lecture21
Lecture 21 -ing participle 语法教程 章振邦 上外

与infinitive的比较 (P246)
1. 能带-ing分词而不能带不定式的动词(P 241) 2.能带不定式和-ing分词而意义无甚区别的动词
(246) 3.能带不定式和-ing分词而意义不同的动词(P247)
Hale Waihona Puke 能带-ing分词而不能带不定式的动词
admit, acknowledge, can’t resist, avoid, can’t help, consider, don’t mind, enjoy, mind, resent, suggest, delay, ensure, appreciate, miss…
Bob talked us into walking (walk) home with him.
from: 使…不
eg. What kept you from joining me?
We must prevent/stop the trouble
(from) spreading.
I was prevented from attending (attend) the conference.
A sailor saved him ____ (drown).
Three children were saved ____ (burn) to death in a fire yesterday.
Other prep.: eg. The Head has congratulated John on coming out top.
The police have accused him of exceeding (exceed) the speed limit.
I do thank you most warmly for doing (doing) the job for us.
Lecture 21∶ VHDL, Multiplication, I/O

component AND_GATE is
port( A:
in std_logic;
B:
in std_logic;
F1:
out std_logic
);
end component;
component OR_GATE is
port( X:
in std_logic;
Y:
in std_logic;
F2: out std_logic
Done
Input/Output
• Program and data need to be input. • Results from computation need to be
recorded or displayed. • Examples: Keyboard, monitor, printer, hard
);
end component;
signal wire: std_logic;
begin
Gate1: AND_GATE port map (A=>input1, B=>input2, F1=>wire);
Gate2: OR_GATE port map (X=>wire, Y=>input3, F2=>output);
Putting components together (1):
Example from Weijun Zhang (UCR)
Then, define a new entity, comb_ckt, that uses one instance of OR_GATE and one instance of AND_GATE.
end half_adder
lecture的意思用法大全

lecture的意思用法大全lecture的意思n. 演讲,训斥,教训vi. 作演讲vt. 给…作演讲,教训(通常是长篇大论的)变形:过去式: lectured; 现在分词:lecturing; 过去分词:lectured;lecture用法lecture可以用作名词lecture主要指教育性或学术性“演讲”,引申可指“冗长的训斥或谴责”。
lecture是可数名词,其后接介词on或about ,意为“关于…的演讲”“就…做演讲”“因…训斥或谴责某人”。
lecture作“讲演,讲课”解时,是不及物动词。
说“讲授某课程”时常与介词on连用,说“在某地讲演”时常与介词at〔in〕连用。
lecture用作名词的用法例句She ran over her notes before giving the lecture.她讲课前把讲稿匆匆看了一遍。
His lecture covered various aspects of language.他的讲课涉及到语言诸方面的问题。
They could not follow the lecture.他们听不懂这次演讲。
lecture可以用作动词lecture作“讲演,讲课”解时,是不及物动词。
说“讲授某课程”时常与介词on连用,说“在某地讲演”时常与介词at〔in〕连用。
lecture也可用作及物动词,意思是“向…讲演,给…讲课”,接名词或代词作宾语。
lecture还可作“责备”“教训”“训斥”解,用作及物动词,接名词或代词作宾语。
“因…而受到训斥”可说lecture sb for n./v -ing。
lecture用作动词的用法例句It was a shame for me to be lectured in front of the whole class.当着整个班级的面被训斥了一顿,真让我感到羞辱。
He lectured to his students on modern writers.他给学生们讲了关于现代作家的一课。
ing-participal

21.1(2)
b. verbs mean "使…不", "阻止 eg: 阻止" 使 不 阻止 stop, prevent, keep, hinder, restrain, save, obtain ~ sb from doing sth Note: from can be omitted sometimes, except in passive voice, eg: stop sb doing sth; be stopped from doing sth
Table of Contents
21.1 Collocation of –ing participle with verbs 21.2 Verbs followed either by infinitive or by –ing participle
21.1 Collocation of –ing participle with verbs
2)
remember forget regret
For example:
to do doing
去做 做了
Sally, remember to post the letters! I remember finishing the exercises.
3) stop, quit leave off go on For example: He stops to write a letter. The students stop reading and look out of the window. to do doing
An Introduction of -ing Participle
Why this book prefer one term: -ing participle? – Benefit: to deal with the various grammatical functions of the same grammatical structure collerises the functions of "present participle" and "gerund". It can function as: subject (S), object (O), subject complement (SC), object complement (OC), modifier, adverbial (A), and it can denotes the progressive aspect as well.
TCM Warm Disease lecture chapter21 薛生白《湿热病篇》

Dr. Yong Kian Fui
Ph.D ห้องสมุดไป่ตู้Shandong University of TCM, CHINA
Date : 6st July 2010, Tuesday Time : 2.00-3.00 pm Venue : Auditorium Hospital Putrajaya
Traditional Chinese Medicine Warm Disease - TCM 4206
Dr Chang Fong Lan
1
温病学
第二十章 叶天士《温热论》选
《湿热病篇》
清代医家薛雪(字生白)所著 成书于1770年之前,初刊于1831年 以自述自注的形式,全面论述外感湿热病发生发展规 律和辨证治疗的专著 内容以湿温、暑温等夏秋季节的常见病为主,兼及痢疾、 夏日感冒、寒湿等病 本篇的问世,为后世将温病明确分为温热、湿热两大 类奠定了理论基础 薛生白提出的对湿热病证进行三焦辨治的方法,具有很高 的学术价值,起到了承前启后的作用,对后世辨治湿热病 产生了重要影响,被列为医家必读之书
数字信号处理邵曦lecture21

11.2 First-Order Lowpass and Highpass Filters
Problem:
Design a first-order lowpass DF
H (z)
b0 b1z 1 1 a1z 1
with
cutoff frequency fc (sampling ratefs )
Problem: Design a notch filter with notch
frequency f0 (sampling rate fs ), notch bandwidth f . The specifications may be expressed as
{0 , , GB2}
Step1:Frequency prewarping.
Definition of cutoff frequency c orfc :
| H (c ) |2 drops (relative to 0 )by a factor of GC2 <1,
or a drop in dB:
AC 10 lg GC2 20 lg GC
(11.2.2)
Chapter 11 IIR Digital Filter Design
11.1 Bilinear Transformation
DF (digital filter), AF(analog filter)
IIR DF design methods:
Bilinear transformation(双线性变换), etc. ─Utilizing the well-developed AF design method.
cot( )
2
C#LectureNotes_第21章

21.3 Web窗体
21.3.1 Web窗体组成
在Web窗体页中,用户界面编程分为两个不同的部分:可视控 件和逻辑。 视觉元素称作Web窗体“页”(page)。这种页由一个包含静态 HTML和/或服务器控件的文件组成。Web窗体页用作 要显示的静态文本和控件的容器。 Web窗体页的逻辑由代码组成,开发者创建代码与窗体进行交 互,编程逻辑位于与用户界面文件不同的文件中,该文件称作 “代码隐藏”文件,用aspx.cs”作为扩展名,在代码隐藏文件中 编写的逻辑使用C#来编写。
基本语法 (1)
声明代码的语法
<script runat = “server” language = “codelanguage” src = “pathname”> 代码 </ script >
内联代码段
<% inline code %> 或者 <% inline expression %>
服务器端控件语法
基本语法 (2)
HTML服务器端控件语法 数据绑定语法 Object标记语法
<object runat = “server” / > 例如 <object id = “myobjectname” class = “myselectclass” runat = “server” / >
简介
特点
(1)增强的性能 (2)威力和灵活性 (3)简易性 (4)可重用性 (5)可管理性
(6)可缩放性和可用性
(7)自定义性和扩展性 (8)安全性
21.2 基本语法与代码分 离技术
21.2.1 的基本语法
Lecture 21 - Visual Acuity

Figure 4. The principle of vernier alignment can be used to improve accuracy in measuring the axis in keratometery.
2
Lecture 21 – Visual acuity
Figure 5. Navy pilots judge the alignment of landing lights to verify their glide path during a carrier landing, a vernier alignment visual task. (From Chapter 7, Visual Function, in Helmet-Mounted Displays: Sensation, Perception and Cognition Issue, CE Rash, 2009. Original from /nlweb/icols.gif)
Under ideal conditions, the resolution acuity limit, that is, the angular size of the minimum separation (or minimum angle of resolution, abbreviated MAR) that the human eye can see is about ~0.5 arc minutes or ~30 arc seconds. This equates to about 20/10 vision or 60 c/d.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Since it is a linear map from a one dimensional vector space to a one dimensional vector space, the pullback operator A∗ is simply multiplication by some constant λA . That is, for all ω ∈ Λn (V ∗ ), A∗ ω = λA ω . Definition 4.32. The determinant of A is det(A) = λA . The determinant has the following properties: 1. If A = I is the identity map, then det(A) = det(I ) = 1. 2. If A, B are linear maps of V into V , then det(AB ) = det(A) det(B ).
σ ∗ In the case where W = V and each ei = fi , we set ω = e∗ 1 ∧ · · · ∧ en , and we get ∗ A ω = det[aij ]ω . So, det(A) = det[aij ]. For basic facts about determinants, see Munkres section 2. We will use these results quite a lot in future lectures. We list some of the basic results below. Let A = [aij ] be an n × n matrix.
Definition 4.33. An orientation of L is a choice of one of these components, usually labeled L+ . We define v ∈ L+ ⇐⇒ v is positively oriented. (4.143)
Let V be an ndimensional vector space. Then Λn (V ∗ ) is a 1dimensional vector space. Definition 4.34. An orientation of V is an orientation of Λn (V ∗ ). That is, a choice of Λn (V ∗ )+ .
� We can � write Aei = aij fj , so that A has the associated matrix A ∼ [aij ]. Then ∗ ∗ ∗ ∗ ∗ A fj = ajk ek . Take ω = f1 ∧ · · · ∧ fn ∈ Λn (W ∗ ), which is a basis vector of Λn (W ∗ ). Let us compute its pullback: � n � � n � � � ∗ ∗ A∗ (f1 ∧ · · · ∧ fn )= a1,k1 e∗ ∧ ··· ∧ an,kn e∗ k1 kn k1 =1 kn =1 (4.136) � ∗ ∗ = (a1,k1 . . . am,kn )ek1 ∧ · · · ∧ ekn .
k1 ,...,kn ∗ Note that if kr = ks , where r �= s, then e∗ k1 ∧ · · · ∧ ekn = 0. If there are no repetitions, then there exists σ ∈ Sn such that ki = σ (i). Thus, � ∗ ∗ ∗
σ
=
�
τ
(−1)τ aτ (1),1 . . . aτ (n),n , where τ = σ −1
(4.139)
= det(At ). 2. Let A= � B C 0 D � , (4.140)
where B is k × k , C is k × �, D is � × �, and n = k + �. Then det(A) = det(B ) det(D) (4.141)
3
Claim. If V and V /W are given orientations, then W acquires from these orienta tions a natural subspace orientation. Idea of proof: Let π : V → V /W be the canonical map, and choose a basis e1 , . . . , en of V such that e�+1 , . . . , en is a basis of W and such that π (e1 ), . . . , π (e� ) is a basis of V /W , where � = n − k . Replacing e1 by −e1 if necessary, we can assume that π (e1 ), . . . , π (e� ) is an oriented basis of V /W . Replacing en by −en if necessary, we can assume that e1 , . . . , en is an oriented basis of V . Now, give W the orientation for which e�+1 , . . . , en is an oriented basis of W . One should check that this choice of orientation for W is independent of the choice of basis (this is explained in the Multilinear Algebra notes).
4.7
Determinant
Today we focus on the pullback operation in the special case where dim V = n. So, we are studying Λn (V ∗ ), which is called the nth exterior power of V . Note that dim Λn (V ∗ ) = 1. Given a linear map A : V → V , what is the pullback operator A∗ : Λn (V ∗ ) → Λn (V ∗ )? (4.V ∗ ). Then
(AB )∗ ω = det(AB )ω = B ∗ (A∗ ω ) = B ∗ (det A)ω = det(A) det(B )ω. (4.130)
(4.131)
1
3. If A is onto, then det(A) = � 0. Proof: Suppose that A : V → V is onto. Then there exists an inverse linear map A−1 : V → V such that AA−1 = I . So, det(A) det(A−1 ) = 1. 4. If A is not onto, then det(A) = 0. Proof: Let W = Im (A). If A is not onto, then dim W < dim V . Let B : V → W be the map A regarded as a map of V into W , and let ιW : W → V be inclusion. So, A = ιW B . For all ω ∈ Λn (V ∗ ), A∗ ω = B ∗ ι∗ W ω . Note that n ∗ ∗ ∗ ∗ ∗ ιW ω ∈ Λ (W ) = {0} because dim W < n. So, A ω = B ιW = 0, which shows that det(A) = 0. Let W, V be ndimensional vector spaces, and let A : V → W be a linear map. We have the bases e1 , . . . , en ∗ e∗ 1 , . . . , en f1 , . . . , fn ∗ ∗ f1 , . . . , fn basis of V , dual basis of V ∗ , basis of W , dual basis of W ∗ . (4.132) (4.133) (4.134) (4.135)
∗ ∗ Let f1 , . . . , fn be another basis of V and f1 , . . . , fn its dual basis. Let w� = � ∗ ∗ f1 ∧ · · · ∧ fn . We ask: How is ω � related to ω ? The answer: If fj = aij ei , then � ω = det[aij ]ω . So, if e1 , . . . , en is positively oriented, then f1 , . . . , fn is positively oriented if and only if det[aij ] > 0. Suppose V is an ndimensional vector space and that W is a k dimensional sub space of V .
Lecture 21
Let V, W be vector spaces, and let A : V → W be a linear map. We defined the pullback operation A∗ : W ∗ → V ∗ . Last time we defined another pullback operator having the form A∗ : Λk (W ∗ ) → Λk (V ∗ ). This new pullback operator has the following properties: 1. A∗ is linear. 2. If ωi ∈ Λk1 (W ∗ ), i = 1, 2, then A∗ ω1 ∧ ω2 = A∗ ω1 ∧ ω2 . 3. If ω is decomposable, that is if ω = �1 ∧ · · · ∧ �k where �i ∈ W ∗ , then A∗ ω = A∗ �1 ∧ · · · ∧ A∗ �k . 4. Suppose that U is a vector space and that B : W → U is a linear map. Then, for every ω ∈ Λk (U ∗ ), A∗ B ∗ ω = (BA)∗ ω .