>q);而它的偏自相关函数是拖尾的,则此序列是滑动平均MA(q)序列ARMA(p,q)过程的偏自相关函数可能在p阶滞后前有几项明显的尖柱,但从p阶滞后项开始逐渐趋向于零;而它的自相关函数(ACF)则是在q阶滞后前有几项明显的尖柱,从q 阶滞后项开始逐渐趋向于零。

简述多元线性回归模型的基本假设,并且说明证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用假定1:解释变量是非随机的或固定的,且各解释变量(X)之间互不相关(无多重共线性)假定2:随机误差项具有零均值、同方差及无序列相关假定3:解释变量与随机误差项不相关假定4:随机误差项服从正态分布假设投资函数模型的回归方程为R²=0.8 ,DW=2.05,n=24其中It和Yt分别为第t期投资和国民收入1对总体参数β1,β2的显著性进行检验(α=0.05)b=4>t=1.72,b=3.2>t=1.722若总离差平方和TSS=25,试求随机误差项ut方差估计量ESS/25=0.8,Ess/21=3计算F统计量,并对模型总体的显著性进行检验(α=0.05)f=0.8/2/1-0.8/21假设某国外贸进口函数模型估计的回归方程为其中mt为第t期该国十几外贸进口额,Pt为第t期的相对价格(该国价格与国外价格之比),Yt为第t期该国实际GDP1写出进口的价格弹性,他的符号是正号还是负号?2对总体参数β1,β2的显著检验性进行检验(α=0.05)β1=3.7>1.73, β2=2.8>1.733计算F统计量,并对模型总体的显著性进行检验(α=0.05)0.8/2/1-0.8/20=4若某一时期的相对价格P0=1.25,实际GDP0=100货币单位,试预测该国实际外贸进口额,并求出相应的预测区间(α=0.05)总体回归模型:描述因变量值的表现Yi=E(Y|xi)+ui=β0+β1xi+ui最小二乘法:使残差平方和最小,来计算回归系数的方法估计量:估计量就是随机变量,对模型呈系数的估计,因其样本的不同而不同异方差性:OLS古典假定要求V ar(ui)=σ²,若有V ar(ui)=σi²那么回归模型存在异方差多重共线性:多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。

相关文档
最新文档