用数学归纳法证明一类不等式的技巧

合集下载

一个代数不等式的几何证法

一个代数不等式的几何证法

一个代数不等式的几何证法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。

步骤/方法比较法比较法是证明不等式的最基本方法,具体有作差比较和作商比较两种。

基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。

当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)基准1未知a+b0,澄清:a3+b3a2b+ab2分析:由题目观察知用作差比较,然后提取公因式,结合a+b0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)?(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证明: =(a-b)2(a+b)又∵(a-b)20(a-b)2(a+b)0即a3+b3a2b+ab2例2 设a、br+,且ab,求证:aabbabba分析:由澄清的不等式所述,a、b具备轮休对称性,因此可以在设a0的前提下用做商比较法,作商后同1比较大小,从而达至证明目的,步骤就是:10作商20商形整理30推论为与1的大小证明:由a、b的对称性,不妨解a0则aabbabba=aa-b?bb-a=(ab)a-b∵a?b?0,ab?1,a-b?0(ab)a-b?(ab)0=1即aabbabba1,又abba0aabbabba练习1 已知a、br+,nn,求证(a+b)(an+bn)2(an+1+bn+1)基本不等式法利用基本不等式及其变式证明不等式就是常用的方法,常用的基本不等式及变形存有:(1)若a、br,则a2+b22ab(当且仅当a=b时,取等号)(2)若a、br+,则a+b 2ab (当且仅当a=b时,挑等号)(3)若a、b同号,则 ba+ab2(当且仅当a=b时,取等号)基准3 若a、br, |a|1,|b|1则a1-b2+b1-a21分析:通过观察可直接套用: xyx2+y22证明:∵a1-b2b1-a2a2+(1-b2)2+b2-(1-a2)2=1b1-a2+a1-b21,当且仅当a1+b2=1时,等号成立练2:若 a?b?0,证明a+1(a-b)b3综合法综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

归纳法证明不等式用归纳法证明不等式

归纳法证明不等式用归纳法证明不等式

归纳假设
提出归纳假设
根据已知条件和不等式的性质,提出一个归纳假设,即假设在某个条件下不等 式成立。
验证归纳假设
验证在初始条件下,归纳假设成立。
归纳步骤
归纳递推
根据归纳假设,推导出在更广泛的情况下不等式也成立。
完成证明
通过递推和归纳,最终完成对不等式的证明。
CHAPTER 03
归纳法证明不等式的例子
归纳法证明
利用数学归纳法证明平方和公式,首先需要证明基础步骤,即当$n=1$时,公式成立。然后通过假设 当$n=k$时公式成立,推导出当$n=k+1$时公式也成立。最后,根据数学归纳法,可以得出平方和公 式对于所有正整数$n$都成立。
CHAPTER 04
归纳法证明不等式的注意事 项
初始基础要正确
确定初始基础
在开始归纳法之前,确保选择正确的初 始基础,这可以是已知的不等式或数学 定理。
VS
检查基础条件
确保所选择的初始基础是正确的,并且满 足所给定的条件。
归纳假设要合理
要点一
选择归纳假设
选择一个合理的归纳假设,以便在归纳步骤中使用。
Hale Waihona Puke 要点二验证归纳假设
确保所选择的归纳假设是正确的,并且满足所给定的 条件。
归纳法证明
利用数学归纳法证明等比数列求和公式,首先需要证明基础步骤,即当$n=1$时,公式成立。然后通过假设当 $n=k$时公式成立,推导出当$n=k+1$时公式也成立。最后,根据数学归纳法,可以得出公式对于所有正整数 $n$都成立。
利用数学归纳法证明平方和公式
平方和公式
平方和公式是指一个数列中所有数的平方和的极限存在时,该极限等于数列的各项的平方和。

不等式的证明技巧

不等式的证明技巧

不等式的证明技巧不等式是数学中常见的一种重要的数学关系。

证明一个不等式一般有以下几种常用的技巧:1.分析前提条件:首先,我们需要对不等式中的前提条件进行仔细的分析,了解这些条件约束下的数学性质。

在证明过程中,有时可以通过对前提条件的适当利用来简化证明过程,或者削弱不等式的限制,使得问题更容易处理。

2.求导和函数分析:对于一些关于函数的不等式,我们可以通过函数的导数来进行分析。

在求导的过程中,我们可以得到函数的最大值、最小值以及增减性质等重要的信息。

根据这些信息,我们可以判断函数的取值范围和不等式的成立条件。

3.数学归纳法:对于一些具有递推性质的不等式,可以使用数学归纳法进行证明。

首先,我们可以验证当n=1时不等式的成立,然后假设对于一些n成立,即不等式成立,再通过证明当n+1时也成立来得出结论。

4.分割法:对于一些含有多个变量的不等式,我们可以通过分割法将问题转化为多个单变量的不等式进行分析。

通过分析这些单变量的不等式,可以帮助我们更好地理解原始不等式的性质和结论。

5.套用已知不等式:在证明过程中,我们可以尝试将一些已知的不等式进行变形运用。

通过套用已知的不等式,可以简化证明过程,加快解题速度。

尤其是一些经典的不等式如均值不等式、柯西-施瓦茨不等式等,它们已经被广泛研究和应用,具有较强的普适性。

6.代入与化简:有时我们可以通过代入一些特殊的数值或者特定的变量取值,使得不等式变得更简单。

这样可以进一步分析不等式的性质,加深对问题本质的理解,从而得出证明结论。

7.反证法:给定一个不等式,我们假设其不成立,然后通过一系列逻辑推导和推理来推导出矛盾的结论。

这时我们可以得出原不等式的成立。

总之,证明不等式需要深入理解数学性质和灵活的数学思维。

结合前述的证明技巧,可以帮助我们更好地解决不等式问题。

最重要的是,需要积极锻炼数学证明的能力,通过练习和实践才能够提高。

如何通过数学归纳法证明不等式

如何通过数学归纳法证明不等式

如何通过数学归纳法证明不等式数学归纳法是一种证明数学命题的常用方法,其基本思想是利用已知的某些命题推出新的命题。

在数学证明中,常常使用归纳法来证明一些不等式,这种方法既简单又直观,下面我们来探讨如何通过数学归纳法证明不等式。

一、归纳法的基本思想首先,我们来了解一下归纳法的基本思想。

设P(n)是一个依赖于自然数n的命题,则通过归纳法证明P(n)对于所有自然数n成立的一般方法为:1.证明当n=1时P(1)成立;2.假设当n=k时P(k)成立,即前提条件为P(k)成立;3.证明当n=k+1时P(k+1)成立,即由前提条件P(k)可以导出P(k+1)。

这就是数学归纳法的基本思想。

二、通过数学归纳法证明不等式接下来我们探讨如何通过数学归纳法证明不等式。

对于一些不等式,我们可以通过归纳法来证明它们的成立性。

1. 首先,我们需要确定适用于归纳法的不等式类型。

一般来说,递推式、等差数列、等比数列等都是适用于归纳法的不等式类型。

2. 其次,我们需要证明当n=1时不等式成立。

通常情况下,我们可以通过代数化简或数值计算的方法证明不等式在n=1时成立。

3. 第三步是归纳假设。

假设当n=k时不等式成立,即前提条件为不等式在n=k时成立。

4. 第四步是证明当n=k+1时不等式成立。

通过推导得出不等式在n=k+1时成立。

5. 最后需要证明这个不等式在所有自然数下成立。

通常情况下,我们可以通过归纳证明法的反证法来证明,如果该不等式在某个自然数下不成立,那么其前面的所有自然数也不成立,即矛盾。

因此,该不等式在所有自然数下成立。

比如,对于一个递推式an=a(n-1)+n,我们可以通过数学归纳法证明其大于等于n(n+1)/2。

具体证明如下:当n=1时,an=1,n(n+1)/2=1,因此不等式在n=1时成立。

假设当n=k时,an大于等于k(k+1)/2成立。

当n=k+1时,an=a(k+1-1)+(k+1)=ak+k+1。

根据归纳假设,ak 大于等于k(k+1)/2,于是k+ak大于等于k(k+1)/2+k+1=(k+1)(k+2)/2,因此,an大于等于(k+1)(k+2)/2。

不等式证明使用技巧

不等式证明使用技巧

不等式证明使用技巧不等式证明是高中数学中的一个重要内容,掌握不等式证明的技巧对于解题和提升数学水平都有很大的帮助。

下面我将介绍一些常用的不等式证明技巧。

一、代入法代入法是一种常用的证明不等式的方法。

我们可以先假设不等式成立,然后进行推导得出结论。

如果得到的结论与原不等式一致,就证明了不等式的成立。

例如,我们要证明对于任意正实数a、b和c,有$(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\ge q 9$。

我们可以假设$a\leq b\leq c$,然后代入得到:$a^2+b^2+c^2=2a^2+(b^2-a^2+c^2)\geq 2a^2=2(a\cdot a)\geq2(ab)$,$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\fra c{1}{b^2}+\frac{1}{c^2}\geq 3(\frac{1}{ab})=\frac{3}{ab}$。

然后,将两个不等式代入原不等式得到:$(2ab)(\frac{3}{ab})=6\geq 9$。

由此可见,原不等式成立。

二、放缩法放缩法是另一种常用的证明不等式的方法。

我们可以通过放缩不等式的各个部分来改变不等式的形式,从而得到更容易证明的形式。

例如,我们要证明对于任意正实数a、b和c,有$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$。

我们可以通过放缩的方法,将不等式的各个部分放缩至一个更容易证明的形式。

我们注意到,$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ca}$。

然后,我们可以通过平方展开和放缩的方法,得到:$\frac{(a+b+c)^2}{ab+bc+ca}\geq 3$。

用数学归纳法证明不等式举例

用数学归纳法证明不等式举例

用数学归纳法证明不等式举例使用数学归纳法证明不等式是一种常用的方法,它可以帮助我们证明一类问题的正确性。

在这篇文章中,我们将使用数学归纳法证明一个特定的不等式,并且详细解释这个过程。

这个不等式是一个经典的例子,在不等式理论中非常有用,它的证明将展示使用数学归纳法的步骤和思路。

要证明的不等式为:对于任意正整数n,有1+2+3+...+n≤n²/2我们将使用数学归纳法证明这个不等式。

数学归纳法分为两个步骤:基础步骤和归纳步骤。

一、基础步骤:首先,我们需要验证对于n=1时,不等式是否成立。

即:1≤1²/2通过计算可知,1≤1/2,显然成立。

因此,基础步骤得证。

二、归纳步骤:我们假设对于任意的k(k≥1)都有:1+2+3+...+k≤k²/2我们需要证明当n=k+1时,也就是将k+1代入不等式中,不等式仍然成立。

即:1+2+3+...+k+(k+1)≤(k+1)²/2接下来,我们将左右两边进行推导。

我们已经假设对于任意k都有不等式成立,所以可以得到:1+2+3+...+k≤k²/2我们可以将左右两边分别加上(k+1),得到:1+2+3+...+k+(k+1)≤k²/2+(k+1)接下来,我们需要对右侧进行变换,目的是能够使用归纳假设。

我们注意到,k²/2+(k+1)=(k²+2(k+1))/2=(k²+2k+2)/2我们知道(k+1)²=k²+2k+1,所以(k+1)²/2=(k²+2k+1)/2我们可以将这个等式代入之前的不等式:1+2+3+...+k+(k+1)≤(k²+2k+1)/2对于右边的分数1+2+3+...+k+(k+1)≤(k²+2k+1)/2=(k²+2k)/2+1/2由于我们已经假设1+2+3+...+k≤k²/2,所以可以用k²/2替换分子中的1+2+3+...+k:1+2+3+...+k+(k+1)≤(k²+2k)/2+1/2≤k²/2+1/2+1/2我们可以对右边的不等式相加得到:1+2+3+...+k+(k+1)≤(k²+2k)/2+1/2≤k²/2+1我们将右侧简化得到(k²+2k)/2+1/2=(k²+2k+1)/2,因为1/2可以写成1/2的分数。

数学归纳法证明不等式

数学归纳法证明不等式

数学归纳法证明不等式数学归纳法是一种证明数学命题的重要方法,它基于数学归纳的思想,通过证明一个命题在一些特定条件下成立,并且在此条件下该命题的下一步也具有同样的性质,从而证明该命题对于一切满足该条件的情况都成立。

在这里,我们将使用数学归纳法来证明一个不等式。

不等式是数学中常见的一种关系式,它描述了两个数或者更多数之间大小关系的性质。

在这里,我们将使用数学归纳法来证明一个形如:$2^n>n^2$的不等式,其中$n$是一个正整数。

首先,我们需要证明当$n=1$时,不等式$2^n>n^2$成立。

当$n=1$时,不等式变为$2^1>1^2$,显然成立。

其次,我们需要证明对于任意一个正整数$k$,如果当$n=k$时不等式$2^k>k^2$成立,那么当$n=k+1$时,不等式$2^{k+1}>(k+1)^2$也成立。

也就是说,我们需要证明如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

根据我们的假设,我们知道$2^k>k^2$。

将不等式两边都乘以2,我们得到$2^{k+1}>2k^2$。

由于$k$是一个正整数,所以$k^2>k$。

将这个不等式代入前面的结果中,我们得到$2^{k+1}>2k^2>k^2+k^2>k^2+k>(k+1)^2$。

也就是说,如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

通过对$n=1$和$n=k+1$的情况都进行证明,我们完成了对于任意正整数$n$的证明。

根据数学归纳法的原理,这意味着不等式$2^n>n^2$对于一切$n$都成立。

综上所述,我们使用数学归纳法成功地证明了不等式$2^n>n^2$,其中$n$是一个正整数。

利用数学归纳法证明不等式的基本技巧

利用数学归纳法证明不等式的基本技巧

利用数学归纳法证明不等式的基本技巧利用数学归纳法证明不等式的基本技巧:1、比较法:比较法证明不等式的一般步骤:作差(作商)—变形—判断—结论.作差法:差与“0”比较。

为了判断作差后的符号,经常需要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,判断其正负.作商法:商与“1”相比较。

作商时,需要满足两者均为正数。

2、综合法(顺推):综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点是“执因索果”,即由“已知”,利用已经证明过的不等式或不等式的性质逐步推向“未知”。

综合法证明不等式的逻辑关系是:A B1B2…Bn B,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论 B.3、分析法(逆推):从求证的结论出发,分析使这个结论成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”.即从“未知”看“需知”,逐步靠拢“已知”。

4、放缩法:要证明不等式A<B 成立,借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法.放缩法证明不等式的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.常用的放缩技巧有:①应用均值不等式进行放缩;②舍掉(或加进)一些项;③在分式中放大或缩小分子或分母。

5、反证法:即从正难则反的角度去思考,要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B. 凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不可能”、“不存在”等词语时,可以考虑用反证法.6、常数代换法常数代换是指利用某些带有常数项的恒等式,把常量化为变量代入到所求证的式子中,以到达化繁为简的目的。

常用的带有常数项的恒等式,可由题目中的条件变形得到,也可用常用的公式或公式变形。

7、几何法通过构造几何图形,利用几何图形的性质来证明不等式的方法称为几何法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故只要证得 原不等式成立 .
1 1 ≤( ) 1 + ak 2
k+1
, 再累加就可证得
证明 1) 证略 .
2) 先 证 对 任 意 自 然 数 n , 不 等 式
(
1 ≤ 1 + an
1 ) 2
n+1
成立 .
1° 当 n =1时, 1 1 1 1 ≤ = ≤( ) 1 + 1 . 1 + a1 1 + 1 + 2 4 2 2° 假设 n = k ( k ∈N) 时 , 1 1 ≤( ) 1 + ak 2
< 1 , 定义 a1 = 1 + a , an + 1 = 1
an
1 1 1 1 1 + + …+ 2 + <2+ , ( k + 1) 2 ( k + 1) 2 12 22 k
+ a , 求证 : 对一切自
无法推出小于 2 . 这是由于不等式右边是常数 , 整个 不等式不具有递推性 . 若把 2 缩小为 2 - f ( n) . 即证
1
ak
则 n = 1 时 , 1 < 2 - f ( 1) . 假设 n = k 时 ,
1 1 1 + + …+ 2 < 2 - f ( k ) , 12 22 k
+ a > 1 , 即证 ak <
1 .只 1- a
1 要命题加强为 1 < an < 即可完成归纳过渡 . 1- a 证明 1° 当 n = 1 时 , a1 = 1 + a > 1 , 又由 1 a < 1 可得 1 + a <
从而有 an > 1 ( n ∈N) .
2 放缩常数 a 为 a ±f ( n) 的式子 1 1 1 + + …+ 2 < 2 ( n ∈N) . 12 22 n 1 1 1 分析 : 假设 n = k 时 , 不等式 2 + 2 + …+ 2 1 2 k < 2 成立 , 则有
例2 求证
由于更强的命题提供更强的归纳假设 , 因而一 个更强的命题 , 用数学归纳法反而容易证明 . 例 1 ( 1977 年加拿大奥林匹克试题 ) 设 0 < a

然数 n , 有 an > 1 . 分析 : 假设 n = k 时 , ak > 1 , 则 ak + 1 =
< 1 + a , 推不出 ak + 1 > 1 . 1
ak
+ a
1 1 1 + + …+ 2 < 2 - f ( n) , 12 22 n
怎么办呢 ? 可寻求 ak + 1 > 1 成立的充分条件 . 欲证 ak + 1 > 1 , 只要证
- f ( k) +
< -
1
( k + 1) 2
= -
∴ 1 < ak + 1 <
k + k +1 k ( k + 1) 2
2
k2 + k 1 <0, 2 = k +1 k ( k + 1)
收稿日期 :2002 - 03 - 21 作者简介 :赵忠彦 ( 1966 - ) , 男 , 甘肃民勤人 , 甘肃民勤县第一中学一级教师 . © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
1 1 1 ×( ) k + 1 = ( ) ( k + 1) 2 2 2 由 1° , 2° 可知 , 对任意 n ∈N , 都有 1 1 ≤( ) 1 + an 2
n+1
.Leabharlann 分析 对于 1) 用数学归纳法易证 , 对于 2 ) 是否 也能用数学归纳法证明呢 ?
1 1 1 1 若假设 + + …+ ≤ ,则 1 + a1 1 + a2 1 + ak 2 1 1 1 1 + + …+ + 1 + a1 1 + a2 1 + ak 1 + ak + 1
ak
1
( k + 1) 2
<0且1 < 1
k +1 ,
< 2 - f ( 1 ) 即可 . 而
1
( k + 1) 2
<
1
k
,
1
( k + 1) 2
由假设得 1 - a <
1
1
ak
<1,
…, 等等 .
1 当 f ( k) = 时 ,
k
1 ∴ 1< + a<1+ a< , ak 1- a 1 . 1- a 由 1° , 2° 可知对任意自然数 n , 都有
1 1 1 1 + = + , ( k + 2) × 2 2 +2 2 2k +6 1 1 推不出结论 . 若把 缩小为 - f ( n ) , f ( n ) 的解析 2 2 式也不易确定 .

1 1 1 1 + + …+ ≤ ( n ∈N) . 1 + a1 1 + a2 1 + an 2
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
2003 年第 1 期 数学通讯 1 又 1 = 2 - f ( 1) , 故可选择 f ( n) = .
n
15
但若注意到
1 1 1 1 ≤ = = ( )1+1 , 1 + a1 1 + 3 4 2
k+1
证 先证
1 1 1 1 ( n ∈N) . + + …+ 2 ≤ 2n 12 22 n 1° 当 n = 1 时 ,1 ≤ 2 - 1 , 不等式成立 . 2° 假设 n = k ( k ∈N) 时 , 1 1 1 1 + + …+ 2 ≤ 2, k 12 22 k
ak ( ak - k) + 2
小题) 设数列{ an } 满足 an + 1 = a2n - nan + 1 ( n ∈N) ,
a1 ≥ 3 , 证明对所有的自然数 n , 有
≤ ≤
1
ak ・ 2+2
=
1 2 ( 1 + ak )
+1
1) an ≥n + 2 ; 2) 1 1 1 1 + + …+ ≤ . 1 + a1 1 + a2 1 + an 2
1 2 1 3 1 ) + ( ) + … + ( ) 且 ( 2 2 2 12 1 ( ) [1 - ( ) k ] 2 2 1 1 1 = - ( ) k+1 < , 1 2 2 2 12
=
那么当 n = k + 1 时 ,
1 1 1 1 2 + 2 + …+ 2 + ( k + 1) 2 1 2 k 1 1 ≤ 2+ k ( k + 1) 2 2 k + k +1 k ( k + 1) =2<2k ( k + 1) 2 k ( k + 1) 2 1 =2. k +1 1 1 1 1 由 1° , 2° 可知 2 + 2 + … + 2 ≤2 对任意 n 1 2 n 自然数 n 成立 .
k+1
从而对任意自然数 n , 都有
1 1 1 + + …+ 2 < 2 . 12 22 n 3 把常数转化为与另一边具有相同结构的式子
) 例 3 ( 2002 年全国高考理科第 ( 22 ) 题第 ( Ⅱ
.
当 n = k +1时,
1 1 = 1 + ak + 1 1 + a2 k - kak + 1 = 1
2
当 n = k + 1 时 , 就有
1 1 1 1 1 + + … 2 + < 2 - f ( k) + . ( k + 1) 2 ( k + 1) 2 12 22 k
f ( k) 的确定只要使 - f ( k) +
1 1 ,∴ 1 < a1 < . 1- a 1- a 1 2° 假设 n = k ( k ∈N) 时 , 1 < ak < , 1- a 1 那么当 n = k + 1 时 , ak + 1 = + a,
对于一边是常数的数列不等式 , 在用数学归纳 法直接证明时 , 归纳过渡往往有一定的困难 , 若利用 不等式的传递性 、 可加性等性质 , 通过强化命题 , 放 缩常数等技巧 , 就可顺利完成归纳过渡 , 下面举例 说明 .
1 通过分析归纳过渡需要的条件强化命题
1 < an <
1 , 1- a
.
由不等式的可加性 , 得
1 1 1 + + …+ 1 + a1 1 + a2 1 + an 1 2 1 1 ) + ( ) 3 + …+ ( ) 2 2 2 1 1 n [1 - ( ) ] 4 2 = 1 12 1 1 n+1 1 = - ( ) < . 2 2 2 从而有
相关文档
最新文档