高吸水性树脂
高吸水树脂

高吸水树脂高吸水性树脂(Super Absorbent Polymer, 简称SAP),通用名高吸水树脂、吸水树脂,用于不同行业又有专业俗称如农林保水剂、光缆阻水粉、高分子吸水珠、人工水晶泥、蓄热蓄冷剂等。
kl-sap主要化学成分是低交联型聚丙烯酸钠盐,属新型功能高分子吸水材料。
它能吸收比自身重几百或上千倍的无离子水。
吸水后即成凝胶状,即使加压也很难挤出水来。
具体特性如下:1.高吸水性能吸收自身重量的数百倍或上千倍的无离子水。
2.高吸水速率每克高吸水树脂能在30秒内就吸足数百克的无离子水。
3.高保水性吸水后的凝胶在外加压力下,水也不容易从中挤出来。
4.高膨胀性吸水后的高吸水树脂凝胶体体积随即膨胀数百倍。
5.吸氨性低交联型聚丙烯酸盐型高吸水性树脂其分子结构中含有羧基阴离子,遇氨可将其吸收,有明显的去臭作用。
6.安全性送样经江苏省卫生防疫站检测属无毒、无刺激。
详见江苏省卫生防疫站质量检测报告书[(毒)字第20000097号]。
具体指标如下:(执行标准Q/320682RYM01-2009)附:规格按颗粒大小分有:kl-5,kl-40,kl-80,kl-120,kl-150,kl-300按应用要求分有:速膨松散型(A)和缓膨增粘型(B)凯姆勒化学技术(北京)有限公司吸水材料部门是专业从事高吸水性树脂的技术研发、生产及推广应用的高新技术跨国联合体,与国外在该领域有着先进经验的技术专家和科研机构共同合作,同时还和国内重点科研院校共同承担该领域的专项课题的研发工作。
我们研制生产的各种性状的高分子吸水树脂已在农业、林业、园艺、工业生产、医疗卫生、日用化妆品及特殊领域广泛应用。
农林园艺:抗旱、保墒、节水、土壤润湿剂,用于种子包衣、人工草坪、育种移栽、无土栽培、土壤保水、苗木运输、花卉。
卫生用品:卫生巾、婴儿纸尿布、成人失禁垫片、吸水纸。
医疗医药:吸水、防粘接、缓释用,用于纱布、软膏、绷带、冰袋、缓释性药物。
工业生产:吸水、止水、增稠,用于膨胀橡胶、密封条、电缆止水条、电池、涂料、油水分离。
高吸水性树脂

在农业领域的应用
土壤改良:高吸水性树脂能吸收相当于其自身重量数百倍的水分可有效改善土壤湿度 和保水性能促进作物生长。
节水灌溉:通过使用高吸水性树脂可将灌溉水有效吸附并缓慢释放实现节水灌溉和 均匀供水。
农药和营养剂缓释:高吸水性树脂可以吸附农药和营养剂并在需要时缓慢释放提高农 药利用率和植物吸收率。
高吸水性树脂的制备方法主要包括化学合成和物理改性不同的制备方法可以得到不同性能的高吸水性树脂。
高吸水性树脂的分类
按原料分类:淀粉类、纤维素 类、其他天然产物类
按交联剂类型分类:羧甲基淀 粉、淀粉磷酸酯、纤维素黄原 酸酯等
按离子类型分类:阳离子型、 阴离子型、非离子型
按应用领域分类:农业、医疗 卫生、建筑材料等
高吸水性树脂的应用领域
卫生用品:用于生产婴儿尿布、成人失禁用品等 农业:用于土壤保水、植物生长调节剂等 医疗领域:用于吸收伤口渗出液、止血材料等 建筑材料:用于自修复混凝土、调节室内湿度等
化学合成法
原理:通过化学反应将原料转化为高吸水性树脂 优点:可控制产物的性质如吸水能力、分子量等 缺点:需要使用有机溶剂可能对环境造成污染 常用原料:丙烯酸、丙烯酰胺等单体
高吸水性树脂具有优异的保水性能 能够吸收相当于其自身重量数百倍 甚至上千倍的水分。
高保水性
在医疗领域高吸水性树脂可以用于 制造具有保湿功能的敷料和药物载 体促进伤口愈合。
添加标题
添加标题
添加标题
添加标题
在土壤改良、节水农业、园艺等领 域高吸水性树脂的高保水性有助于 提高植物生长效率和抗旱能力。
高保水性还使得高吸水性树脂在化 妆品、个人卫生用品等领域具有广 泛的应用前景。
回收再利用:将废弃 的高吸水性树脂经过 处理后重新用于生产 新的高吸水性树脂或 其他用途。
高吸水性树脂

简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。
高分子凝胶的相转移理论的发表(田中豊一)90年代高分子学会开始成立「高分子凝胶研究会」(对于机能性凝胶的研究发表日趋活跃)机能性凝胶它能够吸收自身重量几百倍至千倍的水分,无毒、无害、无污染;吸水能力特强,保水能力特高,通过丙烯酸聚合得到的高分子量聚合物→高保水量,高负荷下吸收量的平衡,所吸水分不能被简单的物理方法挤出,并且可反复释水、吸水。
应用于农林业方面,可在植物根部形成“微型水库”。
高吸水性树脂除了吸水,还能吸收肥料、农药,并缓慢的释放出来以增加肥效和药效。
高吸水性树脂以其优越的性能,广泛用于农林业生产、城市园林绿化、抗旱保水、防沙治沙,并发挥巨大的作用。
此外,高吸水性树脂还可应用于医疗卫生、石油开采、建筑材料、交通运输等许多领域。
现有的高吸水性树脂的厂家有:三大雅精细化学品有限公司、日本触媒、得米化工、住友精化、巴斯夫、台塑这几大公司占了全球产量的99%,其中三大雅占55%。
高吸水性树脂目录简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。
高吸水性树脂

高吸水性树脂
高吸水性树脂(SAP)是一种高分子材料,有着奇特的吸水性能和保水能力,吸水可达自身重量的数百倍甚至上千倍,并可在数秒内生成凝胶,且保水性强,在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,具有良好的生物降解性能,同时又具备高分子材料的优点。
高吸水性树脂是我公司与著名高校研究机构经过几年的研究共同开发出来的一种新型的产品,拥有自主的知识产权的吸水材料。
配方工艺独特,产品目前已能过省级鉴定,鉴定结果为“国内领先水平”。
用途:
可广泛用于干燥剂、脱氧保鲜剂、制热制冷设备、吸水膨胀橡胶、膨胀玩具、电缆阻水带、卫生巾、纸尿裤、凉垫、药品保湿、冰垫、冰帽、冰带、混凝土外加剂、农林园世抗旱保水、防沙治水等很多方面。
包装:
大包装:三层防潮塑编牛皮纸袋,25kg/袋。
第5章高吸水性树脂

纤维素也可采用与其他单体进行接枝共聚引入亲水性基团的方法 来制取高吸水性树脂。制备方法与淀粉类基本相同。
与淀粉类高吸水性树脂相比,纤维素类的吸水能力比较低,一般 为自身重量的几百倍。
但是作为纤维素形态的吸水性树脂在一些特殊形式的用途方面, 淀粉类往往无法取代。
例如,与合成纤维混纺制作高吸水性织物,以改善合成纤维的吸 水性能。这方面的应用显然非纤维素类莫属。
优点:原料丰富,产品吸水率较高,可达千倍以上。
缺点:吸水后凝胶强度低,长期保水性不佳。使用中易受细菌等微土物分解 而失去吸水保水作用。
上一内容 下一内容 回主目录
返回
第二节 高吸水性树脂的分类
支链淀粉
淀粉结构
直链淀粉
H
OH H
O OH
O HO H H OH O HO
H
O H OH H O HO H H OH O
的制备
下一内容 回主目录
上一内容
返回
第三节 高吸水性树脂的吸水机理
1. 吸水原理
物理吸附 吸 水 实 质 化学吸附 棉花、纸张、海绵等。 毛细管的吸附原理。
有压力时水会流出。
通过化学键的方式把水和亲水 性物质结合在一起成为一个整 体。加压也不能把水放出。
上一内容
下一内容
回主目录
返回
上一内容 下一内容 回主目录
返回
第二节 高吸水性树脂的分类
3. 合成聚合物类高吸水性树脂
原则上可由任何水溶性高分子经适度交联合成高吸水性树脂。
(1)聚丙烯酸盐类
a. 目前生产最多的一类合成高吸水性树脂。
b. 这类产品吸水率较高,一般均在千倍以上。 c. 由丙烯酸或其盐类与具有二官能度的单体共聚而成。
高吸水性树脂

高吸水性树脂高吸水性树脂是一种典型的功能高分子材料,能够吸收并保持自身重量数百倍乃至数千倍的水分或数十倍的盐水,通常又称为“高吸水性聚合物”、“吸水性高分子材料”、“吸水性高分子树脂”或者“超强吸水剂”等。
高吸水性树脂与普通吸水或吸湿材料,如脱脂棉、海绵、琼脂、硅胶、氯化钙和活性炭等相比,具有吸水速度快、保水能力强等特点,可以广泛应用于农业、林业和日常生活等领域中。
而普通水或吸湿材料一般只能吸收自身质量的几十倍或仅仅十几倍的水分,并且容易在加压时失水,保水能力很差,其开发应用因此受到了很大的限制。
高吸水性树脂发展很快,种类也日益增多,并且原料来源相当丰富,由于高吸水性树脂在分子结构上带有的亲水基团,或在化学结构上具有的低度联度或部分结晶结构又不尽相同,由此在赋予其高吸水性能的同时也各自形成了一些各自的特点,从不同角度出发,就形成了多种多样的分类方法。
按原料来源进行分类。
按照原料来源对高吸水性树脂进行分类,在高吸水性树脂的发展过程中,人们的分类方式也是随着发展水平的提高而不断变化和完善的。
日本的温品谦二曾将高吸水性树脂分为淀粉系列、纤维素系列和合成树脂系列三个系列。
后来,邹新禧结合高吸水性树脂的发展和自己的研究成果,从原料来源的角度提出了六大系列,即淀粉系、纤维素系、合成聚合物系、蛋白质系、其他天然物及其衍生物系和共混物及复合物系。
按亲水化方法进行分类。
高吸水性树脂在分子结构上具有大量的亲水化化学基团,这些化学基团的亲水性很大程度上影响着高吸水性树脂的吸水保水性性能,如何有效获得这些化学基团在高吸水性树脂化学结构上的组织结构,充分发挥各化学基团所在亲水点的效能,也是影响高吸水性树脂性能的重要方面。
因此,为了获得具有良好性能的高吸水性树脂,需要从亲水性化学基团的选择和化学结构的组织构造两个方面进行考虑,即从亲水化方法考虑。
从这个角度,可以将高吸水性树脂分为两大类。
亲水性单体直接聚合法:选择丙烯盐酸、丙烯酰胺等亲水性良好的单体,直接进行均聚合或者进行共聚合反应,获得如聚丙烯盐酸、聚丙烯酰胺或者丙烯酸/丙烯酰胺共聚物等高吸水性树脂。
高吸水性树脂的特性及其应用

重视,如婴儿襁褓、纸尿布、失禁片、妇女卫生巾,宇航员尿袋、餐巾、手帕、母乳垫
片、卫生棉、止血栓、生理棉、汗毛巾等产品中都可以应用高吸水性树脂。另外,如手
术垫、手术手套、手术衣、手术棉、贴身衬衣、内裤、鞋垫等一些生理用品中也广泛用
到高吸水性树脂。它的高吸水能力和保水能力使得生理卫生方面的产品大大轻便化、小
生物组织十分接近,且凝胶具有溶质透过性,组织适应性和抗血凝固性等,这些特性都
为其作为医用材料在医疗卫生方面的应用奠定了基础。
高吸水性树脂在生物体中的适应性方面,已经有不少学者进行过相关的研究,结果
表明,某些合成和半合成的高吸水性物质,具有一定的生物适应性(本单位制得的高吸
水性树脂没有进行过此方面验证)。
五、高吸水性树脂的应用
目前高吸水性树脂已成功地应用于个人卫生护理产品等诸多领域,如妇女用卫生巾、
婴儿纸尿布、老年失禁纸尿布、纸床单等。高吸水性树脂在农艺园林方面的应用也已表
现出令人鼓舞的前景,高吸水性树脂的应用有利于节水灌溉、降低植物死亡率、提高土
壤保肥能力、提高作物发芽率等。超强吸水树脂在沙漠治理方面的应用更是具有无可估
由于高吸水性树脂是分子中含有亲水基团和疏水基团的交联型高分子电解质,当亲 水基团与水分子形成自由水合状态时,树脂的疏水基团因疏水相互作用而折向内侧,形 成局部疏水性的微粒结构,可使进入网络的水失去活动性。因此,高吸水性树脂的吸水 主要是靠内部的三维网络的作用,吸收大量的自由水储存在网状结构内,也就是说水分 子封闭在网络里,这是网络的物理吸附,只是水分子运动受到限制,而不是牢固的化学吸 附。
目前,我国西部 10 省(区、市)的 16 个荒漠化治理示范区,就已经应用了高吸水性 树脂作为水分保持剂,使得苗木成活率达到 98%。另外北京的 20 公里“申奥大道”绿色 长廊工程也采用了高分子吸水树脂作为水分保持剂。
7.高吸水性树脂详解

1 概述
自古以来,吸水材料的任务一直是由纸、 棉花和海绵以及后来的泡沫塑料等材料所承担 的。但这些材料的吸水能力通常很低,所吸水 量最多仅为自身重量的20倍左右,而且一旦受 到外力作用,则很容易脱水,保水性很差。
1
高吸水性树脂
60年代末期,美国首先开发成功高吸水性 树脂。这是一种含有强亲水性基团并通常具有 一定交联度的高分子材料。它不溶于水和有机 溶剂,吸水能力可达自身重量的500~2000 倍,最高可达5000倍,吸水后立即溶胀为水凝 胶,有优良的保水性,即使受压也不易挤出。 吸收了水的树脂干燥后,吸水能力仍可恢复。
27
高吸水性树脂
(b) 聚丙烯腈水解法 将聚丙烯腈用碱水解,再用甲醛、氢氧化 铝等交联剂交联成网状结构分子,也是制备高 吸水性树脂的有效方法之一。这种方法较适用 于腈纶废丝的回收利用。 如用氢氧化铝交联腈纶废丝的皂化产物, 最终产品的吸水率为自身重量的700倍。反应 历程如下:
28
高吸水性树脂
29
后将产物用碱水解后得到乙烯醇与丙烯酸盐的 共聚物,不加交联剂即可成为不溶于水的高吸 水性树酯。这类树脂在吸水后有较高的机械强 度,适用范围较广。
13
高吸水性树脂
(4)改性聚乙烯醇类 这类高吸水性树脂由聚乙烯醇与环状酸酐
反应而成,不需外加交联剂即可成为不溶于水 的产物。这类树脂由日本可乐丽公司首先开发 成功,吸水倍率为150~400倍,虽吸水能力较 低,但初期吸水速度较快,耐热性和保水性都 较好,故是一类适用面较广的高吸水性树脂。
25
高吸水性树脂
CH2 CH
+ CH2 CH R CH CH2
COOH
引发剂
CH2 CH CH2 CH CH2 CH CH2 CH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高吸水性树脂
高吸水性树脂(Super Absothent Polymer,简称SAP),是由低分子物质经聚合反应合成或由高分子化合物经化学反应制成,是一种经适度交联而具有三维网络结构的新型功能高分子材料,分子链上含有很多强亲水基团,能吸收相当于自身重量几百倍甚至几千倍的水,这是以往材料所不可比拟的。
高吸水性树脂不但吸水能力强,且保水能力非常高,吸水后无论加多大压力也不脱水【5】。
因此被广泛地应用到农业、林业、园艺等的土壤改良剂、卫生用品材料、工业用脱水剂、保鲜剂、防雾剂、医用材料、水凝胶材料等。
1高吸水树脂的结构
高吸水树脂是一种三维网络结构,它不溶于水而大量吸水膨胀形成高含水凝胶。
高吸水树脂的主要性能是具有吸水性和保水性。
要具有这种特性,其分子中必须含有强吸水性基团和一定的网络结构,即具有移动的交联度。
实验表明:吸水基团极性极性越强,含量越多,吸水率越高,保水性也越好。
而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱。
高吸水性树脂的微观结构因合成体系的不同而呈现出多样性[1]。
1.1离子型高吸水树脂结构
大多数高吸水性树脂是由分子链上含有强亲水性基团(如梭基、磺酸基、酞
图1 高吸水树脂的离子网络结构
胺基、轻基等)的三维网状结构所组成,如图1所示。
吸水时,首先是离子型亲水团在水分子的作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链的伸展受到制约,导致吸水率下降。
随着离解过程的进行,高分子链上的阴离子数增多,离子之间的静电斥力使树脂溶胀,同时,树脂内部的阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部。
当离子浓度差提供的驱动力不能克服聚合物交联构造及分子链间相互作用(如氢键)所产生的阻力时,达到饱和量。
1.2淀粉接枝型高吸水性树脂结构
日本三洋化成工业公司温品谦二等根据V on E. Cgruber等的方法探讨了淀粉接枝丙烯酸的聚合物结构,见图2如示【2】。
图2 淀粉-丙烯酸接枝物推定的结构
即淀粉的葡萄糖环在约2000个单元中用一个单元接枝丙烯酸。
每个葡萄糖环用两个以上的丙烯酸通过氢键沿淀粉生长构成聚合度约2000的侧链。
又因侧链部分体型结构化,并用氢氧化钠中和,侧链的钠盐部分从淀粉中游离出来,而侧链中未中和的部分通过氢键结合在淀粉主链上,并且可推定这种钠盐和酸是互相交换的。
因此,该类高吸水树脂的吸水能力可以看作主要是通过水中的高分子电解质的离子电荷相互引起伸展,与由交联结构(化学交联)及氢键而引起的阻止扩张相互作用所产生的结构。
2高吸水树脂的吸水机理
高吸水树脂吸水前高分子网络是固态网束,不存在离子对,与水接触后,其表面亲水性基团将和水分子水合,使高分子网束扩展而吸水的。
高吸水树脂的吸水速度取决于键合到耐盐性高吸水树脂网络上的亲水性功能基获取和传输水的能力。
在溶胀过程中,高吸水树脂表面首先发生水合和溶胀,之后水将逐渐从树脂表面向树脂内部渗透,在溶胀过程中,与水接触部分树脂网络上的亲水性可电离功能基发生电离,生成可自由移动的抗衡离子,由于阴阳离子间的静电作用,凝胶中的抗衡离子只能扩散至凝胶表面并通过静电作用吸附溶胀介质中带相反电荷的离子,在凝胶表面附近形成双电层,这样将在凝胶内外产生了渗透压差,促使溶胀介质中的水分子进入凝胶网络;同时,由于高吸水树脂网络上的功能基获取和传输水的作用,渗透入凝胶中的水又进一步与树脂内部的亲水基团形成氢键,使可电离功能基进一步电离,在凝胶内外形成更大的渗透压差,加速水分子向高分子网络中心渗透并将扩散所至部分转变成凝胶,如此持续进行直至溶胀介质扩散至树脂中心并使树脂全部转变成凝胶。
其后,随着树脂吸水过程的进行,双电层的渗透压逐渐降低,溶胀介质进入凝胶的动力逐渐减小,树脂的吸水速度逐渐减慢,最后达到吸水平衡。
由于凝胶中的抗衡离子浓度远大于溶胀介质中电解质的浓度,所以在高吸水树脂吸水过程中,溶胀介质中离子的进入存在明显的滞后效应,且进入凝胶中的电解质离子浓度较溶胀介质的初始浓度低。
3高吸水树脂结构与性能的关系
从上述对高吸水树脂的吸水机理的阐述可知,高吸水树脂的结构,包括链结构和聚集态结构,对该吸水树脂吸水性能,包括吸水机理、溶胀比及溶胀动力学过程等,有决定性的意义。
因此,从本质上理解高吸水树脂的结构与吸水性能的关系,对根据高吸水树脂的应用目的,从分子水平上设计和合成理想的高吸水树脂的具有决定性的意义。
3.1高吸水树脂的链结构与性能的关系
高吸水树脂的链结构包含高吸水树脂的单体组成、相对分子质量及其分布、键接方式、链的规整程度和共聚物类型,它们对高吸水树脂的吸水性能有着基础性的影响【4】。
高吸水树脂的单体组成直接决定其链的形状和性质,进而影响高吸水树脂的吸水性能。
有关单体组成对高吸水树脂吸水性能影响的研究比较深入,如丙烯酸型高吸水树脂其吸水率高,但耐盐性差,且具有pH敏感性;丙烯酰胺类高吸水
树脂吸水率较低,耐盐性好,不具有pH敏感性,却具有温度敏感性;将丙烯酸与丙烯酰胺共聚,可制得具有双重敏感性的高吸水树脂,而且该树脂的耐盐性及凝胶强度明显改善;将丙烯酸与含磺酸基等亲水性更强的乙烯基单体共聚,可以在很大程度上提高其吸水率和耐盐性。
总之,随着吸水树脂中单体组成的不同,树脂的吸水性能也会发生改变。
3.2高吸水树脂的高级结构与性能的关系
高吸水树脂的高级结构主要指高吸水树脂网络的空间结构,其内容包括高分子链间的缠结、交联、网孔大小等超分子结构的各个方面,高吸水树脂的高级结构直接决定着高吸水树脂的吸水能力和吸水动力学过程,目前对高吸水树脂的高级结构与吸水性能关系的研究进行得比较深入,并逐渐的形成了相关理论。
如Sakata研究发现高吸水性树脂的吸水性能与其微观结构有关,并发现高吸水性树脂的微观结构因合成体系不同而呈现多样性:淀粉接枝丙烯酸的海岛型结构,纤维素接枝丙烯酰胺部分水解的蜂窝状结构,部分水解聚丙烯酰胺的粒状结构【3】。
吉武敏彦认为,在聚乙烯醇-丙烯酸盐嵌段共聚物中,聚丙烯酸盐就像无数的“小岛”分布在聚乙烯醇的“大海”中。
聚乙烯醇使聚丙烯酸盐不再溶于水,当聚丙烯酸盐吸水溶胀时,分子伸展,使吸水凝胶具有高强度。
而当聚丙烯酸盐失水时,聚乙烯醇又对失水起着阻挡层的作用。
Chen运用SEM透镜观测了他们所制备快速吸水树脂的结构,发现在该树脂中存在相互连通的毛细孔,并认为正是这种相互连通的毛细孔有效的缩短了溶胀介质在凝胶中的扩散距离,从而赋予树脂较快吸水的能力。
参考文献
【1】陈振斌,马应霞,张安杰,董方.高吸水树脂结构与性能的关系及结构表征方法研究进展.化学世界,2009年 10期.
【2】沈朴.高吸水性树脂的发展、结构及吸水理论研究现状.榆林学院学报,2010年 02期.
【3】肖春妹,林松柏,李云龙.高吸水性树脂的制备及结构性能的研究进展.
福建化工,2002年 04期.
【4】王爱勤,张俊平。
有机-无机复合高吸水性树脂。
北京:科学出版社,2006. 【5】李建颖。
高吸水与高吸油性树脂.北京:化学工业出版社,2005.。