七年级数学上册期中模拟试题及答案
【6套精选】七年级上册数学期中考试单元综合练习题(含答案解析)(1)

人教版七年级(上)期中模拟数学试卷(答案)一、选择题(本大题共10小题,每小题3分,共30分)1.气温由-5 ℃上升2 ℃后是( C ) A .1 ℃B .3 ℃C .-3 ℃D .-7 ℃2.-⎪⎪⎪⎪⎪⎪-23的相反数是( C )A .-32B.32C.23D .-233.中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展.据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万.请将780 000用科学记数法表示为( B )A .78×104B .7.8×105C .7.8×106D .0.78×106 4.在3.14,25,3.333 3…,0,0.41· 2·,-π,0.101 101 110 111 10…(每相邻两个0之间1的个数逐次加1)中,是无理数的有( A )A .2个B .3个C .4个D .5个5.某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x 本(x >10),则付款金额为( C )A .6.4x 元B .(6.4x +80)元C .(6.4x +16)元D .(144-6.4x)元6.下列说法错误的有( C )①单项式-2πab 的次数是3;②-m 表示负数;③54是单项式;④m +1m +3是多项式.A .1个B .2个C .3个D .4个7.下列结果是负数的是( B ) A .-[-(-6)]+6B .-|-5|-(+9)C .-32+(-3)2-(-5)D .[(-1)3+(-3)2]×(-1)48.已知2a 6b 2和13a 3m b n 是同类项,则式子9m 2-mn -36的值为( D )A .-1B .-2C .-3D .-49.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被( C )A .9整除B .10整除C .11整除D .12整除10.(易错题)如图①,是长为a ,宽为b 的长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为4,宽为3)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和为( C )A .8B .10C .12D .14二、填空题(本大题共8小题,每小题3分,共24分)11.近似数4.03×104精确到__百__位,895 000精确到万位的结果为__9.0×105__.12.规定a △b =a +b -3,则(-4)△6=-1. 13.比较大小:-(-5)2>-|-62|.14.如图所示是一个简单的数值计算程序,当输入的数据为5,则输出的结果为 32.15.如果代数式-2a 2+3b +8的值为1,那么代数式-4a 2+6b +2的值等于__-12__.16.如图所示,一只蚂蚁从点A 沿着数轴向右爬了2个单位到达点B ,点A 表示的数为-112,设点B 表示的数为m ,则代数式|m -1|+(m +6)的值为 7 .17.若多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x +2的和不含二次项,则m 的值为 4 .18.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌的张数相同;第二步:从左边一堆拿出3张,放入中间一堆; 第三步:从右边一堆拿出2张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数. 你认为中间一堆牌现有的张数是 8 . 三、解答题(本大题共7小题,共66分) 19.(8分)计算: (1)215×⎝ ⎛⎭⎪⎫12-13÷114×311;解:原式=115×16×45×311=225.(2)⎝ ⎛⎭⎪⎫-3122+612×413-(-2)4÷(-12). 解:原式=494+132×413+16÷12=494+2+43 =15712.20.(8分)化简下列各式: (1)-2(2x 2-x -7)+32(4x 2-8x -2);解:原式=-4x 2+2x +14+6x 2-12x -3 =2x 2-10x +11.(2)-3a 2-⎣⎢⎡⎦⎥⎤5a -⎝ ⎛⎭⎪⎫12a -3+2a 2-1. 解:原式=-3a 2-⎣⎢⎡⎦⎥⎤5a -12a +3+2a 2-1=-3a 2-92a -3-2a 2-1=-5a 2-92a -4.21.(8分)已知|x |=4,|y |=12,且xy >0.求x -y 的值. 解:因为|x|=4,|y|=12,所以x =±4,y =±12.又因为xy >0,所以x ,y 同号.当x ,y 同为正时,x -y =312;当x ,y 同为负时,x -y =-312.22.(8分)先化简,再求值: 3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy 七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分) 1.下列各组数中,互为相反数的是 ( )A .2和-2B .-2和C .-2和-D .和22.如图QZ 2-1,点M 表示的数可能是 ( )图QZ 2-1A .1.5B .-1.5C .2.5D .-2.53.一个圆的面积是 πa 2b m ,如果这个单项式是一个六次单项式,那么指数m 等于 ( ) A .1 B .2 C .3 D .44.化简m+n-(m-n )的结果为 ( ) A .2mB .-2mC .2nD .-2n5.下列计算结果中,正确的是 ( )A .(-9)÷(-3)2=1B .(-9)2÷(-32)=-9C .-(-2)3×(-3)2=1D .-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为 ( ) A .0.245×104 B .2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x my n表示运算x+n-y-m,则×4 567=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)--×|-24|-×-×(-8).18.(6分)化简:(7x2-4xy+2y2)-2-,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分)1.下列各组数中,互为相反数的是()A.2和-2B.-2和C.-2和-D.和22.如图QZ2-1,点M表示的数可能是()图QZ2-1A.1.5B.-1.5C.2.5D.-2.53.一个圆的面积是πa2b m,如果这个单项式是一个六次单项式,那么指数m等于()A.1B.2C.3D.44.化简m+n-(m-n)的结果为()A.2mB.-2mC.2nD.-2n5.下列计算结果中,正确的是()A.(-9)÷(-3)2=1B.(-9)2÷(-32)=-9C.-(-2)3×(-3)2=1D.-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x my n表示运算x+n-y-m,则×4 567=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)--×|-24|-×-×(-8).18.(6分)化简:(7x2-4xy+2y2)-2-,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(。
2023_2024学年黑龙江省哈尔滨市七年级上册期中数学模拟测试卷(附答案)

2023_2024学年黑龙江省哈尔滨市七年级上册期中数学模拟测试卷考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分)1.下列方程是一元一次方程的是()A .B .C .D .316y +=37x +>431x x =-34a -2.下列、、、四幅图案中,能通过平移图案(1)得到的是()()A ()B ()C ()D(1) (A )(B )(C )(D )3.下列运用等式性质进行的变形,正确的是()A .若,则B .若.则ac bc =a b=a bc c=a b =C .若,则D .若,则22a b =a b =163x -=2x =-4.如图,点是直线外一点,、、三点在直线上,于点,那么点P m A B C m PB AC ⊥B 到直线的距离是线段()的长度P m第4题图A .B .C .D .PAPBPCAB5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据,是()第5题图A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等6.若与互为相反数,则的值等于()2a 1a -a 1.0B .-1C .D .12137.下列图形中,由,能达到的是()AB CD ∥12∠=∠A .B .C .D .8.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产个零件,则所列方程为()x A .B .1312(10)60x x =++12(10)1360x x +=+C .D .60101312x x +-=60101213x x+-=9.如图,2022年北京冬奥会男子500米短道速滑冠军高亭玉在一次速滑训练中,经过两次拐弯后的速滑方向与原来的方向相反,则两次拐弯的角度可能是()第9题图A .第一次向左拐52,第二次向右拐52°B .第一次向左拐48,第二次向左扮48°C .第一次向左拐73,第二次向右拐107°D .第一次向左拐32,第二次向左拐148°10.下列真命题的个数是()①平移变换中,各组对应点连接而成的线段平行且相等.②同旁内角互补.③若两个角有公共顶点和一条公共边,并且它们的和为180°,则这两个角互为邻补角.④过一点有且只有一条直线与已知直线垂直.A .0B .1C .2D .3第II 卷非选择题(共90分)二、填空题(每小题3分,共计18分)11.根据条件“比的一半大3的数等于的7倍”中的数量关系列出方程为______.x y 12.小明同学在体育课上跳远后留下的脚印如图所示,为了测量他的跳远成绩,测量了脚印上最后的点到起跳线的距离,应该选择线段______的长度作为小明的跳远成绩.P第12题图13.如图所示方式拜访纸杯测量角的基本原理是______.第13题图14.“”表示一种运算符号,其定义是.例如.如果⊗2a b a b ⊗=-+37237⊗=-⨯+.那么______.()53x ⊗-=x =15.在与中,,,若则______.AOB ∠CDE ∠OA CD ∥OB DE ∥60CDE ︒∠=AOB ∠=16.若一列火车匀速行驶,经过一条长310米的隧道需要18秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯照在火车上的时间是8秒,则这列火车长是______米.三、解答题(共计72分)17.解方程(本题8分)(1)(2)37(1)32(3)x x x --=-+12226y y y -+-=-18.(本题6分)如图所示,在网格中,请根据下列要求作图:(1)先将向下平移3个单位长度,再向右平移4个单位长度得到(与,ABC △DEF △A D 与,与分別对应);B E C F (2)连接、,直接写出以,,为顶点的三角形的面积______.BD CD B C D (3)过点作直线,使得.交的延长线于点.F GF FG CD ∥AC G19.(本题6分)如图,直线、交于点,平分,,,求AB CD O OD AOF ∠EO OD ⊥55EOA ︒∠=的度数.BOF ∠20.(本题6分)如图,两个直角三角形重叠在一起,将三角形沿点到点的方向平移ABC B C 到三角形的位置,已知,.求图中阴影部分的面积.DEF 12AB =5DH =21.(本题8分)用型和型机器生产同样的产品,已知5台型机器一天的产品装满8箱后还剩4个.7台A B A 型机器一天的产品装满11箱后还剩1个,每台型机器比型机器一天多生产1个产品.B A B (1)求每箱装多少个产品?(2)3台型机器和2台型机器一天能生产多少个产品?A B 22.(本题8分)完成下面推理过程,并在括号内填上依据.已知:如图,,,.AD BC ⊥GF BC ⊥4B ∠=∠求证:.12∠=∠证明:,(已知)AD BC ⊥GF BC ⊥(______)∴90ADC GFD ︒∠=∠=(______)∴AD ∥(______)∴13∠=∠又(已知)4B ∠=∠(______)∴DE ∥∴23∠=∠又 13∠=∠(______)∴12∠=∠23.(本题8分)定义:关于的方程与方程(、均为不等于0的常数)称互为“反对x 0ax b -=0bx a -=a b 方程”,例如:方程与方程互为“反对方程”.210x -=20x -=(1)若关于的方程与方程互为“反对方程”,则______.x 230x -=30x c -=c =(2)若关于的方程与方程互为“反对方程”,求的值.x 4310x m ++=520x n -+=mn (3)若关于的方程与其“反对方程”的解都是整数,求整数的值.x 30x c -=c 24.(本题10分)七年级1班共有学生45人、其中男生人数比女生人数少3人.美术课上老师组织同学们做圆柱形笔筒,每名学生一节课能做筒身30个或筒底90个.(1)七年级1班有男生和女生各多少人?(2)原计划女生负责做筒身,男生做筒底,若每个筒身需要匹配2个筒底,那么这节课做出的筒身和筒底配套吗?如果不配套,男生需要支援女生几人,才能使本节课制作的筒身和筒底刚好配套?25.(本题12分)已知,点为直线、所确定的平面内一点.AB CD ∥P AB CD (1)如图1,直接写出、,之间的数量关系;(不用写具体证明过程)P ∠A ∠C ∠(2)如图2,求证:;P C A ∠=∠-∠(3)如图3,点在直线上,若,,过点作,作E AB 20APC ︒∠=30PAB ︒∠=E EF PC ∥,的平分线交于点,求的度数.PEG PEF ∠=∠BEG ∠PC H PEH ∠图1图2图3数学答案与评分标准一、选择题(每小题3分,共计30分)题号12345678910答案ADBBABBBDA二、填空题(每小题3分,共18分)题号111213141516答案1372x y +=PC对顶角相等-460°或120°148三、解答题(共计72分)17.(本题8分,每题4分)37(1)32(3)x x x --=-+377326x x x -+=--4732x x -+=--4237x x -+=--210x -=-5x =(2)12226y y y -+-=-63(1)12(2)y y y --=-+633122y y y -+=--3103y y +=-47y =74y =18.(6分)(2)2.5图形略,每问2分,(3)问如果没画直线,没有画出交点等各扣1分.19.(6分)解: EO OD ⊥∴90EOD ∠=︒,.55EOA ∠=︒ 1905535EOD EOA ∴∠=∠-∠=︒-︒=︒平分. OD AOF ∠.∴11352AOF ∠=∠=︒.∴70AOF ∠=︒ 180BOA BOF AOF ∠=∠+∠=︒.∴180********BOF AOF ∠=︒-∠=︒-︒=︒第19题图20.(6分)解:将沿点到点的方向平移到的位置,ABC △B C DEF △,ABC DFFS S∴=△△∴()() 111212565722ABEH S AB E E G S B ==⨯=⨯+-⨯+=阴梯形(若使用三角形的面积差也可以,酌情给分)21.(8分)(1)设型机器一天生产个产品,则型机器一天生产个产品,B x A (1)x +由题意得:5(1)471811x x +--=解得:,(个)19.71132x x =-=1321112÷=答:每箱装12个产品.(2)(个)(1284)53(12111)72⨯+÷⨯+⨯+÷⨯203192603898=⨯+⨯=+=答:3台型机器和2台型机器一天能生产98个产品.A B 22.(本题8分)证明:,(已知)AD BC ⊥GF BC ⊥(_垂直定义)∴90ADC GFD ︒∠=∠=(同位角相等,两直线平行)∴AD ∥GF (两直线平行,同位角相等)∴13∠=∠又(已知)4B ∠=∠(同位角相等,两直线平行)∴DE ∥AB (两直线平行,内错角相等)∴23∠=∠又:13∠=∠(等量代换)∴12∠=∠(每空一分)23.(本题8分)(1)2c =(2),2m =-6n =12mn =-(3)3c =±24.(本题10分)(1)解:设七年级1班有女生人.有男生人根据题意得:x (3)x -(3)45x x +-=∴24x =此时(人)324321x -=-=答:七年级1班有男生21人女生24人(2)不配套,理由是:本节课女生可以做筒身(个),2430720⨯=男生可以做筒底(个),2191890.⨯=11 / 11,72021401890⨯=≠这节课做出的筒身和筒底不配套.男生做出的筒底多∴筒身和筒底刚好配套(不换未知数的字母扣一分)根据题意得:90(21)30(24)2y y -=+⨯∴3y =答:男生需要支援女生3人,才能使本节课制作的筒身和筒底刚好配套.25.(12分)解:(1)分P A C ∠=∠+∠(2)过点作P PE AB∥ AB CD∥,∴PE AB CD ∥∥,∴EPC C ∠=∠PAB EPA∠=∠∴APC EPC EPA C A∠=∠-∠=∠-∠(3),,由(2)知, 20APC ∠=︒30PAB ∠=︒1C ∠=∠P C A ∠=∠-∠,,,∴150APC PAB ∠=∠+∠=︒ EF PC ∥∴150FEB ∠=∠=︒,的平分线交于点,PEG PEF ∠=∠BEG ∠PC H ,,∴12GEH BEG ∠=∠12PEG FEG ∠=∠.∴()112522PEH PEG GEH FEG BEG FEB ∠=∠-∠=∠-∠=∠=︒。
海南省海口市第十四中学联考2024-2025学年七年级上学期11月期中数学试题(含答案)

2024—2025学年度第一学期七年级数学科期中检测题(考试时间:100分钟,满分:120分)特别提醒:1.答案一律按要求涂或写在答题卡上,写在试题上无效.2.答题前请认真阅读试题有关说明.3.请合理分配答题时间.一、选择题(每小题3分,共36分)1.2024的相反数是( )A .-2024B .C .2024D.2.某市某天的最高气温为8℃,最低气温为-9℃,则最高气温比最低气温高多少( )A .17℃B .1℃C .-17℃D .-1℃3.美国说唱歌手坎耶·韦斯特(常被中国歌迷称为“侃爷”)的世界巡回试听会在海口五源河体育馆举行,极大地促进旅游消费,数据显示,这场演唱会为海口带来373000000元人民币的旅游收入。
数据“373000000”用科学记数法表示为( )A .B .C .D .4.数轴上点M 到原点的距离是3,则点M 表示的数是( )A .3B .-3C .3或-3D .不能确定5.把写成省略加号和的形式为( )A .B .C .D .6.若,则a 的取值范围是( )A .B .C .D .7.用四舍五入法,分别按要求取0.05026的近似值,下列四个结果中错误的是()A .0.1(精确到0.1)B .0.05(精确到0.01)C .0.05(精确到0.001)D .0.0503(精确到0.0001)8.在-1,+7.5,0,,-0.9,15中,负分数共有( )A .1个B .2个C .3个D .4个9.有理数a ,b 在数轴上的对应点如图所示,则下面式子中错误的是()A .B .C .D .10.若,,且,那么的值是( )A .3或-13B .13或-13C .-3或13D .3或-312024-12024637310⨯63.7310⨯83.7310⨯90.37310⨯()()()4265--+--+4265+--4265---4265++-4265+-+a a =-0a >0a ≥0a ≤0a <23-0a b +<b a <0ab <b a<-8x =5y =0xy <x y -11.我国数学家研究了一种新运算“”,a ,b 两个有理数满足,则的值是( )A .16B .-16C .14D .-1412.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是()A .38B .52C .66D .74二、填空题(每小题4分,共16分)13.比较大小:______(填“>”“<”或“=”).14.一个点从数轴上的原点出发,向左移动3个单位长度,再向右移动1个单位长度到达点P ,则点P 表示的数是______.15.某校七年级学生到学校图书馆借书,其中有m 个人每人借了2本书,有n 个人每人借了3本书,那么他们一共向图书馆借了______本书.16.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为______.三、解答题(共68分)17.(9分)计算(直接写出结果):(1)(2)(3)(4)(5)(6)(7)(8)(9)18.(9分),-3,0,-4.5,(1)在如图一所示的数轴上画出以上各数;(2)比较以上各数的大小,用“<”号连接起来;⊕1a b ab ⊕=+53-⊕23-34-48-=()()5555++-=()()86-+-=()26--=123-= 2.43-÷=()340-⨯=()3232-⨯-=39---=()4--2-(3)在以上各数中选择恰当的数填在图二的圈里.19.计算(每小题5分,共20分)(1);(2);(3);(4).20.(7分)已知:a 与b 互为相反数,c 与d 互为倒数,且求:的值.21.(10分)台风“摩羯”于2024年9月6日16时20分以近巅峰强度(62米/秒)登陆中国海南省文昌市翁田镇沿海,造成文昌市的电力系统受到严重的推残,台风过后某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下(单位:km ):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6(1)收工时,检修小组在A 地的哪一边,距A 地多远?(2)收工时,检修小组总共走了多少千米?(3)若汽车每千米耗油0.12升,每升汽油9.3元,不计汽车的损耗,检修小组这天下午油费花了多少元?22.(13分)春节假期期间,为让返岛游子感受到“老家海南,味道琼崖”的魅力,某海南特色美食店优惠大酬宾,推出以下两种优惠方案:方案一可购买100元代金券,每张79元,每次消费时最多可使用3张,能使用尽量使用,未满100元的部分不得使用代金券方案二消费满300元按总价的八五折优惠,不得同时使用代金券例:某次消费120元,按照方案一使用代金券后,实际花费元.(1)若某次消费200元,按照方案一使用代金券后,实际花费______元;若某次实际消费360元,则在使用优惠方案前可能消费______元;(2)小明一家春节假期期间去该美食店消费了元,若按照方案一使用代金券进行优惠,实际花费______元;若按照方案二进行优惠,实际花费______元;(用含x 的代数式表示)(3)当某次消费750元时,选择哪种方案更省钱?()()()()1218715+--+--+()()94811689-÷⨯÷-()15718369⎛⎫-+⨯-⎪⎝⎭()2411235--⨯--⎡⎤⎣⎦()2110x y -+-=()()()220242025x y a b cd -++--()7912010099+-=()300x x >2024—2025学年度第一学期七年级数学科期中测试题(答案)一、选择题(每道题3分,共12题36分)1-6 AACCAC7-12 CBBBDD二、填空题(每道4分,共4题16分)15.>16.-217.18.7三、解答题(共6题68分)17.计算(每题1分,共9题9分)(1)-4 (2)0 (3)-14 (4)8 (5)-4 (6)-0.8 (7)0 (8)72 (9)-618.(共9分)(1)如图一所示(2)(3)如图二所示19.(每题5分,共4题20分)(1)解:原式;(2)解:原式;(3)解:原式;(4)解:原式.20.(共7分)解:∵a 和b 互为相反数,∴,∵c 和d 互为倒数,∴,()23m n +()4.53024-<-<<-<--()()12187158=++-+-=()()948418116812899916=-÷⨯÷-=⨯⨯⨯=()()()()()15715718181818615145369369⎛⎫=-+⨯-=⨯--⨯-+⨯-=-++-=-⎪⎝⎭()()224211112312315156555=--⨯--=--⨯+=--⨯=--=-⎡⎤⎣⎦1a b +=1cd =∵,∴,,∴,,∴21.(共10分)解:(1)根据题意可得:向东走为“+”,向西走为“-”;则收工时距离等于.答:收工时在A 地的正东方向,距A 地39km 处.(2)从A 地出发到收工时,汽车共走了(km );答:收工时,检修小组总共走了65千米.(3)若汽车每千米耗油0.12升,每升汽油9.3元从A 地出发到收工时耗油量为(升).油费共花了(元)答:检修小组这天下午油费花了72.54元.22.(共11分)(1)158;423;(2);;(3)解:某次消费750元,①按照方案一使用代金券时,即当时,元,实际花费为687元;②按照方案二优惠时,即当时,元,实际花费637.5元;因为,所以当某次消费750元时,选择方案二更省钱。
七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
2023-2024学年吉林省长春市七年级上册期中数学学情调研模拟试题(附答案)

2023-2024学年吉林省长春市七年级上学期期中数学质量检测模拟试题一、选择题(本大题共8小题,每小题3分,共24分)1.冬天的脚步近了,白天和夜晚的温差很大,白天的最高气温能达到2℃左右。
夜晚的最低气温为﹣13℃左右,则白天最高气温与夜晚最低气温的温差是()A.15℃B.11℃C.﹣15℃D.﹣11℃2.如图,是一个正方体的表面展开图,原正方体中与“旺”字所在的对的面上的字是()A.实B.验C.中D.学3.长春市地铁6号线于2019年9月底开工,工程总投资的12400000000元,预计于2024年开通运营,其中12400000000这个数用科学记数法表示为()A.0.124×1011B.1.24×108C.1.24×1010D.1.24×10114.下列说法正确的是()A.0是最小的有理数B.整数和分数统称有理数C.所有的整数都是正数D.零既可以是正整数,也可以是负整数5.下列互为相反数的是()A.﹣(+5)与+(﹣5)B.13与﹣0.33C.2--与2D.﹣(﹣4)与46.按括号内的要求用四舍五入法取近似数,其中正确的是()A.0.0136≈0.013(精确到0.001)B.2.705≈2.71(精确到十分位)C.0.172≈0.2(精确到0.1)D.104.58≈105.0(精确到个位)7.下列说法正确的是()A.4a3b的次数是3B.23x yπ-的系数是13-C.2a+b﹣1的各项分别为2a,b,1D.多项式2x2+xy+3是二次三项式.8.如图,数轴上点A、B、C分别表示有理数a、b、c,若ac<0,a+b>0,则原点位于()A .点A 的左侧B .点A 与点B 之间C .点B 与点C 之间D .在点C 的右侧二、填空题(本大题共6小题,每小题3分,共18分)9.比较大小:43-______54-(填“<”或“>”或“=”).10.“九台卡伦湖半程马拉松”活动于2023年9月23日在卡伦湖力旺实验学校鸣枪开跑,某同学参加了5公里的欢乐跑项目,他从起点开始以平均每分钟x 公里的速度跑了8分钟,此对他离欢乐跑终点的路程为______公里.(用含x 的代数式表示)11.将多项式:x 2﹣1+2x ﹣3x 3按字母x 的降幂排列为______.12.当k =______时,多项式22(1)342x k xy y xy ++---中不含xy 项.13.如图,已知线段AB =4m ,延长线段AB 至点C ,使得BC =2AB .若点D 是线段AC 的中点,则线段BD =______cm .(13题)14.如图是一个有理数运算程序的流程图,请根据这个程序回答问题,当输入的数为﹣4时,最后输出的结果是______.(14题)三、解答题(本大题共10小题,共78分)15.(9分)计算:(1)(﹣7)﹣(﹣10)+(﹣8)﹣(+2);(2)23142344⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)()22022315364⎛⎫⎡⎤-⨯--+÷- ⎪⎣⎦⎝⎭.6.(6分)计算:(1)()99341713⨯-.(2)5121129336⎛⎫-+÷ ⎪⎝⎭.17.(6分)如图是由一些大小相同的小正方体组合成的简单几何体,请在方格纸中分别截出它的主视图、左视图和俯视图.正面主视图左视图俯视图18.(6分)化简:(1)(6a ﹣4b )﹣(7a ﹣9b )(2)4(3x 2y ﹣xy 3)﹣3(﹣xy 3+2x 2y ).19.(6分)先化简,再求值:()()2232322x xy x y xy y ⎡⎤---++⎣⎦,其中12x =-,y =﹣3.20.(7分)某超市销售茶壶茶杯,茶壶每只定价40元,茶杯每只5元,超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款,现某顾客要到该超市购买茶壶7只,茶杯x 只(茶杯数多于7只)。
2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个整数的积都是整数。
()3. 任何两个无理数的积都是无理数。
()4. 任何两个实数的和都是实数。
()5. 任何两个实数的积都是实数。
()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。
2. 两个整数的积是______数。
3. 两个无理数的积是______数。
4. 两个实数的和是______数。
5. 两个实数的积是______数。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明整数的定义。
3. 请简要说明无理数的定义。
4. 请简要说明实数的定义。
5. 请简要说明有理数和无理数的区别。
五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。
2. 请分析并解释为什么π是无理数。
七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。
人教版七年级上册数学期中试卷【含答案】

人教版七年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是?A. 32厘米B. 36厘米C. 42厘米D. 46厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是8厘米,那么这个正方形的面积是?A. 32平方厘米B. 64平方厘米C. 128平方厘米D. 256平方厘米5. 下列哪个数是奇数?A. 45B. 46C. 47D. 48二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
()2. 所有的三角形都有三个角。
()3. 1是质数。
()4. 一个正方形的四条边都相等。
()5. 任何两个奇数相加的和都是偶数。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 2的3次方等于______。
3. 一个等边三角形的三个角都是______度。
4. 一个长方形的长是10厘米,宽是5厘米,那么这个长方形的面积是______平方厘米。
5. 下列数中,______是4的倍数。
四、简答题(每题2分,共10分)1. 请写出1到10的所有质数。
2. 请解释什么是等腰三角形。
3. 请写出2的4次方和3的3次方的值。
4. 请解释什么是长方形的周长。
5. 请写出5个偶数。
五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,请计算这个长方形的面积。
2. 请计算下列两个数的和:23和17。
3. 一个正方形的边长是12厘米,请计算这个正方形的面积。
4. 请计算下列两个数的差:57和29。
5. 一个等腰三角形的底边长是10厘米,腰长是12厘米,请计算这个三角形的周长。
六、分析题(每题5分,共10分)1. 请分析下列数的特点:2,3,5,7,11,13,17,19。
2. 请分析下列图形的特点:正方形,长方形,三角形,圆形。
七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学期中模拟考试亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题. 预祝你取得好成绩! 一、精心选一选 1.-3的相反数是( ) A .3B .-3C .13D .13-2.已知矩形周长为20cm ,设长为x cm ,则宽为 ( ) A. x -20 B.220x- C.x 220- D. x -10 3.下列化简,正确的是( )A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -84.据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为( ) A .8×106B .8.03×107C .8.03×106D .803×1045.绝对值大于2且小于5的所有整数的和是( ) A .0 B .7 C .14 D .28 6.若3<a<4时,化简|3||4|a a -+-=( ) A .2a-7B .2a-1C .1D .77.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是( ) A .4B .5C .7D .不能确定8.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ ……计算:3×(1×2+2×3+3×4+…+99×100)= ( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 二、细心填一填9.如果-20%表示减少20%,那么+6%表示10.单项式25xy -的系数是11.表示“x 与4的差的3倍”的代数式为_____________ 12.若15423-+-n m b a b a与的和仍是一个单项式,则m +=n13.多项式223(2)1mx y m x y ++-是四次三项式,则m 的值为15.若关于a ,b 的多项式()()2222222a ab b a mab b ---++不含ab 项,则m=16.M 、N 是数轴上的二个点,线段MN 的长度为2,若点M 表示的数为﹣1,则点N 表示的数为 。
17.有一列数a 1 ,a 2 ,a 3,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1 =2, 则a 2007为_________________.18.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为三、用心算一算19.耐心算一算(每小题5分,共20分)(1)(-3)+(-4)-(+11)-(-19) (2)3212(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦(3) -3.5÷78 ×(-87 )×|-364 | (4))60()15412132(-⨯--20.化简(本题有2小题,每小题6分,满分12分)(1)2222(43)(143)x y xy x y xy --+- (2)2243(32)2y y y y ⎡⎤---+⎣⎦x 21 输出输入xx +3x 为偶数x 为奇数(第18题)21.(本题满分8分) 先化简,再求值:()()22222a b+2ab -2a b-1+3ab +2,⎡⎤⎣⎦其中a=2,b=-2四、解答题(本大题共5题,第22题10分、第23题10分、第24题12分、第25题12分、第26题12分,共56分。
要写出必要的文字说明或演算步骤) 22.(本题满分10分)已知2(3)2x y +-与互为相反数,z 是绝对值最小的有理数,求()y x y xyz ++的值.23.(本题满分10分)某地电话拔号入网有两种收费方式,用户可以任选其一:(A )计时制:0.1元/分;(B )包月制:50元/月(限一部个人住宅电话上网). 此外,每一种上网方式都得加收通信费0.2元/分.(1)某用户某月上网的时间为x 小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)如果某用户一个月内上网的时间为20小时,你认为采用哪种方式较为合算?24、(本题满分12分)⑴ 例:代数式2)(b a +表示a 、b 两数和的平方. 仿照上例填空:代数式22b a -表示________________________________________.代数式))((b a b a -+表示________________________________________. ⑵ 试计算a 、b 取不同数值时, 22b a -及))((b a b a -+的植, 填入下表:a 、b 的值当a =3, b =2时 当a =-5, b =1时 当a =-2, b =-5时 22b a -))((b a b a -+⑶ 请你再任意给a 、b 各取一个数值, 并计算22b a -及))((b a b a -+的植: 当a =_____, b =______时, 22b a -=_________,))((b a b a -+=__________. ⑷ 我的发现: _______________________________________________________.⑸ 用你发现的规律计算: 2265213578..-25。
(本题满分12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。
它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负。
如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A →C ( , ),B →D ( , ),C → (+1, ); (2)若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的路程; (3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,-1),(-2,+3),(-1,-2),请在图中标出P 的位置。
26.(本题满分12分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入。
下表是某周的生产情况(超产记为正、减产记为负):星期 一 二 三 四 五 六 日 增减 +5 -2 -4 +12 -10 +16 -9(1)根据记录的数据可知该厂星期六生产自行车_____________辆; (2)根据记录的数据可知该厂本周实际生产自行车_____________辆; (3)产量最多的一天比产量最少的一天多生产自行车____________辆;(4)该厂实行每周计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?AB CD期中模拟试卷参考答案一、精心选一选(本大题共8题,每小题3分,共24分。
)题号 1 2 3 4 5 6 7 8 答案 A D B C A CBC二、细心填一填(本大题共10题,每小题3分,共30分)9.增加 6% 10.15-11.3(x-4) 12. 8 13.2 14.64x y -+ 15. -4 16.-3,1 17. -1 18. 319.耐心算一算(每小题6分,共24分)(1)(-3)+(-4)-(+11)-(-19) 解:原式=-3-4-11+19 ………3分 =-18+19 ………5分 =1 ………6分(2)3212(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ 解:原式=[]1182923--⨯⨯- ………3分 =118723-+⨯⨯ ………4分=786-+ ………5分=416- ………6分(3) -3.5÷78 ×(-87 )×|-364 |解:原式=788327764⎛⎫-⨯⨯-⨯ ⎪⎝⎭ ………4分 =314………6分 (4))60()15412132(-⨯-- 解:原式=214(60)(60)(60)31215⨯--⨯--⨯-………4分= 40516-++ ………5分 = -19 ………6分20.化简(本题有2小题,每小题6分,满分12分)(1)2222(43)(143)x y xy x y xy --+- 解:原式=222243143x y xy x y xy ---+ ………4分=1- ………6分(2)2243(32)2y y y y ⎡⎤---+⎣⎦解:原式=2243322y y y y ⎡⎤--++⎣⎦ ………3分=2243322y y y y -+-- ………5分 =2253y y -+ ………6分21.(本题满分8分)先化简,再求值:()()2222222132,a b aba b ab⎡⎤+--++⎣⎦其中a=2,b=-2222222(2232)a b ab a b ab =+--++原式 ………3分22222223a b ab a b ab =+-- ………5分 2ab =- ………6分2,2a b ==-当时,22(2)=-⨯-原式 ………7分8=- ………8分22. (本题满分8分)已知2(3)20x y ++-=,z 是绝对值最小的有理数,求()y x y xyz ++的值. 解:3,2,0x y z =-== ………6分2()(1)01y x y xyz ++=-+= ………8分23。
(1)采用计时制应付的费用为602.0601.0⋅⋅+⋅⋅x x …………………2分=x 18(元), …………………3分采用包月制应付的费用为602.050⋅⋅+x ………………5分)1250(x +=(元); …………6分(2)若一个月内上网的时间为20小时,则计时制应付的费用为18×20=360(元),……7分包月制应付的费用为50+12×20=290(元).………………………9分 很明显,包月制合算.……………………………………10分24。
(本题满分12分)⑴ a 、b 两数平方的差 _a 、b 两数的和与两数的差的积_____(2分) ⑵ (3分)a 、b 的值当a =3, b =2时当a =-5, b =1时当a =-2,b =-5时22b a -5 24 -21 ))((b a b a -+524-21⑶ (略)(2分)⑷ 22b a -=))((b a b a -+ (2分) ⑸ 5670 (3分) 25(1) +3,+4 ; +3,-2 ;D,-2 ;(6分) (2)1+4+2+0+1+2=10 (3分) (3)(3分)26 (1)200+16=216 (2分)(2)(5-2-4+12-10+16-9)+200×7=1408(2分) (3)26(2分)(2)50×1408+8×15=70520(4分)B CP D A。