MEMS系统简介及实例分析
举例说明mems的应用及例中mems器件的原理

举例说明mems的应用及例中mems器件的原理MEMS(微机电系统)是一种将微型机械结构与电子技术相结合的技术,它可以将传感器、执行器和其他微型器件集成在一起,以实现各种应用。
下面将以几个常见的MEMS应用为例,详细介绍其原理。
1.加速度计加速度计是一种测量物体加速度的传感器,广泛应用于智能手机、游戏手柄、汽车安全气囊等设备中。
MEMS加速度计通常由一个微型质量块和一对微型弹簧组成。
当被测试物体加速度改变时,质量块会移动,并产生微小的尺寸变化。
这种变化可以通过电容或压阻传感器来检测,从而得到加速度的值。
2.陀螺仪陀螺仪是用于测量物体角速度的传感器,常见于飞行器、导航设备等应用中。
MEMS陀螺仪通常由两个共面的振动器组成。
当物体发生旋转时,由于科里奥利力的作用,振动器之间会产生微小的力。
这种力会导致振动器的位移,通过检测振动器的位移变化,可以得到物体的角速度。
3.压力传感器压力传感器用于测量气体或液体的压力,广泛应用于医疗设备、工业自动化等领域。
MEMS压力传感器通常由一个微型薄膜和一个微型腔室组成。
当受到外部压力时,微型薄膜会发生微小的弯曲变形。
通过检测薄膜的变形,可以得到压力的值。
4.振动传感器振动传感器用于测量物体的振动或震动,常见于汽车、建筑结构监测等领域。
MEMS振动传感器通常由一个微型质量块和一个微型弹簧组成,类似于加速度计的结构。
当物体振动时,质量块会受到振动力的作用,从而产生微小的尺寸变化。
这种变化可以通过电容或压阻传感器来检测,从而得到振动的值。
总结起来,MEMS器件的原理都是基于微小的物理变化或力的作用。
通过将微型机械结构和电子技术相结合,可以实现对这种变化或力的检测和测量,从而得到各种物理量的值。
这种集成化的设计使得MEMS器件具有体积小、功耗低、响应速度快、成本低等优点,因此在越来越多的应用中得到了广泛的应用。
举例说明mems的应用及例中mems器件的原理

举例说明mems的应用及例中mems器件的原理MEMS(微机电系统)是一类集成在微米到毫米级别的机械系统和电气系统的微型器件,它们的作用是将电气信号转换成机械运动或将机械运动转换成电气信号。
这些微型器件通过在芯片上制造微小结构和微制造工艺,实现了微小化、低功耗、高灵敏度和多功能。
下面将介绍MEMS的应用及其中的器件原理。
MEMS的应用非常广泛,可以应用于汽车、医疗、航空航天、电子通信、消费电子等多个领域。
其中,一些最常见的MEMS应用包括:1.惯性感应器:MEMS加速度计和陀螺仪广泛应用于智能手机,队列追踪和姿态控制等。
通过利用惯性原理,它们可以检测设备的移动并提供相应的反馈,从而实现位置和方向的确定。
2.微波电子学:MEMS开关器,可变容器和可调谐滤波器等器件用于微波频段中,这些器件可以实现快速、准确的频率调谐,并且具有高的功率处理能力。
3.生物传感器:MEMS生物传感器可用于检测血糖、血压、呼吸和心率等,这些传感器通过检测体内细胞水平的变化,可以提供全新的医疗诊断工具。
其中,MEMS传感器是应用最广泛的一类器件。
下面将以MEMS传感器为例,介绍其原理。
MEMS传感器的原理是将待测值或物理现象转化为信号,在微机电系统中进行处理。
大多数MEMS传感器都是由感应结构和信号转换电路组成的。
其中感应结构通常采用压电、电容、电阻、温度、振动等技术,来实现感应现象和物理现象的转换。
而信号转换电路则用于转换、放大、滤波和数字化信号,从而使数据可以与其他设备通信。
以压电传感器为例,它主要由压电陶瓷、负载杆、方向夹具和输出电路组成。
当压电陶瓷受到力的作用时,它会产生电荷,从而产生电压信号。
这个信号可以通过负载杆和夹具传送到输出电路,最终转换成数字信号。
在MEMS传感器中,压电传感器广泛应用于机械和结构振动测量、气动测量、应变测量和加速度测量等。
总之,MEMS技术已经成为了多种新科技和应用的核心,这些应用不仅改善了我们的生活质量,而且为未来的技术创新提供了更广阔的空间。
微电子机械系统MEMS概述

微电子机械系统MEMS概述微电子机械系统(Micro-electromechanical Systems, MEMS)是一种将电子技术与机械工程相结合的技术领域,通过制造微尺度的电子器件和机械系统,可以实现微小化、集成化和高性能的微型设备。
MEMS用于制造传感器、执行器和微操纵系统等微型装置,已经广泛应用于通信、汽车、医疗、军事和消费电子等领域。
MEMS的核心技术包括微纳加工技术、传感器技术和微机电系统技术。
微纳加工技术是MEMS制造的基础,主要包括光刻、薄膜沉积、离子刻蚀、扩散和薄膜技术等。
这些技术可以制造出微米甚至纳米级别的微型结构和器件。
传感器技术是MEMS的重要应用领域之一,利用微型传感器可以实现对温度、压力、流量、位移、加速度和姿态等物理量的检测和测量。
而微机电系统技术则是将传感器和执行器等微型装置集成在一起,实现自动化控制和微操纵的功能。
MEMS具有以下几个显著的特点:微小化、集成化、多功能和低成本。
微小化可以实现高密度的集成和高灵敏度的检测,同时降低设备的功耗和重量。
而集成化可以将多个功能模块集成在一个芯片上,提高了系统性能和可靠性,同时减少了系统的体积和重量。
多功能则是指MEMS可以同时实现多种功能,如传感、处理和控制等。
此外,由于MEMS采用的是集成化的制造工艺,可以大规模制造,降低了生产成本,为大规模应用提供了可能。
MEMS在各个领域的应用也越来越广泛。
在通信领域,MEMS技术可以制造微型光机械开关,用于光通信网络的光信号调控和光路径选择。
在汽车领域,MEMS技术可以制造出压力传感器、加速度传感器和姿态传感器等,用于车辆的安全控制系统和车载导航系统。
在医疗领域,MEMS技术可以制造出微型生物传感器,用于检测体内的生物信号,如血压、血氧和葡萄糖等。
在军事领域,MEMS技术可以制造微型化的惯性导航系统和气体传感器,应用于导弹制导系统和化学生物探测等。
在消费电子领域,MEMS技术可以制造微型微镜头和投影显示器,应用于智能手机、平板电脑和智能手表等。
MEMS介绍

MEMS陀螺仪
Contents
1.MEMS的介绍
2.陀螺仪的介绍
3.MEMS陀螺仪的介绍
4.MEMS陀螺仪在iPhone4中应用
5. MEMS陀螺仪的现状
一 MEMS的介绍与应用
1.MEMS简介
MEMS(Microelectromechanical Systems) 是指集微型传感器、执行器以及信号 处理和控制电路、接口电路、 通信和电源于一体的微型机电系统。 MEMS是微机电系统的缩写。MEMS主要包括 微型机构、微型传感器、微型执行器和相应的 处理电路等几部分,它是在融合多种微细加工 技术,并应用现代信息技术的最新成果的基础 上发展起来的高科技前沿学科。
三 MEMS陀螺仪的介绍
• 1.MEMS陀螺仪(gyroscope)
• 陀螺仪能够测量沿一个轴或几个轴运动的角速, 是补充MEMS加速计功能的理想技术。组合使用 加速计和陀螺仪这两种传感器,可以跟踪并捕捉 三维空间的完整运动,为用户提供现场感更强的 用户使用体、精确的导航系统以及其它功能。 • 工作原理: MEMS陀螺仪是利用科里奥利力,即 旋转物体在有径向运动时所受到的切向力。
五 MEMS陀螺仪的现状
• 虽然手机汽车方面可能用到,但毕竟是高端产品才有, 所以MEMS陀螺仪在我们的生活中并不常见,也不熟悉 。 • 据了解,这种传感器的核心技术还是被外国垄,我们国 家的技术不发达。如果外国的军事武器都装备这种传感 器,可能是对中国的军事力量一种沉重的打击,在以科 技技术是第一生产力也是综合国力的第一体现的环境, 努力提高科技技术是很必要的。
• 三轴陀螺仪
三轴陀螺仪MEMS结构。从左到右分 别是X, Y和Z轴,它们设计在一个晶片 上,同时用微机械技术加工出来。
微机电系统(MEMS)技术介绍

微机电系统(MEMS)技术介绍微机电系统(MEMS),在欧洲也被称为微系统技术,或在日本被称为微机械,是一类器件,其特点是尺寸很小,制造方式特殊。
MEMS是指采用微机械加工技术批量制作的、集微型传感器、微型机构、微型执行器以及信号处理和控制电路、接口、通讯等于一体的微型器件或微型系统。
MEMS 器件的特征长度从1毫米到1微米--1微米可是要比人们头发的直径小很多。
MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。
然而,MEMS器件加工技术并非机械式。
相反,它们采用类似于集成电路批处理式的微制造技术。
今天很多产品都利用了MEMS技术,如微换热器、喷墨打印头、高清投影仪的微镜阵列、压力传感器以及红外探测器等。
MEMS技术可以用于制造压力传感器、惯性传感器、磁力传感器、温度传感器等微型传感器,这些传感器以及它们的部分信号处理电路都可以在只有几毫米或更小的芯片上实现。
与传统的传感器相比,MEMS传感器不仅体积更小、功耗更低,而且它们往往会比传统传感器更加准确、更加灵敏。
随着人们对海洋观测的需求不断增加和海洋观测技术的不断发展,MEMS技术也在逐渐进入海洋观测技术研究领域。
一、MEMS概念“他们告诉我一种小手指指甲大小的电动机。
他们告诉我,目前市场上有一种装置,通过它你可以在大头针头上写祷文。
但这也没什么;这是最原始的,只是我打算讨论方向上的暂停的一小步。
在其下是一个惊人的小世界。
公元2000年,当他们回顾当前阶段时,他们会想知道为何直到1960年,才有人开始认真地朝这个方向努力。
”——理查德·费曼,《底部仍然存在充足的空间》发表于1959年12月29日于加州理工大学(Caltech)举办的美国物理学会年会。
但我们可能会问:为什么要在这样一个微小尺上生成这些对象?MEMS器件可以完成许多宏观器件同样的任务,同时还有很多独特的优势。
这其中第一个以及最明显的一个优势就是小型化。
微机电系统MEMS简介

陀螺仪
总结词
用于测量或维持方向的传感器
详细描述
陀螺仪是一种基于角动量守恒原理的传感器,用于测量或维持方向。它通过测量物体旋转轴的方向变 化来工作,通常由高速旋转的陀螺仪转子组成。陀螺仪广泛应用于导航、姿态控制、游戏控制等领域 ,如智能手机、无人机和导弹制导系统等。
压力传感器
总结词
用于测量流体或气体压力的传感器
MEMS市场应用领域
消费电子
汽车电子
医疗健康
工业自动化
MEMS传感器在消费电子产品 中的应用广泛,如智能手机、 平板电脑、可穿戴设备等。这 些设备中的传感器用于运动检 测、加速度计、陀螺仪、气压 计等。
随着汽车智能化的发展, MEMS传感器在汽车领域的应 用也越来越广泛,如车辆稳定 性控制、安全气囊、发动机控 制等。
MEMS材料
单晶硅
单晶硅是MEMS制造中最常用的材料 之一,具有高强度、高刚度和良好的 化学稳定性。
多晶硅
多晶硅在MEMS制造中常用于制造柔 性结构,具有较好的塑性和韧性。
玻璃
玻璃在MEMS制造中常用于制造光学 器件,具有较高的透光性和稳定性。
聚合物
聚合物在MEMS制造中常用于制造生 物传感器和柔性器件,具有较好的生 物相容性和可塑性。
集成化
未来的MEMS系统将更加集 成化,能够将多个MEMS器 件集成在一个芯片上,实现 更高效、更低成本的应用。
03
CATALOGUE
MEMS传感器与器件
加速度传感器
总结词
用于测量 物体运动状态的传感器
详细描述
加速度传感器是一种常用的MEMS传感器,主要用于测量物体运动状态的加速度。它通常由质量块和弹性支撑结 构组成,通过测量质量块因加速度产生的惯性力来计算加速度值。加速度传感器广泛应用于汽车安全气囊系统、 手机和平板电脑的姿态控制、运动检测等领域。
北京邮电大学 微机电系统(MEMS)的系统介绍与论述

VLSI系统设计与CAD方法期末论文电子工程学院2012111203班黄奕龙学号:2012140619微机电系统(MEMS)的系统介绍与论述摘要:微机电系统(英语:Microelectromechanical Systems,缩写为MEMS)是将微电子技术与机械工程融合到一起的一种工业技术,是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
本文主要的内容是对其的原理特点与应用等进行了介绍和论述。
关键字:MEMS;微机电系统;Abstract:MEMS(Microelectromechanical Systems) is a an industrial technology which is an integration of microelectronic technology and mechanical engineering,and it can massify micro-institutions, micro sensors, micro actuators and signal processing and control circuits,interface, communicationand power into one system.This paper is to introduce and discuss the principle,characteristics and applications of MEMS. Keyword:MEMS; Microelectromechanical Systems;简介微机电系统(英语:Microelectromechanical Systems,缩写为MEMS)是将微电子技术与机械工程融合到一起的一种工业技术,它的操作范围在微米范围内。
比它更小的,在纳米范围的类似的技术被称为纳机电系统。
微机电系统(mems)研究报告

微机电系统(mems)研究报告
微机电系统(MEMS)是一种将微米(微薄)尺度的机械系统与先
进的微电子技术和纳米加工技术相结合的领域。
它是一个综合性的交
叉学科,包括机械工程、电子工程、材料科学等多个领域。
MEMS通常
用于制造微型设备以及各种传感器、执行器、微机械系统等。
MEMS技术的发展始于20世纪60年代。
在此之前,人们只能制造出很大的电气机械系统。
然而,伴随着硅微米加工技术的进步,科学
家们终于有能力制造出微型机器。
现在,MEMS技术已经得到广泛应用,例如气体传感器、压力传感器、光学器件、生物传感器等。
MEMS设备的制造非常复杂。
尽管它的大小很小,但有时候需要数百步的加工流程,这通常需要利用高精密的光学和电子设备。
MEMS技
术还需要涉及到虚拟与实际的领域,制造出来的设备通常都需要通过
计算机模拟来测试性能,同时还要回到实验室进行物理实验。
MEMS技术不仅在实验室中被应用于研究,其实在各个领域都有应用。
这些应用通常涉及到小型手机、传感器、医学诊断等领域。
综上所述,MEMS技术代表了一个快速发展的领域,它的出现大大扩展了微电子技术的应用。
这种技术对于现代社会的重要性越来越广泛,它的不断发展和创新相信也会带来更多的惊喜和可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MESE,Micro-Electro-Mechanical-System.
MEMS INTRODUCTION
Application of MEMS Technology
MEMS technology
MEMS micro accelerometer
以微电子、微机械及材料科 学为基础,研究、设计、制 造、具有特定功能的微型装 置,包括微结构器件、微传 感器、微执行器和微系统等 学科交叉现象极其明显,主 要涉及微加工技术,机械学 /固体声学理论,热流理论, 电子学,生物学等特征长度 从1μm到1mm
MEMS需要专门的电子电路IC进行采样或 驱动,一般分别制造好MEMS和IC粘在同 一个封装内可以简化工艺,如图3。不过具 有集成可能性是MEMS技术的另一个优点。 正如之前提到的,MEMS和ASIC (专用集 成电路)采用相似的工艺,因此具有极大地 潜力将二者集成,MEMS结构可以更容易 地与微电子集成。然而,集成二者难度还 是非常大,主要考虑因素是如何在制造 MEMS保证IC部分的完整性。例如,部分 MEMS器件需要高温工艺,而高温工艺将 会破坏IC的电学特性,甚至熔化集成电路 中低熔点材料。
Composite micromachining
微加工工艺中有时需要将两 块微加工后的基片粘结起来, 可以获得复杂的结构,实现 更多的功能。将基片结合起 来的办法有焊接、融接、压 接(固相结合)、粘接、阳 极键合、硅直接键合、扩散 键合等方法.
体硅微机械加工技术
表面微机械加工技术
LIGA技术
—LI, Lithographier ,即深度X射
质量块通过锚anchor, 铰链hinge,或弹簧spring 与底座连接。绿色部分 固定在底座。 当感应到加速度时,质量 块相对底座产生位移,电 容大小的变化可以产生 电流信号供其信号处理 单元采样
谢谢
把MEMS的“机械”(运动或 传感)部分制作在沉积于硅 晶体的表面膜(如多晶硅、 氮化硅等)上,然后使其局 部与硅体部分分离,呈现可 运动的机构
复合微机械加工
Bulk micromachining
包括去加工(腐蚀)、附着 加工(镀膜)、改质加工 (掺杂)和结合加工(键合) 腐蚀技术主要包括干法腐蚀 和湿法腐蚀,也可分为各向 同性腐蚀和各向异性腐蚀.
线刻蚀;
—G,Galvanformug,即电铸成型; —A,Abformug,即塑料铸膜
LIGA技术是深度X射线刻 蚀、电铸成型、塑料铸膜 等技术的完美结合。 LIGA工艺问世以来,被 认为是最有前途的三维微 细加工技术。
准LIGA技术
A 紫外光光刻成模 B 电铸或化学镀及制模 C 塑铸
MEMS加速度计
MEMS与IC在不同的硅片上制造好了再粘合在同一个封装内
MEMS技术应用
优点:体积小、重量轻、功耗低、可靠性高、灵 敏度高、易于集成 通信移动设备 以智能手机为主的移动设备中, 应用了大量传感器以增加其智能性
可穿戴/植入式领域 智能手表等穿戴设备, 以及医疗中MEMS实现人体感官功能 喷墨打印机 打印喷嘴 惯性传感器 导航、虚拟现实和体感输入, 汽车安全气囊和ABS防抱死系统
开关、继电器 体积小,速度快
1
硅基微机械加工技术
以美国为代表的以集成电路加工技术为基础
MEMS加 工技术
2
LIGA技术
以德国为代表发展起来的利用X射线深度光刻、 微电铸、微铸塑
3
精密加工技术
以日本为代表,如微细电火花EDM、超声波 加工
硅基微机械加工技术
体硅微机械加工技术
表面微机械加工技术 Surface micromachining
பைடு நூலகம்
MEMS的快速发展是基于相对成熟 的微电子技术、集成电路技术及其 加工工艺 MEMS需要专门的电子电路IC进行 采样或驱动,一般分别制造好 MEMS和IC粘在同一个封装内可以 简化工艺
从硅原料到硅片过程
MEMS器件加工技术并非机械式。相反,它们采用类似于集成电路批 处理式的微制造技术。批量制造能显著降低大规模生产的成本。若 单个MEMS传感器芯片面积为5 mm x 5 mm,则一个8英寸(直径20 厘米)硅片(wafer)可切割出约1000个MEMS传感器芯片,分摊到每 个芯片的成本则可大幅度降低。因此MEMS商业化的工程除了提高产 品本身性能、可靠性外,还有很多工作集中于扩大加工硅片半径 (切割出更多芯片),减少工艺步骤总数,以及尽可能地缩传感器 大小。