高三数学一轮复习函数及其表示1教案(1)

合集下载

(新人教)高三数学第一轮复习教案2.2.1函数(1)函数概念

(新人教)高三数学第一轮复习教案2.2.1函数(1)函数概念

一.课题:函数(1)——函数概念二.教学目的:1. 能用映射的概念理解函数的概念,掌握函数符号“()y f x =”,掌握区间的概念;2. 培养学生理解抽象概念的能力。

三.教学重点、难点:函数的概念 四.教学过程: (一)复习:(提问)1.什么映射?一一映射?2.下列对应是不是从A 到B 的映射?(1)A R =,{|0}B x R x =∈>,f :||x y x →=; (不是) (2)A B N ==,f :|3|x y x →=-; (是)(3){|0}A x R x =∈>,B R =,f :x y →= (不是) (4){|06}A x x =≤≤,{|03}B y y =≤≤,f :12x y x →=f :13x y x →= f :x y x →= f :16x y x →= (是) (是) (不是) (是) (二)新课讲解: 1.函数的定义:(1)传统定义:设在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的一个值与它对应,那么就说x 是自变量,y 是x 的函数,自变量x 的取值的集合叫做定义域,自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。

(2)近代定义:(从映射的观点定义函数)如果,A B 都是非空的数集,那么A 到B 的映射f :A B →就叫做A 到B 的函数,记作()y f x =,其中x A ∈,y B ∈,原象的集合叫做函数()y f x =的定义域,象的集合C (C B ⊆)叫做函数()y f x =的值域。

说明:①映射f :A B →,,A B 都是非空的数集;②函数的三要素:定义域、值域、对应法则;③函数符号()y f x =表示“y 是x 的函数”,可简记为函数()f x ,有时也用(),()g x F x 。

④()f a 的意义:自变量x 取确定的值a 时,对应的函数值用符号()f a 表示; ⑤定义域:自变量x 的取值的集合, 值域:函数值y 的集合; ⑥两个函数相同:当且仅当函数的三要素全相同。

2019届高考数学一轮复习:《函数及其表示》教学案(含解析)

2019届高考数学一轮复习:《函数及其表示》教学案(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念 (1)函数的定义:一般地,设A ,B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应;那么就称f :A→B 为从集合A 到集合B 的一个函数.记作y =f(x),x ∈A.(2)函数的定义域、值域:在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x ∈A}叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.映射的概念设A ,B 是两个非空的集合,如果按照某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么称对应f :A→B 为集合A 到集合B 的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x +3,g(x +2)=f(x),则f(x)等于( ) A .-2x +1 B .2x -1 C .2x -3D .2x +7解析:选D f(x)=g(x +2)=2(x +2)+3=2x +7. 2.(2018·江西高考)设函数f(x)=⎩⎪⎨⎪⎧x 2+1,x≤1,2x ,x>1,则f(f(3))=( )A.15B .3C.23D.139解析:选D f(3)=23,f(f(3))=⎝ ⎛⎭⎪⎫232+1=139.3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( ) A .f :x→y=18xB .f :x→y=14xC .f :x→y=12xD .f :x→y=x解析:选D 按照对应关系f :x→y=x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f(x)=____________.解析:令t =1x ,则x =1t .所以f(t)=1t 2+5t .故f(x)=5x +1x 2(x≠0).答案:5x +1x2(x≠0) 5.(教材习题改编)若f(x)=x 2+bx +c ,且f(1)=0,f(3)=0,则f(-1)=________.解析:由已知得⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f(x)=x 2-4x +3.所以f(-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数. 2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f(x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.典题导入[例1] 有以下判断: (1)f(x)=|x|x 与g(x)=⎩⎪⎨⎪⎧1,x≥0,-1,x<0表示同一函数;(2)函数y =f(x)的图象与直线x =1的交点最多有1个; (3)f(x)=x 2-2x +1与g(t)=t 2-2t +1是同一函数;(4)若f(x)=|x -1|-|x|,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________.[自主解答] 对于(1),由于函数f(x)=|x|x 的定义域为{x|x ∈R ,且x≠0},而函数g(x)=⎩⎪⎨⎪⎧1,x≥0,-1,x<0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f(x)定义域的值,则直线x =1与y =f(x)的图象没有交点,如果x =1是y =f(x)定义域内的值,由函数定义可知,直线x =1与y =f(x)的图象只有一个交点,即y =f(x)的图象与直线x =1最多有一个交点;对于(3),f(x)与g(t)的定义域、值域和对应关系均相同,所以f(x)和g(t)表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f(0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f(x)=2x -1,g(t)=2t -1,h(m)=2m -1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数. (1)y =1,y =x 0;(2)y =x -2·x +2,y =x 2-4; (3)y =x ,y = 3t 3; (4)y =|x|,y =(x)2.解:(1)y =1的定义域为R ,y =x 0的定义域为{x|x ∈R ,且x≠0},故它们不是同一函数.(2)y =x -2·x +2的定义域为{x|x≥2}.y =x 2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y =x ,y =3t 3=t ,它们的定义域和对应关系都相同, 故它们是同一函数.(4)y =|x|的定义域为R ,y =(x)2的定义域为{x|x≥0},故它们不是同一函数.典题导入[例2] (1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f(x)的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f(x)的解析式;(3)已知f(x)是二次函数,且f(0)=0,f(x +1)=f(x)+x +1,求f(x).[自主解答] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f(x)=x 2-2,x≥2或x≤-2,故f(x)的解析式是f(x)=x 2-2(x≥2或x≤-2). (2)令2x +1=t 得x =2t -1,代入得f(t)=lg 2t -1,又x>0,所以t>1, 故f(x)的解析式是f(x)=lg2x -1(x>1). (3)设f(x)=ax 2+bx +c(a≠0), 由f(0)=0,知c =0,f(x)=ax 2+bx , 又由f(x +1)=f(x)+x +1,得a(x +1)2+b(x +1)=ax 2+bx +x +1, 即ax 2+(2a +b)x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f(x)=12x 2+12x(x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3)); (3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f(x)与f ⎝ ⎛⎭⎪⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x)(如A 级T6).以题试法2.(1)已知f(x +1)=x +2x ,求f(x)的解析式;(2)设y =f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x +2,求f(x)的解析式. 解:(1)法一:设t =x +1,则x =(t -1)2(t≥1);代入原式有f(t)=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f(x)=x 2-1(x≥1).法二:∵x +2x =(x)2+2x +1-1=(x +1)2-1, ∴f(x +1)=(x +1)2-1(x +1≥1), 即f(x)=x 2-1(x≥1).(2)设f(x)=ax 2+bx +c(a≠0), 则f′(x)=2ax +b =2x +2, ∴a =1,b =2,f(x)=x 2+2x +c. 又∵方程f(x)=0有两个相等实根,∴Δ=4-4c =0,c =1,故f(x)=x 2+2x +1.典题导入[例3] (2018·广州调研考试)设函数f(x)=⎩⎪⎨⎪⎧2-x,x ∈-∞,,x 2,x ∈[1,+,若f(x)>4,则x 的取值范围是______.[自主解答] 当x<1时,由f(x)>4,得2-x>4,即x<-2; 当x≥1时,由f(x)>4得x 2>4,所以x>2或x<-2, 由于x≥1,所以x>2. 综上可得x<-2或x>2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f(f(-2))的值. 解:∵f(-2)=22=4, ∴f(f(-2))=f(4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(2018·衡水模拟)已知f(x)的图象如图,则f(x)的解析式为________.解析:由图象知每段为线段.设f(x)=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f(x)=⎩⎪⎨⎪⎧32x ,0≤x≤1,3-32x ,1≤x≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =-2B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin x B .y =ln xxC .y =xe xD .y =sin xx解析:选D 函数y =13x的定义域为{x|x≠0},选项A 中由sin x≠0⇒x≠k π,k ∈Z ,故A 不对;选项B中x>0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x|x≠0}.3.(2018·安徽高考)下列函数中,不满足f(2x)=2f(x)的是( ) A .f(x)=|x|B .f(x)=x -|x|C .f(x)=x +1D .f(x)=-x解析:选C 对于选项A ,f(2x)=|2x|=2|x|=2f(x);对于选项B ,f(x)=x -|x|=⎩⎪⎨⎪⎧0,x≥0,2x ,x <0,当x≥0时,f(2x)=0=2f(x),当x <0时,f(2x)=4x =2·2x=2f(x),恒有f(2x)=2f(x);对于选项D ,f(2x)=-2x =2(-x)=2f(x);对于选项C ,f(2x)=2x +1=2f(x)-1.4.已知f(x)=⎩⎪⎨⎪⎧-π,x>0,++1,x≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于( )A .-2B .1C .2D .3解析:选D f ⎝ ⎛⎭⎪⎫43=12,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23+2=52,f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f(x)对于任意实数x 恒有2f(x)-f(-x)=3x +1,则f(x)=( ) A .x -1 B .x +1 C .2x +1D .3x +3解析:选B 由题意知2f(x)-f(-x)=3x +1.① 将①中x 换为-x ,则有2f(-x)-f(x)=-3x +1.② ①×2+②得3f(x)=3x +3, 即f(x)=x +1.7.已知f(x)=x 2+px +q 满足f(1)=f(2)=0,则f(-1)=________. 解析:由f(1)=f(2)=0,得⎩⎪⎨⎪⎧12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f(x)=x 2-3x +2.所以f(-1)=(-1)2+3+2=6. 答案:68.已知函数f(x)=⎩⎪⎨⎪⎧x 2+2ax ,x≥2,2x+1,x <2,若f(f(1))>3a 2,则a 的取值范围是________.解析:由题知,f(1)=2+1=3,f(f(1))=f(3)=32+6a ,若f(f(1))>3a 2,则9+6a>3a 2,即a 2-2a -3<0,解得-1<a<3.答案:(-1,3)9.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y|0≤y≤3}不合题意.答案:②10.若函数f(x)=xax +b (a≠0),f(2)=1,又方程f(x)=x 有唯一解,求f(x)的解析式.解:由f(2)=1得22a +b =1,即2a +b =2;由f(x)=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f(x)=2xx +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(min)的关系.试写出y =f(x)的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x.当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f(x)=⎩⎪⎨⎪⎧115x ,x ∈[0,30],2,x ∈,,110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(2018·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=⎩⎪⎨⎪⎧cx ,x<A ,c A ,x≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以c A=15,①所以必有4<A ,且c4=c2=30.② 联立①②解得c =60,A =16.2.(2018·江西红色六校联考)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x<1,0,x =1,-1x ,x>1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f(x)=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f(x),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f(x),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,x>1,0,x =1,-x ,0<x<1,故f ⎝ ⎛⎭⎪⎫1x =-f(x),满足.综上可知,满足“倒负”变换的函数是①③. 3.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式; (2)解不等式f(x)>2x +5. 解:(1)设二次函数f(x)=ax 2+bx +c(a≠0). ∵f(0)=1,∴c =1. 把f(x)的表达式代入f(x +1)-f(x)=2x ,有 a(x +1)2+b(x +1)+1-(ax 2+bx +1)=2x.∴2ax +a +b =2x.∴a =1,b =-1.∴f(x)=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0,解得x>4或x<-1.故原不等式解集为{x|x>4,或x<-1}.1.已知函数f(x)=⎩⎪⎨⎪⎧ 3x +2,x<1,x 2+ax ,x≥1,若f(f(0))=4a ,则实数a =________.解析:∵f(0)=3×0+2=2,f(f(0))=f(2)=4+2a =4a ,∴a =2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。

高考数学一轮 2.1 函数及其表示精品教学案 新人教版(教师版)

高考数学一轮 2.1 函数及其表示精品教学案 新人教版(教师版)

【考纲解读】【要点梳理】1.符号:f A B →表示集合A 到集合B 的一个映射,它有以下特点: (1)对应法则有方向性, :f A B →与:f B A →不同;(2)集合A 中任何一个元素,在f 下在集合B 中都有唯一的元素与对应; (3)象不一定有原象,象集C 与B 间关系是C B ⊆.2.函数是特殊的映射,它特殊在要求集合A 和B 都是非空数集. 函数三要素是指定义域、值域、对应法则.同一函数必须满足:定义域相同、对应法则相同.3.分段函数是指函数由n 个不同部分组成,但是一个函数.4.函数解析式求法:(1)已知函数类型,可设参,用待定系数法;(2)已知复合函数[(()]f g x 的表达式,求()f x 可用换元法;(3)配凑法与方程组法. 【例题精析】考点一 函数的概念【变式训练】1.下列函数中,与函数1y x=有相同定义域的是( ) A.2()log f x x = B.1()f x x= C.()||f x x = D.()2x f x = 【答案】A【解析】选项A 的定义域为(0,)+∞,与原题相同;而选项B 中的x 可以为负数,选项C 、D 的定义域都为R ,故选A.考点二 函数值的求解例2.(2012年高考福建卷文科9)设,则f(g(π))的值为 ( )A 1B 0C -1D .π2. (2012年高考江西卷文科3)设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则f (f (3))=( )A.15 B.3 C. 23 D. 139【答案】D【解析】考查分段函数,f (3)=23,f (f (3))=f (23)=139. 【易错专区】问题:求分段函数的函数值例.已知2,0()(1),0x xf xf x x>⎧=⎨+≤⎩,则4()3f+4()3f-的值等于( )A.-2B.4C.2D.-41.下列各组函数表示相同函数的是( )A. f(x)=2x, g(x)=2()x B. f(x)=|x|,g(x)=2xC. f(x)=1x-, g(x)=11xx--D. f(x)=1x+. 1x-, g(x)= 21x-【答案】B【解析】由题意可分析出,选项A、C、D的定义域不相同,而选项B的定义域与对应法则均相同,故选B.2. (2008年高考山东卷文科第5题) 设函数2211()21x xf xx x x⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)ff⎛⎫⎪⎝⎭的值为()A.1516B.2716- C.89D.18【答案】A【解析】因为(2)4f=,所以1(2)ff⎛⎫⎪⎝⎭=1()4f=1516,故选A.3.(北京市东城区2012年1月高三考试)已知函数3,0,()(1),0,x xf xf x x≤⎧=⎨->⎩那么5()6f的值为.4.(山东省青州市2011年4月抽样监测文科第14题)已知函数)8(,)0)(3()0(2)(-⎩⎨⎧≤+>=fxxfxxfx则=_________.【答案】2【解析】(8)(5)(2)(1)2f f f f-=-=-==.【考题回放】1.(2010年高考湖北卷文科3)已知函数3log ,0()2,0xx x f x x >⎧=⎨≤⎩,则1(())9f f =A.4B.14C.-4 D-142.(2009年高考山东卷理科第10题)定义在R 上的函数f(x )满足⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( ) A.-1 B. 0 C.1 D. 2 【答案】C【解析】由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=,所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1,故选C.3. (2012年高考陕西卷文科11) 设函数发f (x )=,则f (f (-4))=【答案】4【解析】41(4)()16,((4))(16)16 4.2f f f f --==∴-===4.(2011年高考浙江卷文科3)设函数k 4()1f x x=- ,若()2f a =,则实数a =____5.(2010年高考陕西卷文科13)已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = . 【答案】26.(2009年高考北京卷文科第12题)已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .。

高考数学一轮复习教学案函数及其表示(含解析)

高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

高考数学一轮总复习学案:第1讲函数及其表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.直线x =a (a 是常数)与函数y =f (x )的图象有0个或1个交点. 2.几个常用函数的定义域(1)分式型函数,分母不为零的实数集合. (2)偶次方根型函数,被开方式非负的实数集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}.(5)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是相等函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)若集合A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (4)分段函数是由两个或几个函数组成的.( )(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)解分段函数不等式时忘记范围; (3)用换元法求解析式,反解时忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(多维探究) 角度一 求函数的定义域(1)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1](2)(2020·高考北京卷)函数f (x )=1x +1+ln x 的定义域是________. 【解析】 (1)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .(2)函数f (x )=1x +1+ln x 的自变量满足⎩⎪⎨⎪⎧x +1≠0,x >0,所以x >0,即定义域为(0,+∞).【答案】 (1)B (2)(0,+∞)求解函数定义域的策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f [g (x )]的定义域;②若y =f [g (x )]的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简. (2)求出定义域后,一定要将其写成集合或区间的形式. 角度二 已知函数的定义域求参数(1)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A .-2B .-1C .1D .2(2)若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,12B .⎝ ⎛⎭⎪⎫0,12C . ⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)因为-2x +a >0, 所以x <a2,所以a2=1,所以a =2.(2)由ax 2-4ax +2>0恒成立, 得a =0或⎩⎪⎨⎪⎧a >0,Δ=(-4a )2-4×a ×2<0,解得0≤a <12. 【答案】 (1)D (2)D已知函数定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( )A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2] 3.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:因为函数y =mx -1mx 2+4mx +3的定义域为R ,所以mx 2+4mx +3≠0,所以m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34, 所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.答案:⎣⎢⎡⎭⎪⎫0,34求函数的解析式(师生共研)(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________________.(2)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )的解析式为________________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________________.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为______________. 【解析】 (1)(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg2t -1, 即f (x )的解析式是f (x )=lg2x -1(x >1). (2)(配凑法)因为f ⎝⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,所以f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (4)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg 2x -1(x >1) (2)f (x )=x 2-2,x ∈[2,+∞) (3)f (x )=x 2-x +3 (4)f (x )=2x求函数解析式的4种方法(1)配凑法:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),得f (x )的表达式.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=_______. 解析:方法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).方法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________________. 解析:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)3.已知函数f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:方法一(换元法):设t =x +1,则x =(t -1)2,t ≥1,代入原式得f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.方法二(配凑法):因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 答案:f (x )=x 2-1(x ≥1)分段函数(多维探究) 角度一 分段函数求值(1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x,x ≤0,f (x -3),x >0,则f (5)的值为( )A .-7B .-1C .0D .12(2)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f [f (-9)]=________.(3)(2021·广东省七校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(3-x ),x ≤02x -1,x >0,若f (a -1)=12,则实数a =________.【解析】 (1)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D .(2)因为函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,所以f (-9)=lg 10=1,所以f [f (-9)]=f (1)=-2.(3)当a -1≤0,即a ≤1时,log 2(4-a )=12,4-a =212,故a =4-212,不满足a ≤1,舍去.当a -1>0,即a >1时,2a -1-1=12,2a -1=32,解得a =log 23,满足a >1.综上可得a =log 23.【答案】 (1)D (2)-2 (3)log 23分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f [f (a )]的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程(1)已知函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <0,3x ,x ≥0,若f [f (-1)]=9,则实数a =( )A .2B .4C .133D .4或133(2)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0,若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8【解析】 (1)因为-1<0,所以f (-1)=a -2, 所以f (a -2)=9. 当a -2≥0,即a ≥2时, 3a -2=9,解得a =4.当a -2<0,即a <2时,2(a -2)+a =9,解得a =133(舍去).综上可知a =4.故选B . (2)由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=8.当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D .【答案】 (1)B (2)D(1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参; (2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值. 角度三 分段函数与不等式(一题多解)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 方法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.所以不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即为1<2-2x ,解得x <0.所以不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .方法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,只有当⎩⎪⎨⎪⎧2x <0,x +1≥0或2x <x +1<0时,满足f (x +1)<f (2x ),故x <0,所以不等式f (x +1)<f (2x )的解集为(-∞,0).【答案】 D涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.1.(2021·长沙市统一模拟考试)已知函数f (x )=⎩⎪⎨⎪⎧log 3 x ,x >0,x 2,x ≤0,则f [f (-3)]=( )A .-2B .2C .-1D .1解析:选D .f (-3)=3,则f [f (-3)]=f (3)=log 33=1.故选D .2.设f (x )=⎩⎪⎨⎪⎧3-x+a ,x ≤2,f (x -1),x >2,若f (3)=-89,则实数a =( )A .1B .-1C .19D .0解析:选B .f (3)=f (3-1)=f (2)=3-2+a =-89,解得a =-1.3.(2021·六校联盟第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值范围是( )A .(-1,+∞)B .(-∞,-1)C .(-1,4)D .(-∞,1)解析:选C .函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0在(-∞,0]上是减函数,在(0,+∞)上函数值保持不变,若f (x -4)>f (2x -3),则⎩⎪⎨⎪⎧x -4<0,2x -3≥0或x -4<2x -3≤0,解得x ∈(-1,4).故选C .4.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:由题可知,1-a 与1+a 异号,当a >0时,1-a <1,1+a >1, 所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1, 所以-1+a -2a =2+2a +a , 解得a =-34.答案:-34核心素养系列2 数学抽象——函数的新定义问题定义函数问题是指给出阅读材料,设计一个陌生的数学情境,定义一个新函数,并给出新函数所满足的条件或具备的性质;或者给出函数,再定义一个新概念(如不动点),把数学知识与方法迁移到这段阅读材料,考生需捕捉相关信息,通过归纳、探索,发现解题方法,然后解决问题.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos (πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,所以①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,所以②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,所以③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),所以④是“1的饱和函数”.综上可知,其中是“1的饱和函数”的所有函数的序号是②④.【答案】 B处理新定义函数问题的常用方法(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数、三角函数等)为背景定义的,可以通过阅读材料,分析有关信息,联想背景函数及其性质,进行类比,捕捉解题灵感,然后解决问题.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些定义型函数可看成是由两个已知函数构造而成的.1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos (x +1)解析:选D .由题意可得准偶函数的图象关于直线x =a (a ≠0)对称,即准偶函数的图象存在不是y 轴的对称轴.选项A ,C 中函数的图象不存在对称轴,选项B 中函数的图象的对称轴为y 轴,只有选项D 中的函数满足题意.2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④解析:选C .对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .。

高三数学一轮复习学案函数及其表示

高三数学一轮复习学案函数及其表示

高三数学一轮精品复习学案:函数及其表示【高考目标定位】一、考纲点击1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

3.了解简单的分段函数,并能简单应用。

二、热点、难点提示1.本节是函数的起始部分,以考查函数的概念、三要素及表示法为主,同时函数的图象、分段函数的考查是热点,另外,实际问题中的建模能力偶尔也有所考查。

2.以多种题型出现在高考试题中,要求相对较低,但很重要,特别是函数的表达式、对应法则,仍是明年高考考查的重要内容。

【考纲知识梳理】一、函数与映射的概念注:函数与映射的区别:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集。

二、函数的其他有关概念 (1)函数的定义域、值域在函数()y f x =,x A ∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值{()|}f x x A ∈的集合叫做函数的值域(2)一个函数的构成要素 定义域、值域和对应关系 (3)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。

注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。

如果函数y=x 和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx 与y=cosx ,其定义域为R ,值域都为[-1,1],显然不是相等函数。

因此凑数两个函数是否相等,关键是看定义域和对应关系)(4)函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。

(5)分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。

分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是个函数。

高考一轮复习教案函数及其表示

高考一轮复习教案函数及其表示

第一节函数及其表示1.函数的概念及其表示(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.分段函数及其应用了解简单的分段函数,并能简单应用.知识点一函数与映射的概念函数映射两集合A,B设A、B是两个非空的数集设A、B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称f:A→B为从集合A到集合B的一个映射易误提醒易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.[自测练习]1.下列图形可以表示函数y=f(x)图象的是()知识点二函数的有关概念1.函数的定义域、值域(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫作函数的定义域;函数值的集合{f(x)|x∈A}叫作函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.函数的表示方法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.易误提醒(1)解决函数的一些问题时,易忽视“定义域优先”的原则.(2)误把分段函数理解为几个函数组成.必备方法求函数解析式的四种常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;函数的实际应用问题多用此法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).[自测练习]2.(2016·贵阳期末)函数f(x)=log2(x+1)的定义域为()A.(0,+∞)B.[-1,+∞)C.(-1,+∞)D.(1,+∞)3.f(x)与g(x)表示同一函数的是()A.f(x)=与g(x)=·B.f(x)=x与g(x)=C.y=x与y=()2D.f(x)=与g(x)=4.若函数f(x)=则f(f(2))=()A.-1B.2C.1D.0考点一函数的定义域问题|函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题探究角度有:1.求给定函数解析式的定义域;2.已知f(x)的定义域,求f(g(x))的定义域;3.已知定义域确定参数问题.探究一求给定解析式的定义域1.(2015·江西重点中学一联)函数f(x)=+lg(3-x)的定义域是()A.(3,+∞)B.(2,3)C.[2,3)D.(2,+∞)探究二已知f(x)的定义域,求f(g(x))的定义域2.若函数y=f(x)的定义域是[0,3],则函数g(x)=的定义域是()A.[0,1) B.[0,1]C.[0,1)∪(1,9] D.(0,1)探究三已知定义域求参数范围问题3.若函数f(x)=的定义域为R,则a的取值范围为________.函数定义域的三种类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b求出.考点二函数解析式的求法|(1)已知f(1-cos x)=sin2x,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式;(3)已知f(x)+2f=x(x≠0),求f(x)的解析式.函数解析式求法中的一个注意点利用换元法求解析式后易忽视函数的定义域,即换元字母的范围.求下列函数的解析式:(1)已知f=lg x,求f(x);(2)2f(x)-f(-x)=lg(x+1),求f(x).考点三分段函数|1.(2015·高考全国卷Ⅰ)已知函数f(x)=且f(a)=-3,则f(6-a)=()A.-B.-C.-D.-2.(2015·高考全国卷Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.3.分段函数的定义理解不清致误【典例】已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.[易误点评]本题易出现的错误主要有两个方面:(1)误以为1-a<1,1+a>1,没有对a进行讨论直接代入求解.(2)求解过程中忘记检验所求结果是否符合要求而致误.[防范措施](1)对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解.(2)检验所求自变量的值或范围是否符合题意求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.[跟踪练习]设函数f(x)=若f(a)+f(-1)=2,则a=()A.-3B.±3C.-1D.±1A组考点能力演练1.(2015·高考陕西卷)设f(x)=则f[f(-2)]=()A.-1 B.C.D.2.(2015·北京朝阳模拟)函数f(x)=+的定义域为()A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)3.已知函数f(x)的定义域为(-∞,+∞),如果f(x+2014)=,那么f·f(-7986)=()A.2014B.4C. D.4.(2016·岳阳质检)设函数f(x)=lg,则f+f的定义域为()A.(-9,0)∪(0,9)B.(-9,-1)∪(1,9)C.(-3,-1)∪(1,3)D.(-9,-3)∪(3,9)5.若函数f(x)=的定义域为实数集R,则实数a的取值范围为()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-∞,-2]∪[2,+∞)D.[-2,2]6.(2015·陕西二模)若函数f(x)=,则f(f(-99))=________.7.函数y=f(x)的定义域为[-2,4],则函数g(x)=f(x)+f(-x)的定义域为________.8.具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数.下列函数:①y=x-;②y=x+;③y=其中满足“倒负”变换的函数是________.9.已知f(x)=x2-1,g(x)=(1)求f(g(2))和g(f(2))的值;(2)求f(g(x))的解析式.10.动点P从单位正方形ABCD的顶点A出发,顺次经过B,C,D绕边界一周,当x 表示点P的行程,y表示P A的长时,求y关于x的解析式,并求f的值.B组高考题型专练1.(2014·高考山东卷)函数f(x)=的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)2.(2015·高考湖北卷)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]3.(2015·高考山东卷)设函数f(x)=若f=4,则b=()A.1 B.C. D.4.(2015·高考浙江卷)存在函数f(x)满足:对于任意x∈R都有()A.f(sin2x)=sin x B.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|5.(2014·高考四川卷)设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=________.答案:1.解析:本题考查函数的概念,根据函数的概念,定义域中一个x只能对应一个y,所以排除A,B,C,故选D.2.解析:由x+1>0知x>-1,故选C.答案:C3.解析:选项A,C中的函数定义域不同,选项D的函数解析式不同,只有选项B正确.4.解析:本题考查分段函数、复合函数的求值.由已知条件可知,f(2)=log2=-1,所以f(f(2))=f(-1)=(-1)2+1=2,故选B.答案:B1.解析:本题考查函数的定义域.由题意得解得2<x<3,故选B.答案:B2.解析:依题意得即0≤x<1,因此函数g(x)的定义域是[0,1),故选A..解析:函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥1,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.答案:[-1,0] 例1[解](1)f(1-cos x)=sin2x=1-cos2x,令t=1-cos x,则cos x=1-t,t∈[0,2],∴f(t)=1-(1-t)2=2t-t2,t∈[0,2],即f(x)=2x-x2,x∈[0,2].(2)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)-f(x)=a(x+1)2+b(x+1)-ax2-bx=x-1,即2ax+a+b=x-1,∴即∴f(x)=x2-x+2.(3)∵f(x)+2f=x,∴f+2f(x)=.解方程组得f(x)=-(x≠0).变式1解:(1)令t=+1,则x=,∴f(t)=lg,即f(x)=lg(x>1).(2)∵2f(x)-f(-x)=lg(x+1),∴2f(-x)-f(x)=lg(1-x).解方程组得f(x)=lg(x+1)+lg(1-x)(-1<x<1).1.解析:因为f(x)=f(a)=-3,所以或解得a=7,所以f(6-a)=f(-1)=2-1-1-2=-,选A.答案:A2.解析:由于f(0)=2,f=1+,f=2<f,故排除选项C、D;当点P在BC上时,f(x)=BP+AP=tan x+,不难发现f(x)的图象是非线性的,排除选项A.故选B.答案:B1.[解析]当a>0时,1-a<1,1+a>1,由f(1-a)=f(1+a)可得2-2a+a=-1-a-2a,解得a=-,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)可得-1+a-2a=2+2a+a,解得a=-.[答案]-变式解析:因为f(-1)==1,所以f(a)=1,当a≥0时,=1,所以a=1;当a<0时,=1,所以a=-1.故a=±1.答案:D1.解析:由f(-2)=2-2=,∴f[f(-2)]=f=1-=.答案:C2.解析:本题考查函数的定义域.根据函数有意义的条件建立不等式组.要使函数f(x)有意义,则解得x≥0且x≠1,即函数定义域是[0,1)∪(1,+∞),故选C.3.3.解析:f=sin=1,f(-7986)=f(2014-10000)=lg10000=4,则f·f(-7986)=4.答案:B4.解析:利用函数f(x)的定义域建立不等式组求解.要使函数f(x)有意义,则>0,解得-3<x<3.所以要使f+f有意义,则解得所以定义域为(-9,-1)∪(1,9),故选B.答案:B5.解析:函数的定义域为R等价于对?x∈R,x2+ax+1≥0,令f(x)=x2+ax+1,结合二次函数的图象(图略),只需Δ=a2-4≤0即可,解得实数a的取值范围为[-2,2],故选D.6.解析:f(-99)=1+99=100,所以f(f(-99))=f(100)=lg100=2.答案:27.解析:由题意知解得-2≤x≤2.答案:[-2,2]8.解析:对于①,f(x)=x-,f=-x=-f(x),满足题意;对于②,f=+=f(x)≠-f(x),不满足题意;对于③,f=即f=故f=-f(x),满足题意.答案:①③9.解:(1)由已知,g(2)=1,f(2)=3,∴f(g(2))=f(1)=0,g(f(2))=g(3)=2.(2)当x>0时,g(x)=x-1,故f(g(x))=(x-1)2-1=x2-2x;当x<0时,g(x)=2-x,故f(g(x))=(2-x)2-1=x2-4x+3;∴f(g(x))=10.解:当P点在AB上运动时,y=x(0≤x≤1);当P点在BC上运动时,y==(1<x≤2);当P点在CD上运动时,y==(2<x≤3);当P点在DA上运动时,y=4-x(3<x≤4);综上可知,y=f(x)=∴f=.B组高考题型专练1.解析:∵f(x)有意义,∴∴x>2,∴f(x)的定义域为(2,+∞).答案:C2.解析:依题意知,,即,即函数的定义域为(2,3)∪(3,4].答案:C3.解析:f=f=f.当-b<1,即b>时,3×-b=4,解得b=(舍).当-b≥1,即b≤时,2-b=4,解得b=.故选D.答案:D4.解析:本题主要考查函数的概念,即对于任一变量x有唯一的y与之相对应.对于A,当x=或时,sin2x均为1,而sin x与x2+x此时均有两个值,故A、B错误;对于C,当x =1或-1时,x2+1=2,而|x+1|有两个值,故C错误,故选D.答案:D5.解析:∵f(x)的周期为2,∴f=f=f.又∵当x∈[-1,0)时,f(x)=-4x2+2,∴f=-4×2+2=1.答案:1。

第三高考数学一轮复习 函数及其表示教案

第三高考数学一轮复习 函数及其表示教案

诚西郊市崇武区沿街学校第三中学高考数学一轮复习函数及其表示教案教学内容 学习指导 即使感悟 【学习目的】(1)理解构成函数的要素,会求一些简单函数的定义域和值域;理解映射的概念.(2)在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(3)理解简单的分段函数,并能简单应用.【学习重点】求一些简单函数的定义域和值域,求函数的解析式 【学习难点】求一些简单函数的定义域和值域,求函数的解析式【回忆预习】 一回忆知识: 1、 集合的运算2、 有集合的关系,求字母的范围。

二、根底自测:1.(2021年卷)以下函数中,与函数y =x1有一样定义域的是 (A)A .f(x)=lnxB .f(x)=x1C .f(x)=|x|D .f(x)=ex2.设M ={x|0≤x≤2},N ={y|0≤y≤3},给出以下四个图形(如下列图),其中能表示从集合M 到集合N 的函数关系的有 (B)A .0个B .1个C .2个D .3个3.假设对应关系f :A→B 是从集合A 到集合B 的一个映射,那么下面说法错误的选项是 (B)A .A 中的每一个元素在集合B 中都有对应元素回忆知识③一次函数、二次函数的定义域均为R. ④y =ax ,y =sinx ,y =cosx ,定义域均为R. ⑤y =tanx 的定义域为.⑥函数f(x)=x0的定义域为. 5.函数的值域(1)在函数y =f(x)中,与自变量x 的值相对应的y 值做、叫做函数的值域. (2)根本初等函数的值域 ①y =kx +b(k≠0)的值域是.②y =ax2+bx +c(a≠0)的值域是: 当a >0时,值域为; 当a <0时,值域为。

③y =(k≠0)的值域是.④y =ax(a >0且a≠1)的值域是. ⑤y =logax(a >0且a≠1)的值域是R. ⑥y =sinx ,y =cosx 的值域是. ⑦y =tanx 的值域是.6.求函数值域(或者者最值)的常用方法.常用方法主要有:利用根本初等函数的图象及性质、单调性、不等式法、导数法、数形结合法、换元法、判别式法、观察法等.其中前五种方法为常用方法,除去导数法之外,其余的方法都有局限性,但一定要掌握各种方法的适用范围. 探究、例1求以下函数的定义域 (1)y=02lg(2)(1)12x x x x -+-+-定义域:〔-3,1〕 〔1,2〕〔2〕y=xx x -+||)1(0;例2、求以下函数的值域.解析:〔1〕值域:y ∈[)1,0 (2)y ∈(]4-,-∞ [)∞+,4〔3〕y ∈(]1,-∞ 变式:求以下函数的值域:(1)y=1e 1e +-x x .〔2〕y=521+-x x;(x≥0)解析:〔1〕y ∈()1,1-(2)y ∈⎥⎦⎤ ⎝⎛51,21-例3(2021·二模)(1)f(x)的定义域是[0,4],求①f(x2)的定义域;②f(x +1)+f(x -1)的定义域. (2)f(x2)的定义域为[0,4],求f(x)的定义域解析:(1〕函数f 〔x 〕的定义域是[0,4],求函数f 〔x²〕的定义域 所以x²属于[0,4] 所以x 属于[-2,2] 〔2〕函数f 〔x²-2〕的定义域是[1,+∞],求函数f 〔x/2〕的定义域 因为x 属于[1,+∞] 所以x²-2属于[-1,+∞] 所以x/2属于[-1,+∞] 所以x 大于等于-2【当堂达标】1、函数f(x)的定义域为(0,2],函数f()的定义域为(B)A .[-1,+∞)B .(-1,3]C .[,3]D .(0,) 2、【2021·文数】函数164xy =-的值域是〔C 〕 A.[0,)+∞ B.[0,4]C.[0,4)D.(0,4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一轮复习函数及其表示1教案
教材分析:以函数的概念与表示,分断函数及应用为重点,并注意新型概念与思维创新,高考以选择题、填空题为主出现。

学情分析:学生以C类为主,教学中注意基础知识的回顾与巩固。

教学目标:1.了解函数、映射的概念,会求一些简单的函数定义域和值域。

2.理解函数的三种表示法:解析法、图象法和列表法。

3.了解简单的分断函数,并能简单应用。

教学重点、难点:会求一些简单的函数定义域和值域,了解简单的分断函数,并能简单应用。

教学流程:
一、课堂提问——知识回顾
1.映射的概念与判定方法C
设A、B是两个集合,如果按照某种对应关系f,对于集合A中的每一个元素,在集合B中都有唯一的元素与它对应,这样的对应关系叫做从集合A到集合B的映射,记作f:A→B。

2.函数的三要素及其表示法B
①函数的三要素是定义域,值域,对应法则。

判断两个函数是否为相等函数只需判定两点: 定义域是否相同和对应法则是否相同。

函数的定义域:使f(x)有意义的自变量x的取值范围。

函数的值域:函数值的取值范围。

②函数的三种表示方法有解析法、图象法和列表法。

3.区间的概念C
4.分段函数与复合函数B/A
①如果一个函数在定义域的不同子集中因对应关系不同而用几个不同的式子来表示,这样的函数叫做分段函数.分段函数的求法是分别求出解析式再组合在一起,但要注意各区间之间的点不重复、无遗漏。

②如果y=f(u),u=g(x),那么函数y=f[g(x)]叫做复合函数,其中f(u)叫做外层函数,g(x)叫
做内层函数。

二、课堂练习——习题讲练
例1.判断下列对应是否是从集合A到集合B的映射:C
(1)A=R,B={x|x>0},f:x→|x|;
(2)A=N,B=N f:x→|x-2|;
(3)A={x|x>0},B=R,f:x→x2.
[分析](1)0∈A,在法则f下,0→|0|=0B,故该对应不是从集合A到集合B的映射;
(2)2∈A,在法则f下,2→|2-2|=0B,故该对应不是从集合A到集合B的映射;
(3)对于任意x∈A,依法则f:x→x2∈B,故该对应是从集合A到集合B的映射.
[小结]函数是特殊的映射,即从非空数集到非空数集的映射.
练习1.下列从M到N的各对应法则中,哪些是映射?哪些是函数?哪些不是映射?为什么?B
(1)M={直线A x+B y+C=0},N=R,f1:求直线A x+B y+C=0的斜率;
(2)M={直线A x+B y+C=0},N={α|0≤α<π},f2:求直线A x+B y+C=0的倾斜角;
(3)当M=N=R,f3:求M中每个元素的正切;
(4)M=N={x|x≥0},f4:求M中每个元素的算术平方根.
解:(1)当B=0时,直线Ax+C=0的斜率不存在,此时N中不存在与之对应的元素,故f1不是从M到N的映射,也就不是函数了.
(2)对于M 中任一元素Ax +By +C=0,该直线恒有唯一确定的倾斜角α,且α∈[0,π),故f 2是从M 到N 的映射.但由于M 不是数集,从而f 2不是从M 到N 的函数.
(3)由于M 中元素2k π
π+ (k ∈Z )的正切无意义,即它在N 中没有象,故f 3不是从M 到N 的
映射,自然也不是函数.
(4)对于M 中任一非负数,其算术平方根唯一且确定,故f 4是从M 到N 的映射,又M 、N 均为非空数集,所以f 4是从M 到N 的函数.
例2.求下列函数的定义域C/B (1)21
21y x =+ (2) 1
y x x =-
(3) 1
2y x =-
(4) ()2
11x y x +=-+练习2.(1)已知函数()f x 的定义域是[]1,1-,求函数(21)f x -的定义域.C
(2)已知函数(23)f x +的定义域是[)4,5-,求函数(23)f x -的定义域.B/A
(3) 已知函数1()1f x x =+,求函数[]()f f x 的定义域.B/A
例3.试判断以下各组函数是否表示相等函数?C/B
(1) 1,y x x R =-∈与1,y x x N =-∈
(2) y =与y =(3) 1y x =+与1y t =+
练习3. 试判断以下各组函数是否表示相等函数?C/B (1) ()0()1,()1f x x g x =-=
(2) ()1,()f x x g x =-=(3) ()22(),()1f x x g x x ==+
(4) 22()1,()1f x x g u u =-=-
例4.已知二次函数2()y a x b x c x R =++∈的部分对应值如下表:C/B
(1) 求函数的解析式;
(2) 求(3),(4)f f -;
(3)求函数的定义域和值域;
(4) 求不等式20a x b x c ++≤的解集.
练习4.求例4中二次函数[)2,3,2y a x b x c x =++∈--的值域.C
三、作业布置
1.
求函数y =
的定义域.C
2. 求函数2ln (2)
x x y x x +-=-的定义域.C
3. 若函数(1)f x +的定义域为[]0,1,求函数(22)x f -及函数0(2)
(1)f x x -的定义域.B
4.已知函数2
2()1x f x x =+,求111
(1)(2)()(3)((4)()234f f f f f f f ++++++的值.C 5.函数()f x 的定义域是R,值域是[]1,2,求函数(21)f x -的定义域和值域. A
四、板书设计。

相关文档
最新文档