硅微MEMS加工工艺
硅MEMS器件加工技术及展望

硅MEMS器件加工技术及展望随着科技的飞速发展,微电子技术已经成为了现代社会的基石,其中硅MEMS(微电子机械系统)器件更是成为了研究热点。
这些基于硅材料的微小机械结构,在通信、生物医学、航空航天等领域具有广泛的应用前景。
本文将介绍硅MEMS器件加工技术的基本原理和主要方法,并对其未来发展进行展望。
硅MEMS器件加工技术的基本原理是将半导体工艺应用于微小机械结构的制造中。
通过光刻、干法或湿法刻蚀、离子注入等半导体工艺,可以在硅片上加工出微小的机械结构。
这些机械结构可以包括悬臂梁、弹簧、谐振器、微泵、微阀等。
表面微加工技术是一种常见的硅MEMS器件加工方法,其主要流程包括光刻、氧化、刻蚀等步骤。
通过光刻,可以将设计好的图案转移到硅片上;再通过氧化,在硅片表面形成一层薄膜;最后通过刻蚀,将硅片表面的薄膜去掉,从而形成微小的机械结构。
体微加工技术是一种直接在硅内部制造微小机械结构的方法。
其主要流程包括掩膜制作、深反应离子刻蚀等步骤。
通过掩膜制作,可以将硅片表面不需要刻蚀的区域保护起来;再通过深反应离子刻蚀,可以直接在硅片内部刻出微小的机械结构。
随着科技的不断发展,硅MEMS器件加工技术也在不断进步。
未来,该技术将面临以下发展趋势:制程集成:通过将多个工艺步骤集成在一起,可以提高硅MEMS器件的制造效率和良品率。
智能化制造:应用人工智能和大数据技术,实现硅MEMS器件的智能化制造,提高生产效率。
环保和可持续性发展:在制造过程中考虑环保和可持续性发展,减少废弃物排放和能源消耗,推动硅MEMS产业的可持续发展。
应用拓展:随着硅MEMS技术的不断发展,其应用领域也将不断拓展。
未来,硅MEMS器件将在医疗、航空航天、环保等领域发挥更大的作用。
硅MEMS器件加工技术是一项具有重大意义的技术,其未来的发展趋势将更加广泛的应用领域、更高的制造效率和更环保的可持续性发展。
随着科技的不断发展,微电子制造技术的进步,微机电系统(MEMS)器件的设计与制造也在逐步提升。
MEMS的主要工艺类型与流程

MEMS的主要工艺类型与流程(LIGA技术简介)目录〇、引言一、什么是MEMS技术1、MEMS的定义2、MEMS研究的历史3、MEMS技术的研究现状二、MEMS技术的主要工艺与流程1、体加工工艺2、硅表面微机械加工技术3、结合技术4、逐次加工三、LIGA技术、准LIGA技术、SLIGA技术1、LIGA技术是微细加工的一种新方法,它的典型工艺流程如上图所示。
2、与传统微细加工方法比,用LIGA技术进行超微细加工有如下特点:3、LIGA技术的应用与发展4、准LIGA技术5、多层光刻胶工艺在准LIGA工艺中的应用6、SLIGA技术四、MEMS技术的最新应用介绍五、参考文献六、课程心得〇、引言《微机电原理及制造工艺I》是一门自学课程,我们在王跃宗老师的指导下,以李德胜老师的书为主要参考,结合互联网和图书馆的资料,实践了自主学习一门课的过程。
本文是对一学期来所学内容的总结和报告。
由于我在课程中主讲LIGA技术一节,所以在报告中该部分内容将单列一章,以作详述。
一、什么是MEMS技术1、MEMS的概念MEMS即Micro-Electro-Mechanical System,它是以微电子、微机械及材料科学为基础,研究、设计、制造、具有特定功能的微型装置,包括微结构器件、微传感器、微执行器和微系统等。
一般认为,微电子机械系统通常指的是特征尺度大于1μm小于1nm,结合了电子和机械部件并用IC集成工艺加工的装置。
微机电系统是多种学科交叉融合具有战略意义的前沿高技术,是未来的主导产业之一。
MEMS技术自八十年代末开始受到世界各国的广泛重视,主要技术途径有三种,一是以美国为代表的以集成电路加工技术为基础的硅基微加工技术;二是以德国为代表发展起来的利用X射线深度光刻、微电铸、微铸塑的LIGA( Lithograph galvanfomung und abformug)技术,;三是以日本为代表发展的精密加工技术,如微细电火花EDM、超声波加工。
硅微MEMS加工工艺_图文

EPW腐蚀条件
• 腐蚀温度:115℃左右 • 反应容器在甘油池内加热,加热均匀; • 防止乙二胺挥发,冷凝回流; • 磁装置搅拌,保证腐蚀液均匀; • 在反应时通氮气加以保护。 • 掩膜层:用SiO2,厚度4000埃以上。
腐蚀设备
影响腐蚀质量因素
• 腐蚀液成分
– 新旧腐蚀液 – 试剂重复性
• 温度 • 保护 • 搅拌
– 腐蚀窗口短边存在最小尺寸:
各向异性腐蚀液
• 腐蚀液:
– 无机腐蚀液:KOH, NaOH, LiOH, NH4OH等 ;
– 有机腐蚀液:EPW、TMAH和联胺等。
• 常用体硅腐蚀液:
– 氢氧化钾(KOH)系列溶液; – EPW(E:乙二胺,P:邻苯二酚,W:水)系
列溶液。
• 乙二胺(NH2(CH2) 2NH2) • 邻苯二酚(C6H4(OH) 2)
牺牲层技术
• 属硅表面加工技术。 • 是加工悬空和活动结构的有效途径。 • 采用此种方法可无组装一次制成具有活
动部件的微机械结构。 • 牺牲层材料
影响牺牲层腐蚀的因素
• 牺牲层厚度 • 腐蚀孔阵列 • 塌陷和粘连及防止方法
– 酒精、液态CO2置换水; – 依靠支撑结构防止塌陷。
典型牺牲层腐蚀工艺
• 流程2(不出现针孔):
• 热氧化SiO2,LPCVD Si3N4; • 背面光刻,腐蚀Si3N4,不去胶; • 正面光刻,腐蚀Si3N4和SiO2,去胶; • 体硅腐蚀。
凸角腐蚀补偿
• 凸角腐蚀是指在硅岛或硅梁的腐蚀成型 过程中,凸角部分被腐蚀掉的现象,体 硅各向异性腐蚀时经常出现,这是因为 对(100)晶面的硅片体硅腐蚀时,凸角的 边缘与[110]方向平行,而腐蚀液对此方 向的腐蚀速度较快。若要腐蚀出带凸角 的整齐的台面结构,必须采取凸角补偿 。
mems工艺技术路线

mems工艺技术路线MEMS(Micro-Electro-Mechanical Systems)是一种将微电子技术与微机械技术相结合的新型技术,它能够在微米级别上制造出微小尺寸的机械结构。
MEMS技术在传感器、光学、生物医学等领域起着重要作用,因此MEMS技术的研究和发展受到了广泛关注。
MEMS工艺技术路线主要包括六个步骤:定义、制作图形、加工、建立结构、封装和测试。
首先是定义阶段,需要在硅片的表面上制作出所需的图形。
这一步主要依靠光刻技术,通过在硅片表面涂覆光刻胶,然后利用掩膜进行光阻曝光,再进行光刻胶的显影和刻蚀,最终形成所需图形。
这一步骤非常重要,也是MEMS工艺技术的核心。
接下来是制作图形阶段,即利用显影和刻蚀技术将所需图形转化为凹槽或凸起的结构。
这一步骤主要依靠湿法腐蚀和干法腐蚀技术来进行刻蚀,以形成所需的结构。
然后是加工阶段,需要对硅片进行剩余的加工处理。
这一步骤包括掺杂、扩散、沉积等工艺,以获得所需要的电学、磁学和光学特性。
建立结构阶段是通过层叠和结合不同材料形成完整的MEMS器件。
这一步骤需要利用薄膜沉积和刻蚀等工艺,将不同材料的层叠结合成为一体。
封装是将MEMS器件封装到特定的封装中,保护器件并提供良好的电气和机械性能。
这一步骤主要包括背面研磨、切割、粘接等工艺。
最后是测试阶段,对制造好的MEMS器件进行各种测试。
这一步骤主要包括电学测试、机械测试、光学测试等,以确保器件的性能符合设计要求。
总的来说,MEMS工艺技术路线是一个复杂而精细的过程,需要运用各种微加工和微细结构制造技术。
这一技术路线的研究与发展为MEMS技术的进一步应用和推广提供了重要的支持。
同时,MEMS工艺技术路线也需要不断地进行改进和创新,以适应不断发展的科技需求。
MEMS的制造技术

4.1. 体微加工
硅的体微加工技术包含硅的湿法和干法技术,硅 刻蚀自终止技术、LIGA技术、以及DEM技术。
4.1.1. 湿法刻蚀技术 技术原理:硅表面点作为随机分布的局部区域的阳 极与阴极。由于这些局部区域化电解电池的作用,硅 表面发生了氧化反应并引起相当大的腐蚀电流,一般 超过100A/cm2。 硅表面的缺陷、腐蚀液的温度、腐蚀液所含的杂质、 腐蚀时扰动方式以及硅腐蚀液界面的吸附过程等因素 对刻蚀速度以及刻蚀结构的质量都有很大的影响。
图4.2表面取向对腐蚀速率的影响与温度的关系
图4.3 腐蚀速率与温度的关系(高HF区,无稀释) 自下而上每族曲线对应的配比为:95%HF+5% HNO3, 90%HF+10% HNO3,85%HF+1F+20% HNO3+15%H2O, 20%HF+60% HNH3+20%H2O
硝酸硅发生氧化反应生成二氧化硅,然后由HF将 二氧化硅溶解 Si+HNO3+HF=H2SiF6+HNO2+H2O+H2
水和乙酸(CH3COOH)通常作为稀释剂,在HNO3 溶液中,HNO3几乎全部电离,因此H+浓度较高, 而CH3COOH是弱酸,电离度较小,它的电离反应 为
CH3COOH=CH3COO-+H+
图4.5腐蚀速率与成分的关系
下图给出分别用H2O和CH3COOH作为稀释剂的HF+ HNO3,系统腐蚀 硅的等腐蚀线(常用的浓酸的重量百分比是49.2%HF和69.5% HNO3)。
H2O和CH3COOH作为稀释剂的功能相似,共同特 点: (1)在低HNO3及高HF浓度区(见图4.6的顶角区), 等腐蚀曲线平行于等HNO3浓度线,由于该区有过量 的HF可溶解反应产物SiO2,所以腐蚀速率受HNO3的 浓度所控制。 (2)在低HF高HNO3区(见图4.6的右下角),等腐 蚀线平行于HF浓度线。 (3)当HF HNO3=1 1,稀释液浓度百分比小于 10%时,随稀释液的增加对腐蚀速率影响较大草原稀 释液从10% 30%,腐蚀速率随秋耕释液的增加呈减 小;稀释液大于30%后,稀释的微小变化会引起腐蚀 速率的很大变化。
MEMS器件的制作方法

MEMS器件的制作方法随着微纳米技术的发展,MEMS(Micro-Electro-Mechanical Systems,微电子机械系统)器件在各个领域中的应用不断扩大。
MEMS器件制作需要高精度加工工艺,下面将从制作流程、工艺步骤、设备及材料四个方面进行介绍。
制作流程MEMS器件的制作流程通常包括以下几个步骤:1.模板制作2.氧化硅层生长3.光刻制图4.反应离子刻蚀(RIE)5.辅助附加层制备6.模板蚀除7.处理后的器件释放根据具体的器件结构和加工要求,以上步骤可能会有所不同。
下面将对每个步骤进行详细介绍。
工艺步骤1. 模板制作制作MEMS器件首先需要制作出模板。
通常使用的材料有硅、石英和玻璃等。
其中,硅晶片是较为常见的一种选择。
制作模板的流程如下:1.取一块纯度高的硅晶片。
2.用光刻技术在硅晶片表面制作出相应的图形。
3.在图形覆盖的区域进行氧化处理,得到具有一定结构的氧化硅层。
4.利用反应离子刻蚀技术将不需要的氧化硅层刻蚀掉,得到带有结构的硅晶片。
2. 氧化硅层生长在模板制作完成后,需要进行氧化硅层的生长,其主要作用是保护下一步光刻过程中的细节部分和进行反应离子刻蚀时的保护作用。
实际操作中,利用化学气相沉积(CVD)或者热蒸发等技术在硅晶片表面均匀生长一层0.5–3厚度的氧化硅层。
3. 光刻制图在氧化硅层生长之后,通过光刻技术在氧化硅层上重复制图,以制备出所需的器件应用结构。
通常,光刻技术主要分为以下几个步骤:1.在硅晶片上涂覆光刻胶2.照射光刻胶3.清洗和蚀刻光刻胶4.对氧化硅层进行刻蚀4. 反应离子刻蚀在光刻制图之后,需要将氧化硅层刻蚀掉,从而形成MEMS器件的结构。
这一步骤采用反应离子刻蚀法,具体分为以下三个步骤:1.将硅晶片放置到反应离子刻蚀系统的刻蚀室内2.制备出刻蚀气体3.离子反应刻蚀5. 辅助附加层制备在刻蚀完氧化硅层之后,需要在MEMS器件上添加一层薄的金属,用于保护结构并增强其机械强度。
MEMS加工工艺及表面加工

32
硅各向异性湿法腐蚀的缺点 • 图形受晶向限制 • 深宽比较差, 结构不能太小 • 倾斜侧壁 • 难以获得高精度的细线条。
33
干腐蚀
气体中利用反应性气体或离子流进行的腐蚀称 为干腐蚀。干腐蚀刻蚀既可以刻蚀多种金属, 也可以刻蚀许多非金属材料;既可以各向同性 腐蚀,也可以各向异性刻蚀,是集成电路工艺 或MEMS常用工艺。
2023最 新 整 理 收 集 do
something
1
MEMS加工工艺
MEMS加工工艺分类
2
部件及子系统制造工艺
半导体工艺、集成光学工艺、厚薄膜工艺、微机械加 工工艺等
封装工艺
硅加工技术、激光加工技术、粘接、共熔接合、玻璃 封装、静电键合、压焊、倒装焊、带式自动焊、多芯 片组件工艺
3
MEMS加工技术的种类
大机械制造小机械,小机械制造微机械
日本为代表,与集成电路技术几乎无法兼容
LIGA工艺
Lithograpie(光刻)、Galvanoformung(电铸) Abformung(塑铸) 德国为代表,利用同步辐射X射线光刻技术,通过电铸成型和塑
铸形成高深宽比微结构的方法。设备昂贵,需特制的X射线掩模 版,加工周期长,与集成电路兼容性差
• 优点:与常规IC工艺兼容性好; 器件可做得很小
• 缺点:这种技术本身属于二维平面工艺,它限 制了设计的灵活性。
47
48
关键技术
牺牲层技术 薄膜应力控制技术 防粘连技术
硅腐蚀速率与晶体取向的关系
28
与{100}、{110}相比,{111}面有慢的腐 蚀速率,所以经过一段时间腐蚀后,所 腐蚀的孔腔边界就是{111}面
各向异性腐蚀剂腐蚀出微结构的特点 29
MEMS工艺体硅微加工工艺

MEMS工艺体硅微加工工艺1. 简介MEMS(Micro-Electro-Mechanical Systems),即微电子机械系统,是一种集成了电子、机械和光学等技术的微型设备。
MEMS工艺体硅微加工工艺是MEMS制造中最常用的一种工艺。
本文将介绍MEMS工艺体硅微加工的基本原理、工序以及常见的应用领域。
2. 工艺原理MEMS工艺体硅微加工工艺以单晶硅片作为主要材料,通过一系列的加工工序,制造出具有复杂结构和微尺寸的器件。
其工艺原理主要包括以下几个方面:2.1 单晶硅片制备单晶硅片是MEMS工艺体硅微加工的基础材料。
通过化学气相沉积(CVD)或磁控溅射等方法,在硅熔体中生长出单晶硅片。
然后,通过切割和抛光等工艺,将单晶硅片制备成规定尺寸和厚度的硅衬底。
2.2 光刻工艺光刻工艺是MEMS工艺体硅微加工中的重要步骤。
首先,将光刻胶覆盖在硅片表面。
然后,使用掩膜板,通过紫外光照射,使光刻胶发生化学反应,形成图案。
接着,将硅片浸泡在显影液中,去除未曝光的光刻胶。
最后,通过加热或暴露于紫外光下,固化已经显影的光刻胶。
2.3 甜蜜刻蚀甜蜜刻蚀是MEMS工艺体硅微加工中的关键步骤。
将制备好的硅片放置在刻蚀室中,通过控制刻蚀气体的流量、温度和压力等参数,使硅片表面发生化学刻蚀。
根据刻蚀深度和刻蚀特性的要求,可以选择不同的刻蚀方法,如湿法刻蚀、干法刻蚀等。
2.4 互连与封装互连与封装是MEMS工艺体硅微加工的最后环节。
通过金属薄膜沉积、光刻和腐蚀等工艺,将金属导线、引线等结构制作在硅片上,并与芯片上的电极进行连接。
同时,为了保护MEMS器件免受机械损伤和环境腐蚀,常常需要对其进行封装,通常采用薄膜封装或微结构封装等方法。
3. 工序流程MEMS工艺体硅微加工的工序流程会因具体的器件设计和制造要求而有所差异。
下面是一个典型的MEMS工艺体硅微加工的工序流程:1.单晶硅制备:通过CVD或磁控溅射等方法,制备出单晶硅片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王晓浩
EMAIL:wangxh@
电话:62772232
硅微MEMS发展里程碑
• 1987年UCBerkeley在硅片上制造出静电 电机 • 90年代初ADI公司研制出低成本集成硅 微加速度传感器,用于汽车气囊。 • 90年代末期美国Sandia实验室发表5层多 晶硅工艺。
或
芯片图形对称
上下反对称
上下对称
芯片
芯片
芯片
(a)
(b)
(c)
针孔问题
• 流程1(出现针孔):
• • • • • • • • 热氧化SiO2 ,LPCVD Si3N4; 背面光刻,腐蚀Si3N4和SiO2; 正面光刻,腐蚀Si3N4和SiO2; )体硅腐蚀。
工艺路线(2) 硅 光刻胶 二氧化硅 氮化硅
自停止腐蚀典型工艺流程
工艺路线(1)
硅 光刻胶 扩散层 二氧化硅
工艺路线(2)
双面光刻
• MEMS器件的结构一般是平面化的三维结 构,很多器件两面都有结构或图形,而且 有对准要求,需要双面光刻。 • 设备:投影双面光刻机或红外双面光刻机。
双面光刻制版问题
• 两面图形不同
– 考虑镜向问题
正面图形
氮气出口 冷凝水出口
腐蚀设备
冷凝洄流管道 冷凝水 温控温度计 冷凝水入口
氮气
气体 流量 控制 计
磨沙密封口
氮气入口
硅片 腐蚀液 甘油池 石英提篮 石英支架 搅拌器转子 加热电炉
继电器 电源
影响腐蚀质量因素
• 腐蚀液成分
– 新旧腐蚀液 – 试剂重复性
• 温度 • 保护 • 搅拌
表面流速A 转子 表面流速B 深度A 低速区 深度B 高速区 腐蚀液 容器
2d 2d ba sin tan
R(100 ) R(111)
• a是腐蚀后坑底的边长,b是掩膜版上窗口的边长, d是腐蚀深度,=54.74,是(100)面和(111)面的 夹角。是各向异性比,R(100)和R(100)分别是腐蚀 液对(100)面和(111)面的腐蚀速率,和腐蚀液的 种类及腐蚀条件有关。
– 腐蚀窗口短边存在最小尺寸:
2d 1 bmin (cos ) sin
各向异性腐蚀液
• 腐蚀液:
– 无机腐蚀液:KOH, NaOH, LiOH, NH4OH等; – 有机腐蚀液:EPW、TMAH和联胺等。
• 常用体硅腐蚀液:
– 氢氧化钾(KOH)系列溶液; – EPW(E:乙二胺,P:邻苯二酚,W:水)系 列溶液。
正面版
背面版
背面图形
双面光刻(两面图形不同)
双面光刻制版问题
• 两面图形相同
– 子图形呈中心对称分布 – 子图形不左右对称分布,且两面的图形上下反对称分布,则 整个硅片上所有芯片的图形应该都是从左向右或从右向左的; – 子图形不左右对称分布,且两面的图形上下对称分布,则硅 片上左右两半边的芯片图形应该是反向分布的,都指向中心 或背向中心。
体硅各向异性腐蚀
• 是利用腐蚀液对单晶硅不同晶向腐蚀速 率不同的特性,使用抗蚀材料作掩膜, 用光刻、干法腐蚀和湿法腐蚀等手段制 作掩膜图形后进行的较大深度的腐蚀。 • 机理:腐蚀液发射空穴给硅,形成氧化 态Si+,而羟基OH-与Si+形成可溶解的硅 氢氧化物的过程。
各向异性腐蚀计算
• 设计公式:
HF 或 H3PO4 >40 HF
影响牺牲层腐蚀的因素
多晶 硅 LT • 牺牲层厚度 O • 腐蚀孔阵列 • 塌陷和粘连及防止方法
– 酒精、液态CO2置换水; – 依靠支撑结构防止塌陷。
典型牺牲层腐蚀工艺
( ) 氧化,做体硅腐蚀掩膜层; ( ) 光刻氧化层,开体硅腐蚀窗 口; ( ) 体硅腐蚀出所需底层结构; ( ) 去除SiO2; ( ) 生长或淀积牺牲层材料; ( ) 光刻牺牲层材料成所需结构; ( ) 生长结构材料; ( ) 光刻结构材料; ( ) 牺牲层腐蚀,释放结构层; ( ) 防粘结处理。
硅
二氧化硅 多晶硅
自停止腐蚀技术
• 机理:
• EPW和KOH对硅的腐蚀在掺杂浓度小于11019cm3 时基本为常数,超过该浓度时,腐蚀速率与掺杂 硼浓度的4次方成反比,达到一定的浓度时,腐蚀 速率很小,甚至可以认为腐蚀“停止”。
• 腐蚀速率经验公式:
R
1 N
Ri
B
N0
a
4
a
• Ri 为低速区的腐蚀速率,N0 为阈值浓度,NB 为掺 杂浓度,a与腐蚀液的种类有关,用EPW腐蚀可取 4。
• 乙二胺(NH2(CH2) 2NH2) • 邻苯二酚(C6H4(OH) 2) • 水(H2O)
EPW腐蚀条件
• • • • • • 腐蚀温度:115℃左右 反应容器在甘油池内加热,加热均匀; 防止乙二胺挥发,冷凝回流; 磁装置搅拌,保证腐蚀液均匀; 在反应时通氮气加以保护。 掩膜层:用SiO2,厚度4000埃以上。
• 流程2(不出现针孔):
热氧化SiO2,LPCVD Si3N4; 背面光刻,腐蚀Si3N4,不去胶; 正面光刻,腐蚀Si3N4和SiO2,去胶; 体硅腐蚀。
工艺路线(1)
凸角腐蚀补偿
• 凸角腐蚀是指在硅岛或硅梁的腐蚀成型 过程中,凸角部分被腐蚀掉的现象,体 硅各向异性腐蚀时经常出现,这是因为 对(100)晶面的硅片体硅腐蚀时,凸角的 边缘与[110]方向平行,而腐蚀液对此方 向的腐蚀速度较快。若要腐蚀出带凸角 的整齐的台面结构,必须采取凸角补偿。
典型硅微MEMS工艺
• • • • • • • 体硅腐蚀 牺牲层技术 双面光刻 自停止腐蚀 深槽技术 LIGA技术 键合技术
体硅各向异性腐蚀技术
• 各向异性(Anisotropy)
– 各向异性腐蚀液通常对单晶硅(111)面的腐蚀 速率与(100)面的腐蚀速率之比很大,因为:
• (111)面有较高的原子密度,水分子容易附着在 (111)面上; • (100)面每个原子具有两个悬挂键,而(111)面每 个原子只有一个悬挂键,移去(111)面的原子所 需的能量比(100)面要高。
0 0 10 20 30 40 腐蚀时间(min) 50 60
1.4 0.12 3.6 4.4 很快
横向腐蚀深度
40 30 20 10
度高、腐蚀速率低 体积稳定度低
5:1BHF HF 5:1BHF
磷硅 释放多晶硅结 腐蚀速率高、内应力小; 释放有机结构 与 CMOS 工艺兼容 用于 LIGA 中 释放电铸结构
硅微MEMS工艺发展趋势
• 表面牺牲层技术向多层、集成化方向发 展; • 体硅工艺主要表现为键合与深刻蚀技术 的组合,追求大质量块和低应力; • 表面工艺与体硅工艺进一步结合; • 设计手段向专用CAD工具方向发展。
硅微MEMS工艺主要手段
深层 自停止 离子 腐蚀 刻蚀 电化学 各向 腐蚀 异性 腐蚀 牺牲 等离子及 层腐 反应离子 刻蚀 蚀 淀积 扩散
凸角腐蚀补偿
• 相关尺寸
d d d
• 补偿角及补偿岛
a=18.43, b=53.16 <120> <110> <210> b
o o
a P
<120> a
<210>
DW
<210> <110> <210> <120> <120>
DL
凸角腐蚀补偿
• 重掺杂自停止腐蚀法
– 当目标结构的厚度相对较薄时 – 在加工结构前先在硅片上扩散自停止层,深度 达到所需结构厚度,光刻后用干法腐蚀出结构 图形,然后体硅腐蚀,准确得到设计的结构。
硅片
牺牲层技术
• 属硅表面加工技术。 • 是加工悬空和活动结构的有效途径。 • 采用此种方法可无组装一次制成具有活 动部件的微机械结构。 • 牺牲层材料
牺牲层材料对比 特 点
70 60 50 热氧化 SiO 2 低氧扩磷SiO 2 低氧淀积SiO 2
材料
用
途
腐蚀剂
腐蚀速率 (m/min)
二氧 释放多晶硅结 回火中收缩率低、薄膜稳定 HF 化硅 构 玻璃 构 铝 钛
MEMS基本结构加工工艺
体硅加工 离子束加工 电子束加工 激光加工
硅表面微加工
光刻
硅微细加工
LIGA加工 准LIGA加工
能束加工
微细超声加工 微细电解加工 微细电火花加工
光刻电铸加工 立体光刻
ቤተ መጻሕፍቲ ባይዱ
精密加工
微型制造技术
MEMS与IC工艺主要差别
MEMS 光刻技术 腐 干法 蚀 湿法 技 术 牺牲层 技术 键合 LIGA 需双面光刻技术 深层、高深宽比腐蚀 各向异性腐蚀、自停止技术、深 层体硅腐蚀 表面硅微加工工艺,与 IC 工艺 兼容,用于制造表面活动结构 硅硅直接键合、 硅玻璃阳极键合 制作高深宽比结构,成本高 IC 单面光刻技术 一般薄膜腐蚀 各向同性腐蚀、阳极腐蚀、 电钝化腐蚀,限于表面加工 不常用 高温键合制作 SOI 材料 不用