STO-金属架桥(二)
JIS-Z-2241:2011金属材料拉伸试验方法

JIS-Z-2241:2011金属材料拉伸试验方法目次1 适用范围............................................................................... ........ .................................... . 12 规范性引用文件............................................................................... ................................. .... 13术语和定义............................................................................... ................................................ 14 符号和说明............................................................................... .. (2)5原理............................................................................... ......................................... ............. . (8)6 试样............................................................................... . (18)6.1形状及尺寸............................................................................... ...................... .. (18)6.2试样种类............................................................................... ................ ......... . (18)6.3试样加工............................................................................... ...................... .. (19)7 原始横截面积的测定............................................................................... . (21)8 原始标距的标记............................................................................... (21)9 试验设备的准确度............................................................................... .. (22)9.1试验机............................................................................... . (22)9.2延伸计............................................................................... .. (22)10 试验条件............................................................................... .. (22)10.1试验零点的设定............................................................................... (22)10.2试样夹持方法............................................................................... . (22)10.3试验速度............................................................................... .. (23)11 上屈服强度的测定............................................................................... . (24)12 下屈服强度的测定............................................................................... . (25)13 规定塑性延伸强度的测定............................................................................... .. (25)14 规定总延伸强度的测定............................................................................... (25)15 规定残余延伸强度的验证和测定............................................................................... .. (25)16 屈服点延伸率的测定............................................................................... .. (26)17 最大力塑性延伸率的测定............................................................................... (26)18 最大力总延伸率的测定............................................................................... (26)19 断裂总延伸率的测定............................................................................... . (26)20 断后伸长率的测定............................................................................... . (27)21 断面收缩率的测定............................................................................... .. (28)22试验报告............................................................................... .. (28)23测量不确定度............................................................................... . (29)23.1一般............................................................................... .. (29)23.2试验条件............................................................................... (29)23.3试验结果............................................................................... . (29)附录A(参考附录)计算机控制拉伸试验机使用的建议 (30)附录B(规范性附录)厚度0.1mm~<3mm 薄板和薄带使用的试样类型 (31)附录C(规范性附录)直径或厚度小于4mm 线材、棒材和型材使用的试样类型 (34)附录D(规范性附录)厚度等于或大于3mm 板材和扁材以及直径或厚度等于或大于4mm 线材、棒材和型材使用的试样类型............................................................................... . (35)附录E (规范性附录)管材使用的试样类型............................................................................... (43)附录F(参考附录)考虑试验机柔度估计的横梁分离速率 (46)附录G(参考附录)断后伸长率低于5%的测定方法 (47)附录H(参考附录)移位法测定断后伸长率............................................................................... (48)附录I((参考附录)棒材、线材和条材等长产品的无缩颈塑性伸长率的测定方法 (50)附录JA(参考附录)............................................................................. (51)附录JB(参考附录)........................................................................... . (52)附录JC(参考附录)JIS与国标对照表 (55)日本工业规格Z2241:2011金属材料拉伸试验方法Metallic materials -Tensile testing -Method of test at room temperature序文本标准修改采用国际标准ISO 6892-1:2009《金属材料室温拉伸试验方法》。
接触网软定位软态钢丝脆断分析及应对

– 118 –故障维修·接触网软定位软态钢丝脆断分析及应对doi:10.16648/ki.1005-2917.2020.01.101接触网软定位软态钢丝脆断分析及应对诸忠华(南京地铁运营有限责任公司,江苏南京 211135)摘要: 接触网软定位的软态钢丝一旦发生脆性断裂,往往会引发严重的弓网事故。
本文从受力、材质、施工工艺、环境因素等方面进行分析,并从设计、施工、检修、管理、防控、改造等方面提出应对措施,以降低软态钢丝脆断的风险及影响。
关键词: 脆性断裂;软定位;软态钢丝;尾支线引言在小半径弯道处,柔性接触网一般采用软定位的安装方式,由弯管定位器定位环通过两股ø3.5软态钢丝两头做拉线固定在腕臂上的定位环里。
如果软态钢丝断裂,定位器坠悬,会引发严重的弓网事故。
2018年7月21日,南京地铁3号线林场–星火路区段02–07号支柱软定位软态钢丝断裂(下文简称721故障),对运营造成严重影响。
本文以721故障为例,就软态钢丝的断裂原因进行分析,并针对脆性断裂提出应对措施。
1. 断裂的成因及形式1.1 断裂的外因①荷载过大:实际受力超出软态钢丝的抗拉能力极限,致使其被拉断。
②外力冲击:受力绷紧状态的软态钢丝(或定位器)在垂直于正应力方向上受到坚硬物体的高速冲撞,致使其崩断。
③交变应力:交变应力长期作用于软态钢丝,较强频率和幅度下会使其局部形成微小裂纹并逐渐扩展,致使其疲劳而断裂。
④环境因素:温度的变化及大气、雨水中的腐蚀性物质,逐渐降低软态钢丝力学性能。
1.2 断裂的内因①制造工艺:软态钢丝在生产过程中如存在拉拔不均匀、酸洗不净、磷化质量差等因素,会使其局部存在微裂纹。
②安装工艺:施工过程中,多次弯折会是软态钢丝局部产生微裂纹;过大的夹剪力会产生伤损降低抗拉强度;施工时较低的环境温度会产生冷作硬化,使其塑性降低脆性增加。
1.3 断裂的形式①韧性断裂:断裂前视觉上有明显变形,根据受力大小存在一定时间的劣化过程,断口因受力拉伸而成收缩状,一般塑性材料易发生。
1_800_MPa_超高强钢变径管热气胀成形特性研究

精 密 成 形 工 程第15卷 第12期34 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年12月收稿日期:2023-05-10 Received :2023-05-10引文格式:程超, 韩非, 石磊. 1 800 MPa 超高强钢变径管热气胀成形特性研究[J]. 精密成形工程, 2023, 15(12): 34-41.CHENG Chao, HAN Fei, SHI Lei. Hot Metal Gas Forming Characteristics of 1 800 MPa UHSS Variable Diameter Tube[J]. Journal of Netshape Forming Engineering, 2023, 15(12): 34-41. 1 800 MPa 超高强钢变径管热气胀成形特性研究程超1,2,韩非1,2,石磊1,2(1.宝山钢铁股份有限公司中央研究院,上海 201999; 2.汽车用钢开发与应用技术国家重点实验室(宝钢),上海 201999)摘要:目的 对B1800HS 热成形钢进行管件热气胀成形研究,探究变径管特征件热气胀成形的可行性和规律,为进一步研究热气胀成形超高强钢管件及工程应用推广提供参考和支撑。
方法 采用ABAQUS 有限元仿真分析和试验对比,研究了1 800 MPa 超高强钢变径管热气胀成形特性,通过有限元分析研究了成形温度(700、800、900 ℃)、气压加载速率(1、3、5 MPa/s )及胀形压力(12、15、18 MPa )对变径管成形规律的影响,通过变径管热气胀成形试验,研究了敏感参数对变径管样件尺寸精度、强度分布及厚度变化的影响。
结果 提高成形温度、气压加载速率和胀形压力可明显提高变径管的成形质量和贴模精度,当成形温度为900 ℃时,变径管抗拉强度可达到1 800 MPa 级别,且增压速率和胀形压力影响较小;变径管沿环向厚度分布均匀,零件无明显增厚和过度减薄缺陷。
ISO 9606-1 2012 中文版焊工考核

4 数字、符号和缩略语 .......................................................................................................................................... 7
5.1 概述 ....................................................................................................................................................................... 10 5.2 焊接方法 ............................................................................................................................................................... 10 5.3 试件类型 ............................................................................................................................................................... 11 5.4 焊缝种类 ............................................................................................................................................................... 11 5.5 填充材料组别(FM) .......................................................................................................................................... 12
弹塑性力学

ij 0 橡皮和铁盒之间无摩擦力 1 2 q, 3 q max 1 3 (1 2 ) q 1 2 2(1 )
ME6011 弹性塑性力学 21
3-3 3 3 Tresca和Mises屈服条件
研究塑性变形和作用力之间的关系及在塑性变形后 物体内部应力分布规律的学科称为塑性力学。 塑性力学问题的特点(4点) 应力与应变之间的关系(本构关系)是非线性的, 其非线性性质与具体材料有关; 应力与应变之间没有一一对应的关系,它与加载 历史有关; 在变形体中有弹性变形区 和塑性变形区,而在求 解问题时需要找出弹性区和塑性区的分界线;
xy yz
zx
xy
G
1 2 E 1 2 0 0 E
yz zxG NhomakorabeaG
1 1 1 2 [ x 0 ] x 0 [(1 ) x ] 0 E E E ex 应变偏量分量 sx 1 2G 应力偏量分量
ME6011 弹性塑性力学
9
不考虑材料强化性质
考虑材料强化性质
①理想弹塑性模型
E s ( s ) 韧性 ( s ) 材料
②线性强化弹塑性模型
( s ) E s E ( s ) ( s )
双线性强化模型
力学问题中各量间关系
ME6011 弹性塑性力学 3
• 本构关系
–反映应力应变之间的联系 映 –材料的固有特性:每一种材料,应力、应变有 着固有的关系 –广义Hook定律:线性 –增量理论:非线性,应变与应力状态和变形历 增量理论 非线性 应变与应力状态和变形历 史有关,研究应力和应变增强之间的关系
E
一种修正的Norton-Hoff本构模型及实验验证

一种修正的N o r t o n ‐H o f f 本构模型及实验验证王巧玲 唐炳涛 郑 伟山东建筑大学,济南,250101摘要:针对B 1500H S 硼钢,采用G l e e b l e ‐1500D 热模拟试验机,通过单轴拉伸试验对其在温度为550~850℃㊁应变速率为0.1~10s-1范围内的本构关系进行了研究㊂根据硼钢流动应力曲线的特点,对N o r t o n ‐H o f f 模型进行了修正,将修正后的模型与B r o s i u s 提出的N o r t o n ‐H o f f 模型和T o n g‐W a h l e n 模型进行比较,并通过预测值偏离实验值的程度进行评估㊂与实验结果对比后发现:修正的N o r t o n ‐H o f f 模型能更好地预测B 1500H S 硼钢的流动应力㊂关键词:本构模型;硼钢;流动应力;N o r t o n ‐H o f f 模型;T o n g‐W a h l e n 模型中图分类号:T G 115.5 D O I :10.3969/j.i s s n .1004132X.2015.14.023A M o d i f i e dN o r t o n ‐H o f fC o n s t i t u t i v eM o d e l a n dE x pe r i m e n t a lV e r if i c a t i o n W a ng Q i a o l i n g T a n g B i n g t a o Zh e n g We i S h a n d o n g J i a n z h uU n i v e r s i t y,J i n a n ,250101A b s t r a c t :I no r d e r t o e s t a b l i s hc o n s t i t u t i v e d e s c r i p t i o n s f o rB 1500H Sb o r o ns t e e l ,i tw a s s u b je c t e d t o i s o t h e r m a l u n i a x i a l t e n s i l e t e s t i n g o naG l e e b l e1500t h e r m o m e c h a n i c a l s i m u l a t o ra t t e m pe r a t u r e s r a n g i n gf r o m550℃t o 850℃a n d s t r a i n r a t e s r a ng i n g f r o m0.1s -1t o 10s -1.A c c o r d i n g t o t h e c h a r a c -t e r i s t i c s o f t h e f l o ws t r e s s c u r v e o f b o r o ns t e e l ,N o r t o n ‐H o f fm o d e lw a sm o d i f i e d .T h e p r e d i c t e d f l o ws t r e s s e s u s i n g t h em o d i f i e dm o d e lw e r e c o m p a r e dw i t hT o n g ‐W a h l e nm o d e l ,N o r t o n ‐H o f fm o d e l p r o -p o s e db y B r o s i u s ,a n d e v a l u a t e db y t h ed e g r e eo f t h e p r e d i c t e dv a l u ed e v i a t i o n f r o mt h e e x pe r i m e n t a l v a l u e s .B y c o m p a r i s o nw i t h t h e e x pe r i m e n t a l r e s u l t s ,i t s h o w s t h a t t h em o d if i e dN o r t o n ‐H o f fm o d e l i s b e t t e r t o p r e d i c t t h e f l o ws t r e s s o fB 1500H Sb o r o ns t e e l .K e y w o r d s :c o n s t i t u t i v e e q u a t i o n ;b o r o n s t e e l ;f l o ws t r e s s ;N o r t o n ‐H o f fm o d e l ;T o n g ‐W a h l e nm o d -e l收稿日期:20141008基金项目:国家自然科学基金资助项目(51375280);教育部新世纪优秀人才支持计划资助项目(N C E T ‐12‐1028);山东省自然科学基金资助重点项目(Z R 2013E E Z 003)0 引言随着汽车行业的快速发展,汽车轻量化和防撞性能的提升成为行业发展的趋势之一㊂超高强度钢在汽车领域的应用,可以在满足轻量化的同时提升汽车安全性能㊂目前,国外已经开始大批量使用含硼热冲压用钢,并且热冲压成形后的零件具有很多优良特性,拥有广阔的应用前景[1‐2]㊂高温成形过程中硼钢的热变形行为和高温本构关系模型在硼钢的数值模拟㊁热冲压成形技术的应用等方面起着重要作用㊂目前,对于金属材料而言,存在两种类型的本构关系㊂一种类型称为唯象模型,该模型并不涉及材料变形的微观机制,并且只考虑宏观变形参数(变形温度㊁应变速率和应变)对流动应力的影响㊂唯象模型只能从实验观察得到数据,缺乏深层次的理论依据及应用范围㊂由于该模型具有容易获得参数的优点,故被广泛采用㊂常见的模型包括J o h n s o n ‐C o o k 方程[3‐5]㊁Z e r i l l i ‐A r m -s t r o n g 方程[6]㊁A r r h e n i u s 方程[7‐8]及V o c e ‐K o c k s 方程[9]㊂另一种类型是基于物理的模型,该模型不仅考虑宏观变形参数,而且考虑高温塑性变形的物理机制,如位错运动㊁位错滑移等㊂与唯象模型相比,基于物理的模型中有更多的参数,所以建立的过程比较复杂,但它具有更高的精确度和更大的适用范围㊂本文利用G l e e b l e ‐1500D 热模拟试验机对硼钢奥氏体试样进行单向拉伸试验,考虑应变量㊁应变速度㊁温度㊁变形强化等因素,在N o r t o n ‐H o f f本构关系的基础上,提出了一种新的模型用于描述硼钢的热力学行为,用构建的本构方程计算硼钢在高温环境下拉伸试验的流动应力,并与B r o -s i u s 提出的N o r t o n ‐H o f f 模型和T o n g ‐W a h l e n 模型进行了对比,验证了预测结果的可靠性㊂1 实验设备及方法利用G l e e b l e ‐1500D 热模拟试验机对厚度为1.6m m 的B 1500H S 试样进行了系列单向热拉伸㊂拉伸试样的结构尺寸及热电偶丝位置如图1所示㊂㊃8791㊃Copyright ©博看网. All Rights Reserved.图1 B1500H S热拉伸试样及热电偶焊接位置(T C1,T C2,T C3)试样以16℃/s的速度加热至930℃并保温5m i n以充分奥氏体化,然后以50℃/s的速度冷却至指定温度(850℃㊁800℃㊁750℃㊁700℃㊁650℃㊁600℃㊁550℃),在指定温度下保温10s,恒温下利用G l e e b l e热模拟试验机进行拉伸试验,应变速率ε㊃分别取0.1s-1㊁1.0s-1㊁10s-1,获得不同温度下的拉伸应力应变曲线㊁热电偶测得的温度曲线㊁位移力关系曲线㊂2 修正的N o r t o n‐H o f f模型B r o s i u s等在文献[10]中描述过N o r t o n‐H o f f模型,N o r t o n‐H o f f模型是唯象本构模型的一种,大多数本构模型运用经验分析方法,表达流动应力的应变㊁温度㊁应变速率的相互影响,原N o r t o n‐H o f f模型为σy(εp,ε㊃p,θ)=KεKε㊃Kθ=K e x p(β/θ)εn pε㊃m p(1)其中,εp为应变;ε㊃p为应变速率;n为应变硬化指数;m为应变速率敏感指数;β㊁K为待定系数㊂为了精确地描述原始屈服应力,以及温度θ对Kε㊁Kε㊃的影响,将式(1)的参数n㊁m变为温度的函数, B r o s i u s提出了以下N o r t o n‐H o f f本构模型:σy(εp,ε㊃p,θ)=K(b+εp)n0e x p(-c n(θi-θ0))ε㊃m0e x p(c m(θi-θ0))e x p(β/θ)(2)其中,n0㊁c n㊁m0㊁c m㊁b㊁β为待定系数,θ0为室温,θi 为试验温度㊂图2所示为B r o s i u s提出的N o r t o n‐H o f f模型预测值与实验值的比较,可以发现真实应力‐应变曲线是动态回复型,变形初始阶段,应力随加载的进行而增大,当增大到材料的屈服应力后开始出现塑性流动,当材料出现稳定的亚结构后,流动应力趋于稳定值[11]㊂从图2a可以看出,温度为650℃㊁应变速率为0.1~10s-1时,应变在0~0.3范围内,应力的预测值与实验值相比,预测值偏大,应变在0.45~0.8的范围内预测值曲线呈现上升趋势,而实验曲线趋于稳定,B r o s i u s提出的N o r t o n‐H o f f模型的软化效果不明显㊂从图2b 可以看出,当应变速率为1s-1㊁温度为550℃时,模型的预测值在应变为0~0.1时大于实验值,在应变为0.1~0.3时小于实验值;温度为600℃时,模型应力明显小于实验值;温度为650~850℃㊁应变大于0.45时,B r o s i u s提出的N o r t o n‐H o f f 模型软化效果不明显㊂上述分析说明,在大范围的应变条件下,B r o s i u s提出的N o r t o n‐H o f f模型对应变的考虑欠缺,使模型对实验值预测的精确度降低㊂(a)温度为650℃(b)应变速率为1s-1图2 B r o s i u s提出的N o r t o n‐H o f f模型预测值与实验值比较针对B r o s i u s提出的N o r t o n‐H o f f模型在应变较大时软化不明显的缺点,在大应变范围内考虑应变对流动应力的影响,本文提出了一种修正的N o r t o n‐H o f f模型,在B r o s i u s提出的N o r t o n‐H o f f模型的基础上增加了一项e x p(pεp)(p是常数),代表材料的软化行为,p变大,代表软化加剧[12],该修正的N o r t o n‐H o f f模型为σy(εp,ε㊃p,θ)=K(b+εp)n0e x p(-c n(θi-θ0))ε㊃m0e x p(c m(θi-θ0))㊃e x p(β/θ)e x p(pεp)(3)3 模型对比及实验验证3.1 与B r o s i u s提出的N o r t o n‐H o f f模型的比较图3所示为修正的N o r t o n‐H o f f模型拟合结果与B r o s i u s提出的N o r t o n‐H o f f模型拟合结果的对比,由图3a可以看出,温度为650℃㊁各应变速率下,在应变为0~0.15范围内,B r o s i u s提出的N o r t o n‐H o f f模型的曲线与实验曲线相比偏高,而修正后模型的曲线更接近实验曲线㊂当应㊃9791㊃Copyright©博看网. All Rights Reserved.变为0.1㊁应变速率为10s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据增大12.51%和7.97%;当应变速率为1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据增大7.74%和3.44%;应变速率为0.1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据增大9.22%和4.91%㊂在应变为0.15~0.5范围内,B r o s i u s 提出的N o r t o n ‐H o f f 模型的曲线与实验曲线相比偏低,而修正后模型的曲线更接近实验曲线㊂在应变为0.4情况下,应变速率为10s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据减小5.02%和1.57%;应变速率为1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型的应力比实验数据减小1.34%,而修正后模型的应力比实验数据增大2.3%;应变速率为0.1s -1时,B r o s i u s 提出的N o r t o n ‐H o f f 模型与修正后模型的应力分别比实验数据减小6.6%和3.12%㊂应变超过0.5以后,B r o s i u s 提出的N o r t o n ‐H o f f 模型应力明显仍在增大,而修正后模型符合原始曲线的趋势趋于平稳㊂如图3b 所示,应变速率为1s -1㊁温度为550~850℃时,修正后模型的拟合效果普遍好于B r o s i u s 提出的N o r t o n ‐H o f f 模型,但是在温度为(a )温度为650℃(b )应变速率为1s-1图3 修正的N o r t o n ‐H o f f 模型拟合结果与B r o s i u s提出的N o r t o n ‐H o f f 模型拟合结果对比600℃时,两个方程的拟合效果都不理想,预测值与实验值相比,预测值偏低;温度为850℃时,预测值与实验值相比,预测值偏高,可能是由实验的误差造成的㊂由以上分析可以看出,本文提出的修正的N o r t o n ‐H o f f 本构模型比B r o s i u s 提出的N o r t o n ‐H o f f 本构模型精确度高,对由拉伸试验获得的数据的拟合效果好㊂3.2 与T o n g‐W a h l e n 模型的比较T o n g‐W a h l e n 模型是同时考虑基于物理和经验参数的模型,在Z e n e r ‐H o l l o m o n 参数Z (Z是温度补偿应变速率因子)的基础上,W a h l e n等[13]提出了关于应变速率㊁温度和应力的关系模型:Z =ε㊃pe x p (Q /(R θ))=K σn(4)其中,Q 是变形激活能;R 是摩尔气体常数,R =8.314472J /(m o l ㊃K ),求解式(4)中的σ,得σy =K-1/n [ε㊃e x p (Q /(R θ))]1/n =A [ε㊃e x p (Q /(R θ))]m (5)为了显示应变对流动应力的影响以及回复和再结晶对软化效果的影响,T o n g 等[14]提出了以下模型:σy (εp ,ε㊃p ,θ)=A [ε㊃p ex p (Q /(R θ))]m㊃[1+αe x p (-c (εp -ε0)2)][1-βe x p (-N εn p )](6)式(6)等号右边第2项考虑了回复和再结晶导致的软化效果,增加的第3项(H o c k e t t ‐S h e r b y 型方程)考虑了应变强化效果㊂由于实验数据显示流动应力没有显著减小,故将第2项忽略以简化模型,并且因为随温度增长,应变速率敏感性增大,B u r k h a r d t [15]定义应变速率指数m 为温度的线性函数,T o n g‐W a h l e n 模型为σy =A [ε㊃m 1(θ-θ0)pe x p (m 2Q /(R θ))][1-βe x p (-N εn p )](7)其中,A ㊁m 1㊁m 2㊁β㊁N ㊁n ㊁θ0为待定系数㊂对于B 1500H S ,Q =280k J /m o l ㊂将修正的N o r t o n ‐H o f f 模型与T o n g‐W a h l e n 模型进行比较,如图4所示㊂从图4a 可以看出,温度为750℃㊁应变在0~0.3之间时,T o n g‐W a h l e n 模型的预测值与实验值相比明显偏大㊂例如,当应变为0.1㊁应变速率为0.1s -1时,T o n g‐W a h l e n 模型的应力比实验数据大11.84%,而修正后模型的应力比实验数据小5.78%㊂应变为0.3~0.8时,T o n g‐W a h l e n 模型的预测值与实验值相比明显偏小㊂例如,当应变为0.6㊁应变速率为0.1s -1时,T o n g‐W a h l e n 模型与修正后模型的应力分别比实验数据小11.87%和7.27%㊂从图4b 可以看出,应变速率㊃0891㊃Copyright ©博看网. All Rights Reserved.为1s-1时,T o n g‐W a h l e n模型除了在温度为650℃时拟合效果较好以外,其他温度条件下拟合效果都不好,尤其是温度在700~850℃之间时,T o n g‐W a h l e n模型的预测值在应变为0~0.3时的应力预测值远远偏离实验值,比实验值高㊂从以上分析可以看出,修正的N o r t o n‐H o f f模型能较好地弥补T o n g‐W a h l e n模型的缺点,满足实验拟合精度的要求㊂(a)温度为750℃(b)应变速率为1s-1图4 修正的N o r t o n‐H o f f模型拟合结果与T o n g‐W a h l e n模型拟合结果的对比4 结论(1)本文针对硼钢B1500H S热变形行为进行了研究,提出了修正的N o r t o n‐H o f f模型㊂通过与B r o s i u s提出的N o r t o n‐H o f f模型的比较,发现修正后的模型比B r o s i u s提出的N o r t o n‐H o f f 模型更接近实验值,偏离实验值的百分比低于B r o s i u s提出的N o r t o n‐H o f f模型,并且修正的模型弥补了B r o s i u s提出的N o r t o n‐H o f f模型在拉伸试验后期应变较大时软化效果不明显的缺点,能更好地与真实应力‐应变曲线进行拟合㊂(2)在真实应力‐应变曲线的基础上,对修正的N o r t o n‐H o f f模型与T o n g‐W a h l e n模型的应力数据进行比较,发现在较大应变范围内,修正的N o r t o n‐H o f f模型比T o n g‐W a h l e n模型更为接近实验数据,尤其是在700~850℃的范围内,修正后模型的拟合效果更好㊂参考文献:[1] 徐虹,沈永波,孟佳,等.热冲压成形车门防撞梁组织和性能研究[J].锻压技术,2011,36(6):24‐27.X u H o n g,S h e n Y o n g b o,M e n g J i a,e ta l.S t u d y o nM i c r o s t r u c t u r e a n d P r o p e r t i e s o f H o t S t a m p i n gD o o rA n t i‐i m p a c tB e a m[J].F o r g i n g&S t a m p i n gT e c h n o l o g y,2011,36(6):24‐27.[2] 徐伟力,艾健,罗爱辉,等.钢板热冲压新技术介绍[J].塑性工程学报,2009,16(4):39‐43.X u W e i l i,A i J i a n,L u o A i h u i,e ta l.I n t r o d u c t i o no fS h e e tM e t a lH o t‐f o r m i n g[J].J o u r n a lo fP l a s t i c i t yE n g i n e e r i n g,2009,16(4):39‐43.[3] J o h n s o nGR,C o o kW H.F r a c t u r eC h a r a c t e r i s t i c s o fT h r e e M e t a l sS u b j e c t e dt o V a r i o u sS t r a i n s,S t r a i nR a t e s,T e m p e r a t u r e sa n dP r e s s u r e s[J].E n g i n e e r i n gF r a c t u r eM e c h a n i c s,1985,21(1):31‐48.[4] 刘丽娟,吕明,武文革.T i‐6A l‐4V合金的修正本构模型及其有限元仿真[J].西安交通大学学报,2013, 47(7):73‐79.L i uL i j u a n,LüM i n g,W uW e n g e.A n I m p r o v e dC o n-s t i t u t i v e M o d e la n d F i n i t eE l e m e n tS i m u l a t i o nf o rM a c h i n i n g T i‐6A l‐4V A l l o y[J].J o u r n a lo fX i’a nJ i a o t o n g U n i v e r s i t y,2013,47(7):73‐79. [5] 王金鹏,曾攀,雷丽萍.2024A l高温高应变率下动态塑性本构关系的实验研究[J].塑性工程学报,2008, 15(3):101‐104.W a n g J i n p e n g,Z e n g P a n,L e iL i p i n g.D y n a m i cP l a s-t i c E x p e r i m e n t s a n d C o n s t i t u t i v e M o d e lo f2024A l u m i n u m u n d e r H i g h T e m p e r a t u r e a n d H i g hS t r a i n R a t e[J].J o u r n a lo fP l a s t i c i t y E n g i n e e r i n g, 2008,15(3):101‐104.[6] L i n Y o n g c h e n g,C h e n X i a o m i n.A C o m b i n e dJ o h n-s o n‐C o o k a n d Z e r i l l i‐A r m s t r o n g M o d e lf o r H o tC o m p r e s s e dT y p i c a lH i g h‐s t r e n g t hA l l o y S t e e l[J].C o m p u t a t i o n a lM a t e r i a l sS c i e n c e,2010,49(3):628‐633.[7] T a n g B i n g t a o,Y u a nZ h e n g j u n,C h e n g G a n g,e ta l.E x p e r i m e n t a lV e r i f i c a t i o no fT a i l o r W e l d e dJ o i n i n gP a r t n e r s f o rH o t S t a m p i n g a n dA n a l y t i c a lM o d e l i n go f TW B s R h e o l o g i c a l C o n s t i t u t i v e i n A u s t e n i t i cS t a t e[J].M a t e r i a l s S c i e n c ea n d E n g i n e e r i n g:A, 2013,585:304‐318.[8] 曹淑芬,张立强,郭鹏程,等.22M n B5热变形行为研究及本构方程建立[J].中国机械工程,2014,25(9): 1256‐1260.C a oS h u f e n,Z h a n g L i q i a n g,G u oP e n g c h e n g,e ta l.㊃1891㊃Copyright©博看网. All Rights Reserved.S t u d y o n H o t D e f o r m a t i o n B e h a v i o r a n d F l o wS t r e s sC o n s t i t u t i v eM o d e l o f22M n B5a tH i g hT e m-p e r a t u r e[J].C h i n aM e c h a n i c a l E n g i n e e r i n g,2014,25(9):1256‐1260.[9] N a d e r iM,D u r r e n b e r g e rL,M o l i n a r iA,e t a l.C o n s t i-t u t i v eR e l a t i o n s h i p sf o r22M n B5B o r o n S t e e lD e-f o r m e d I s o t h e r m a l l y a tH ig hT e m p e r a t u r e s[J].M a-t e r i a l sS c i e n c ea n dE n g i n e e r i n g:A,2008,478:130‐139.[10] B r o s i u sA,K a r b a s i a nH,T e k k a y aAE,e t a l.M o d e-l l i e r u n g u n d S i m u l a t i o n d e r W a r m b l e c h u m f o r-m u n g:A k t u e l l e rS t a n du n dZ u kün f t i g e rF o r s c h u n-g s b e d a r f[C]//E r l a n g e r W o r k s h o p W a r m b l e c h u m-f o r m u n g.E r l a ng e n,2007:37‐58.[11] 周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术,2005,24(2):212‐215.Z h o uJ i m i n g,Q iL e h u a,C h e n G u o d i n g.I n v e s t i g a-t i o no nt h eC o n s t i t u t i v eR e l a t i o n s h i p o f M a t e r i a l sF o r m i n g i nH i g hT e m p e r a t u r e[J].M e c h a n i c a l S c i-e n c e a n dT e c h n o l o g y,2005,24(2):212‐215.[12] Z h a n g C h a o,L iX i a o q i a n g,L iD o n g s h e n g,e ta l.M o d e l i z a t i o na n dC o m p a r i s o no fN o r t o n‐H o f f a n dA r r h e n i u sC o n s t i t u t i v eL a w s t oP r e d i c tH o tT e n-s i l eB e h a v i o r o fT i‐6A l‐4V A l l o y[J].T r a n s a c t i o n so fN o n f e r r o u s M e t a l sS o c i e t y o fC h i n a,2012,22(Z2):457‐464.[13] W a h l e n A,F e u r e r U,R e i s s n e rJ.C o m p u t e rC o n-t r o l l e d M e a s u r e m e n ta n d A n a l y t i c a l M o d e l l i n g o fF l o wS t r e s s e s d u r i n g H o tD e f o r m a t i o no f t h eC o p-p e r A l l o y C u Z n42M n2[J].J o u r n a lo f M a t e r i a l sP r o c e s s i n g T e c h n o l o g y,1997,63(1/3):233‐237.[14] T o n g L,S t a h e lS,H o r aP.M o d e l i n g f o rt h eF E‐s i m u l a t i o n o f W a r m M e t a l F o r m i n g P r o c e s s e s[C]//P r o c e e d i n g s o f t h e6t hI n t e r n a t i o n a lC o n f e r-e n c e a n dW o r k s h o p o nN u m e r i c a l S i m u l a t i o n o f3DS h e e tM e t a l F o r m i n g P r o c e s s e s.D e t r o i t,2005:625‐629.[15] B u r k h a r d tL.E i n e M e t h o d i k Z u r V i r t u e l l e n B e-h e r r s c h u n g T h e r m o‐m e c h a n i s c h e r P r o d u k t i o n-s p r o z e s s e B e i d e r K a r o s s e r i e h e r s t e l l u n g[D].Zür i c h:E i d g e n o s s i s c h e T e c h n i s c h e H o c h s c h u l eZür i c h,2008.(编辑 陈 勇)作者简介:王巧玲,女,1990年生㊂山东建筑大学工程力学研究所硕士研究生㊂主要研究方向为超高强钢热成形过程本构模型㊂唐炳涛,男,1976年生㊂山东建筑大学工程力学研究所副教授㊂郑 伟,男,1982年生㊂山东建筑大学工程力学研究所讲师㊂ 中国创新论坛之走进天津”活动举行 2015年6月27日上午,中国机械工程学会和天津市科学技术协会主办,由天津市机械工程学会㊁天津百利装备集团承办的 中国创新论坛之走进天津”活动在天津大礼堂隆重召开㊂中国工程院院长㊁中国机械工程学会理事长周济院士出席论坛并做主旨报告㊂天津市副市长何树山出席论坛并致辞㊂会议由天津市科协主席㊁中国科学院院士饶子和主持㊂出席会议的还有天津市科协㊁天津市工业和信息化委员会等相关行业的领导㊂中国机械工程学会十届八次常务理事(扩大)会议的代表及天津市科技工作者近400人参加了此次论坛㊂在主旨报告会上,首先由周济院长作了题为 智能制造 中国制造2025’的主攻方向”的报告㊂报告提到,实施 中国制造2025”,主题是创新驱动发展,主线是工业化和信息化两化深度融合,主攻方向是智能制造㊂智能制造 制造业数字化网络化智能化是新一轮工业革命的核心技术,应该作为制造业创新驱动㊁转型升级的制高点㊁突破口和主攻方向㊂推进智能制造工程,要采取 总体规划㊁分步实施㊁重点突破㊁全面推进”的发展策略, 十年规划,两个阶段”,分阶段实现工业2.0㊁3.0㊁4.0的同步发展㊂中国工程院院士陈予恕作了题为 机械运载装备的安全运行与机械动力学 轨道车辆和航空发动机”的报告㊂他指出, 中国制造2025”作为我国制造业未来十年的行动纲领,对 行业基础和共性关键技术研发”项目给予了极大的重视和安排,而机械动力学及其控制技术是许多行业的基础和共性关键技术㊂陈院士就我国轨道交通车辆和航空发动机领域影响安全运行的动力学问题的研究现状㊁已取得成果和存在问题作了介绍㊂天津市工业和信息化委员会党组书记㊁主任李朝兴作了题为 加快推进京津冀产业协同发展打造全国先进制造研发基地”的报告㊂报告从天津制造业所面临的机遇以及承担的使命角度出发,对其规划体系,发展目标㊁重点㊁路径和布局问题进行了深入阐述,并就如何落实的相关政策和措施进行了解读㊂中国创新论坛之走进地方系列活动是由中国机械工程学会策划并组织的服务区域经济,促进地方装备制造业发展的系列活动㊂从2009年起,已经分别举行了 走进包头”㊁ 走进山东”㊁ 走进德阳”㊁ 走进长春”㊁ 走进银川”㊁ 走进山西”㊁ 走进黑龙江”㊁ 走进辽宁”等活动,取得了良好的社会效果㊂(工作总部)㊃2891㊃Copyright©博看网. All Rights Reserved.。
Q345D钢高温力学性能及凝固特性

摘要低碳低合金钢Q345D具有强度高、韧性高、抗冲击、耐腐蚀等优良特性,因而倍受广泛地应用于各个方面。
,连铸技术因为具有可以大幅提高金属收得率、改善铸坯质量和节约能源等显著优势,因而在生产钢材的各种方法中得到了最为广泛的应用。
本文通过对Q345D钢的高温力学性能热模拟实验及其高温凝固相转变规律的研究,进一步了解该钢种的高温特性,以期为铸坯质量的提高提供理论依据。
对于Q345D高温力学性能的研究主要是通过热模拟试验机模拟金属热变形的整个过程,得到其热变形过程中热强度、热塑性、显微组织以及相变行为并对其进行分析整理总结。
本文通过使用Gleeble-1500D热模拟试验机,对Q345D钢进行高温拉伸实验,获得该钢在800℃~1200℃温度下的屈服强度、抗拉强度及延伸率、断面收缩率等数据。
对以上数据进行分析,可以得出:在800℃~850℃温度区间,随着温度的升高,屈服强度、抗拉强度分别从800℃的39.10MPa、83.61MPa提高到850℃的40.01MPa、93.10MPa;在900℃~1300℃温度区间内,随着温度的升高,其屈服强度和抗拉强度分别从900℃的33.53MPa、91.16MPa降低到1300℃的8.45MPa、19.85MPa。
对于该钢的热塑性,800℃~900℃温度区间内随温度升高,其延伸率、断面收缩率分别从800℃的9.11%、77.7%提高到900℃的23.58%、79.3%升高;在1000℃~1200℃温度区间内,延伸率、断面收缩率变化比较平缓;1200℃以后随温度升高,延伸率、断面收缩率急剧降低,在1300℃时其数值分别为11.75%、48.5%,表明其热塑性下降。
Q345D的高温凝固相转变规律是通过自行研制的可控高温凝固相变实验装置进行的,对于加热到熔化状态下的钢样通过控制冷速冷却到不同温度,然后淬火保留高温组织的方式研究其组织的转变行为。
对所得试样金相组织观测得出:在液态下直接淬火时,冷却速度越快,所得到的晶粒越为细小;在冷速为20℃/min的冷却速度下,Q345D钢的液、固相线温度点分别为1515℃和1460℃,在该区间内,残留高温铁素体的含量随着结束控制冷速冷却温度的降低而升高;在2℃/s的冷却速度下,在1515℃和1460℃温度点仍然有高温铁素体相的存在,但是与同温度下以20℃/min的冷却速度得到的试样相比,高温铁素体相的含量有明显不同。
变性淀粉的基础知识.docx

变性淀粉的基础知识一、定义变性淀粉是指利用物理、化学或酶的手段来改变天然淀粉的性质。
通过分子切断、重排、氧化或淀粉分子中引入取代基可制得性质发牛变化、加强或具有新的性质的淀粉衍生物。
一.、分类物理变性:预糊化淀粉、「射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。
化学变性:用化学试剂处理得到的变性淀粉。
其中有两人类:一类是使分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使分子量增加,如交联淀粉、酯化淀粉、醯化淀粉、接枝淀粉等。
酶法变性(生物改性):各种酶处理淀粉。
如C1、0、Y-环糊精、麦芽糊精、直链淀粉等。
复合变性:采用两种以上处理方法得到的变性淀粉。
如氧化交联、交联酯化淀粉等。
采用复合变性的淀粉具有两种变性淀粉的各自优点。
三、淀粉的化学基础1、淀粉的分子结构。
2、淀粉的分类。
2, 1直链淀粉:一种线形多聚物,都是由a-D-葡萄糖通过a-D-I, 4糖莒键连接而成的链状分了。
图. 直链淀粉的结构直链淀粉的用途较多,如可制成强度很高的纤维和透明薄膜,它无味、无毒,具有抗水和抗油性能,是-种良好的食品包装材料。
2, 2支链淀粉:是一种高度分散的大分子,主链上分出支链,各G单元之间以4糖苻键连接构成它的主链,支链通过6糖苛键与主链相连。
3、淀粉的回牛(或称老化、凝沉)3, 1淀粉稀溶液或淀粉糊在低温下静置一定的时间,浑浊度增加,溶解度减少,在稀溶液小会有沉淀析出,如果冷却速度快,特别是高浓度的淀粉糊,就会变成凝胶体(凝胶长时间保持时即出现冋生),好象冷凝的果胶或动物胶溶液,这种现象称为冋生或老化,这种淀粉称为冋生淀粉(P -淀粉).3, 2回牛的本质是糊化的淀粉分子在温度降低时由于分子运动减慢,此时直链淀粉分子和支链淀粉分子的分支都冋头趋向于平行排列,互和靠拢,彼此以氧键结合,重新组成混合微晶。
图淀粉溶液中直链淀粉回生的机制3, 3影响回生的因素:①分子组成(直链淀粉的含量),直链淀粉,长支链淀粉易于冋生。