鲁教版初二数学下学期期末测试题
【鲁教版】初二数学下期末试卷带答案

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染) 有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数; ②在此次统计中,空气质量为优良的天数占45; ③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差. 上述结论中,所有正确结论的序号是( ) A .①B .①③C .②③D .①②③3.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.24.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大5.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <26.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限7.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③8.一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y (L )与时间x (min )之间的关系如图所示,则下列说法错误的是( )A .每分钟的进水量为5升B .每分钟的出水量为3.75升C .OB 的解析式为y =5x (0≤x≤4)D .当x =16时水全部排出9.如图,在ABC ∆中,5,60AC C =∠=︒,点D E 、分别在BC AC 、上,且2,CD CE ==将CDE ∆沿DE 所在的直线折叠得到FDE ∆(点F 在四边形ABDE 内),连接,AF 则2AF =( )A .7B .8C .9D .1010.已知x ,y 为实数,y x 323x 2=-+-+,则y x 的值等于( )A .6B .5C .9D .811.如图,已知正方形ABCD 的边长为4,点Р是对角线BD 上一动点(不与D ,B 重合),PF CD ⊥于点F ,PE BC ⊥于点E ,连接AP ,EF .则下列结论错误的是( )A .2PD EC =B .AP EF =,且AP EF ⊥C .四边形PECF 的周长是8D .12BD EF AB ≤< 12.下列命题为假命题的是( )A .直角三角形斜边上的中线等于斜边的一半.B .两边及其一边的对角对应相等的两个三角形全等.C .等边三角形一边上的高线与这边上的中线互相重合.D .到线段两端点距离相等的点在这条线段的垂直平分线上.二、填空题13.若一组数据4,a ,7,8,3的平均是5,则这组数据的方差是_______.14.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.15.体育训练课上,小健同学与小宇同学在AB 之间进行往返蛙跳训练.小健先出发10s ,小宇随后出发.当小宇恰好追上小健时,王老师立即飞奔3秒到小宇身边对他进行指导,一分钟...后小宇继续前行,但速度减为原来的12,小健和小宇相距的路程y (米)与小健出发时间t (秒)的关系如图所示,则当小宇再次出发时,两人还有__________秒二次相遇.16.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.17.如图,在平面直角坐标系xOy 中,点A 的坐标为(10,8),过点A 作AB x ⊥轴于点B ,AC y ⊥轴于点C ,点D 在AB 上.将△CAD 沿直线CD 翻折,点A 恰好落在x 轴上的点E 处,则点D 的坐标为_______.18.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.19.3x -在实数范围内有意义,则 x 的取值范围是_______ .20.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.三、解答题21.学校午餐采用自助的形式,并倡导学生和教师“厉行勤俭节约,践行光盘行动” .学校共有6个年级,且各年级的人数基本相同.为了解午餐的浪费情况,从这6年级中随机抽取了A、B两个年级,进行了连续四周(20个工作日)的调查,得到这两个年级每天午餐浪费饭菜的质量,以下简称“每日餐余质量”(单位:kg),并对这些数据进行了整理、描述和分析.下面给出了部分信息.a.A年级每日餐余质量的频数分布直方图如下(数据分成6组:≤≤≤≤≤≤:<<<<<<x x x x x x02,24,46,68,810,1012)b.A年级每日餐余质量在68≤<这一组的是:6.1,6.6,7.0,7.0,7.0,7.8xc.B年级每日餐余质量如下:1.4,2.8,6.9,7.8,1.9,9.7,3.1,4.6,6.9,10.8,6.9,2.6,7.5,6.9,9.5,7.8,8.4,8.3,9.4,8.8d.A、B两个年级这20个工作日每日餐余质量的平均数、中位数、众数如下:年级平均数中位数众数A 6.4m7.0B 6.67.2n(1)m = ____________,n = _____________.(2)A、B这两个年级中,“厉行勤俭节约,践行光盘行动”做的较好的年级是______.(3)结合A、B这两个年级每日餐余质量的数据,估计该学校(6个年级)一年(按240个工作日计算)的餐余总质量.22.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环 中位数/环 众数/环 方差 甲 a77 1.2 乙7b84.2(1)写出表格中a ,b 的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理. 23.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24.如图,四边形ABCD ,//BC AD ,P 为CD 上一点,PA 平分BAD ∠且BP AP ⊥. (1)若80BAD ︒∠=,求ABP ∠的度数; (2)求证:=+BA BC AD ;(3)设3BP a =,4AP a =,过点P 作一条直线,分别与AD ,BC 所在直线交于点E 点F .若AB EF =,求AE 的长(用含a 的代数式表示).25.先化简,再求值:22111121x x x x x x --÷+--+,其中x =3+1. 26.如图,某人为了测量小山顶上的塔顶离地面的高度CD ,他在山下的点A 处测得塔尖点D 的仰角为45︒,再沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为60︒,求CD 的高度(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.C解析:C 【分析】根据折线统计图的数据,逐一分析即可. 【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.3.D解析:D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.4.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.5.D解析:D【分析】根据正比例函数的大小变化规律判断k的符号.【详解】解:根据题意,知:y随x的增大而减小,则k<0,即m﹣2<0,m<2.故选:D.【点睛】本题考查了一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.B解析:B【分析】先根据二元一次方程组无解,得出k的值,再利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,进而可得出一次函数322y x=-的图象不经过第二象限.【详解】解:∵(7)2(31)5 y k xy k x=--⎧⎨=-+⎩∴(7-k)x-2=(3k-1)x+5(7-k)x-(3k-1)x=7(7-k-3k+1)x=7(8-4k)x=7∵二元一次方程组无解∴8-4k=0解得:k=2∴将k=2代入一次函数32y kx =- 得322y x =-∵k=2﹥0,b=32-<0 ∴一次函数322y x =-的图象不经过第二象限 故选:B 【点睛】本题考查了一次函数图象与系数的关系,牢记“k ﹥0,b <0⇔y =kx +b 的图象在一、三、四象限”是解题的关键.7.A解析:A 【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可. 【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A . 【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.8.D解析:D 【分析】根据题意和函数图象可知每分钟的进水量和出水量,继而即可求解 【详解】 解:由题意可得,每分钟的进水量为:20÷4=5(L ),A 说法正确,不符合题意; ∴OB 的解析式为y =5x (0≤x≤4);C 说法正确,不符合题意;每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L ),B 说法正确,不符合题意; 30÷3.75=8(min ),8+12=20(min ),∴当x =20时水全部排出.D 说法错误,符合题意;故选:D .【点睛】本题考查一次函数的应用,解题的关键是明确题意和解读函数,找出所求问题需要的条件,利用数形结合的思想.9.A解析:A【分析】根据折叠的性质和勾股定理可以得到解答.【详解】解:如图,过F 作FG ⊥AC 于G ,则在RT △EGF 中,∠GEF=180°-2∠CED=60°,∴∠GFE=90°-∠GEF=30°,∴GE=112EF =,33GE = ∴AG=AC-CE-GE=5-2-1=2, ∴在RT △AGF 中,22222237AF AG FG =+=+=,故选A .【点睛】本题考查三角形的折叠,熟练掌握折叠和直角三角形的性质及勾股定理的应用是解题关键.10.C解析:C【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】解:依题意有3030x x -≥⎧⎨-≥⎩,解得3x =, ∴2y =,∴239y x ==.故选:C .【点睛】本题主要考查了二次根式有意义的条件,正确把握相关性质是解题关键.11.A解析:A【分析】由三个直角的四边形是矩形,由此判断四边形PECF 是矩形,得到EC PF =,再结合正方形的性质,解得2PD EC =,由此判断A ;过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,由角平分线的性质得到PN PE =,继而结合勾股定理证明AP EF =、证明四边形PEFM 是平行四边形,即可得到EF PM AP ==,设BE x =,结合勾股定理证明222PM A M P A +=,即可判断B ;根据等腰直角三角形的性质计算四边形PECF 的周长即可判断C ;设BE x =,由勾股定理解得EF 的长,再结合04x ≤≤,解得EF 与BD AB 、的数量关系即可判断D .【详解】解:A. ,PE BC PF CD ⊥⊥90PEC PFC ∴∠=∠=︒90C ∠=︒∴四边形PECF 是矩形EC PF ∴=正方形ABCD 中45PDF ∠=︒22PD PF EC ∴==故A 错误;B.过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,BD 平分ABC ∠,PN AB ⊥,PE BC ⊥PN PE ∴=222222,AP AN PN EF EC PE =+=+且,AN EC PN PE ==AP EF ∴=//,//PM EF PE CD∴四边形PEFM 是平行四边形EF PM AP ∴==设BE x =,则,42PE FC MF x DM x ====-,4EC PF x ==-AP EF PM ===222216(42)AD MD AM x +==+-222AP PM AM +=AP PM ∴⊥AP EF ∴⊥故B 正确;C. BPE 为等腰直角三角形PE BE ∴=4PE PF BE EC BC ∴+=+==故四边形PECF 的周长为2()8PE PF +=, 故C 正确;D.设BE x =EF ∴==04x ≤≤EF ∴≥12EF BD ∴≥ 4EF <EF AB ∴<12BD EF AB ∴≤< 故D 正确,故选:A .【点睛】本题考查四边形的综合题,涉及勾股定理、矩形的判定与性质、正方形的判定与性质、平行四边形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 12.B解析:B【分析】根据直角三角形斜边的中线的性质,三角形全等的判定,等边三角形的性质以及线段垂直平分线的性质对各选项分析判断即可得解.【详解】A 、直角三角形斜边上的中线等于斜边的一半,是真命题,不符合题意;B 、两边及其一边的对角对应相等的两个三角形全等,是假命题,符合题意.C 、等边三角形一边上的高线与这边上的中线互相重合,是真命题,不符合题意;D 、到线段两端点距离相等的点在这条线段的垂直平分线上,是真命题,不符合题意;故选:B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.【分析】根据平均数求出a 再根据方差的公式计算得到答案【详解】∵数据4783的平均是5∴∴这组数据的方差是=故答案为:【点睛】此题考查根据平均数求某一数据方差的计算公式熟记方差的计算公式是解题的关键 解析:225【分析】根据平均数求出a ,再根据方差的公式计算得到答案.【详解】∵数据4,a ,7,8,3的平均是5,∴5547833a =⨯----=,∴这组数据的方差是22221(45)2(35)(75)(85)5⎡⎤-+⨯-+-+-⎣⎦=225, 故答案为:225. 【点睛】此题考查根据平均数求某一数据,方差的计算公式,熟记方差的计算公式是解题的关键. 14.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy 的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 83【解析】【分析】由中位数及众数的定义和给定的条件求出x ,y 的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差.【详解】由一组数据1,2,x ,y ,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=. ∴这组数据的平均数为3;这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】 本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 15.【分析】如图由可得小健的速度由可得小宇的速度再判断当时小健从到达点返回点计算此时小宇与点的距离为:再计算路程除以二人的速度和从而可得答案【详解】解:如图标注字母由可得小健的速度由可得小宇的速度由函数 解析:732.11【分析】 如图,由()10,10G ,可得小健的速度11/,v m s =由()250N ,, 可得小宇的速度25/,3v m s = 再判断当120t s =时,小健从到达B 点,返回A 点,计算此时小宇与B 点的距离为:190,3m 再计算路程除以二人的速度和,从而可得答案. 【详解】解:如图,标注字母, 由()10,10G , 可得小健的速度1101/,10v m s == 由()250N ,, 可得小宇的速度22515/,153v m s ⨯== 由函数图像DE 段,EF 段的含义可得:当120t s =时,小健从到达B 点,返回A 点,1201120,AB m ∴=⨯= ∴ 小宇跳了:()5517018+1101860,363m ⨯--⨯= 此时小宇距B 点:170190120,33m -=当小宇再次出发到相遇,还需要()1901906380732312088=32+=32+=53111111+16s -+⨯ 故答案为:732.11【点睛】本题考查的是函数图像及从函数图像中获取信息,掌握函数图像上点的横纵坐标的含义是解题的关键. 16.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3. 故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.17.【分析】如详解中图先作出△CDE ;再由折叠性质得到CE=CA=10DE=DA=8-m 利用勾股定理计算出OE=6则EB=4在Rt △DBE 中利用勾股定理得到(8-m )2=m2+42然后解方程求出m 即可得解析:(10,3)【分析】如详解中图,先作出△CDE;再由折叠性质得到CE=CA=10,DE=DA=8-m,利用勾股定理计算出OE=6,则EB=4.在Rt△DBE中利用勾股定理得到(8-m)2=m2+42.然后解方程求出m即可得到点D的坐标.【详解】解:如图,作△CDE.设DB=m.由题意可得,OB=CA=10,OC=AB=8,∵△CED与△CAD关于直线CD对称,∴CE=CA=10,DE=DA=8-m,在Rt△COE中,22108,∴EB=10-6=4.在Rt△DBE中,∠DBE=90°,∴DE2=DB2+EB2.即(8-m)2=m2+42.解得m=3,∴点D的坐标是(10,3).故答案为(10,3).【点睛】本题考查了作图以及利用折叠的性质和勾股定理解直角三角形,掌握相关性质是解答此题的关键.18.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC 交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.19.【分析】根据二次根式的性质被开方数大于等于0列出不等式即可求解【详解】由题意得:解得:故答案为:【点睛】本题主要考查了二次根式熟练掌握二次根式的性质并列出不等式是解决本题的关键解析:3x≥【分析】根据二次根式的性质,被开方数大于等于0,列出不等式即可求解.【详解】由题意得:30x-解得:3x故答案为:3x.【点睛】本题主要考查了二次根式,熟练掌握二次根式的性质并列出不等式是解决本题的关键.20.8【分析】过B点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B点作于点与交于点作点E 关于AM 的对称点G 连结GD 则ED=GD 当点BDG 三点在 解析:8【分析】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知 BD DE +的最小值是线段BF 的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,则ED=GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.三、解答题21.(1)6.8;6.9.(2)A ;(3)9360(kg ).【分析】(1)判断出A 组样本容量,根据中位数的定义和A 年级在68x ≤<这一组的数值即可求解;根据中位数的定义即可得出B 组统计的众数;(2)根据平均数和中位数进行比较,即可得出结论;(3)用A 、B 两个年级的平均数乘以6再乘以天数即可求解.【详解】(1)解:由A 组的直方图可得样本容量为1+2+5+6+4+2=20,故中位数为排序后第10、11个数的中位数,又因为这两个数都落在68x ≤<这一组,所以第10、11个数分别是6.6、7.0, 故 6.67.0 6.82m +==, 在B 组数据中6.9出现的次数最多,故众数n=6.9;(2)从平均数、中位数看,A 组学生做的比较好,故答案为:A ;(3)6.4 6.6624093602+⨯⨯=(kg ). 答:该学校一年的餐余总质量约为9360kg .【点睛】本题考查平均数、中位数、众数,直方图、用样本估计总体等知识,综合性较强,根据所学知识理解题意好题意,并结合相关统计量分析是解题关键.22.(1)7,7.5;(2)甲,理由略.【分析】(1)利用加权平均数的计算公式、中位数的概念解答即可;(2)根据方差的性质判断即可.【详解】解:∵甲队员的射击成绩为:5,6,6,7,7,7,7,8,8,9,∴甲队员的射击成绩平均数为:a=(5+6×2+7×4+8×2+9)÷10=7∵乙队员的射击成绩为:3,6,4,8,7,8,7,8,10,9,从小数到大数依次排列为:3,4,6,7,7,8,8,8,9,10,∴乙队员射击成绩的中位数为:b=7.5∴a=7, b=7.5(2)从方差的角度看,选派甲队员去参赛,理由是:从表中可知:S 甲2=1.2,S 乙2=4.2,∴S 甲2<S 乙2∴甲队员的射击成绩较稳定,∴选甲队员去参赛【点睛】本题考查的是加权平均数、中位数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.23.(1)()13025y x x =-≥;(2)当x =8时,可获得的最大利润为2510元.【分析】(1)根据乙产品的利润和数量之间的关系,可得出y 与x 之间的函数关系式;(2)根据每天甲、丙两种产品的产量相等得到m 与W 之间的关系式,再利用一次函数的性质求解即可.【详解】解:(1)在乙每件120元获利的基础上,每增加1件,当天平均每件利润减少2元,则乙产品的每件利润为120-2(x-5)=130-2x .∴y =130﹣2x (x ≥5).(2)设该企业安排m 人生产甲产品,则安排2m 人生产丙产品,安排(65-3m )人生产乙产品,依题意,得:W=15×2m+30×2m+100(65-3m)=-210m+6500,∵2≤65-3m≤10, 解得:118212≤≤m , 又∵k=-210<0, ∴W 随m 的增大而减小,∵m 是非负整数,∴取m=19时,W 最大值=-210×19+6500=2510,∴x=65-3m=65-57=8(人),答:安排19人生产甲产品,安排38人生产丙产品,安排8人生产乙产品时,可获得的最大利润为2510元.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,理清题中的数量关系. 24.(1)50︒;(2)证明见解析;(3)52a 或3910a 【分析】(1)根据已知条件PA 平分BAD ∠且BP AP ⊥以及三角形内角和,即可求得ABP ∠的度数;(2)延长BP 交AD 的延长线于点G ,由已知条件即可证明ABP AGP ≌,即可得到BA GA =,BP GP =,进而即可证明BCP GDP △≌△,即可得到=BC GD ,通过相等关系,即可证明=+BA BC AD ;(3)根据题意可知,可以分两种情况进行讨论,分别为:①当//AB EF 时,延长BP 交AD 的延长线于点G ,可知此时四边形ABFE 是平行四边形,可以求得AB 的长度,由(2)中证明的ABP AGP ≌,BCP GDP △≌△,可得BA GA =,BP GP =,=CP DP ,=BC GD ,进而可以证明CFP ≌DEP ,可得CF DE =,进而通过线段的等量关系求得AE 的长;②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,则CF DE =,则可得5BF AE BC AD AB a +=+==,由ABP △和梯形ABCD 的面积关系可得BH 的长度,通过勾股定理即可得到AH 的长度,通过证明Rt BHA △≌Rt FIE △,可得75AH EI a ==,进而通过等量关系即可得到AE 的长.【详解】(1)∵PA 平分BAD ∠,BP AP ⊥, ∴11804022BAP DAP BAD ∠=∠=∠=⨯︒=︒,90APB ∠=︒, ∴在Rt ABP 中,180180409050ABP BAP APB ∠=︒-∠-∠=-︒-︒=︒; (2)如图1,延长BP 交AD 的延长线于点G ,∵BP AP ⊥,PA 平分BAD ∠, ∴90APB APG ∠=∠=︒,BAP GAP ∠=∠,在ABP △和AGP 中,BAP GAP ∠=∠,AP AP =,APB APG ∠=∠, ∴ABP AGP ≌,∴BA GA =,BP GP =, ∵//BC AD ,∴CBP DGP ∠=∠,在BCP 和GDP △中,CBP DGP ∠=∠,BP GP =,CPB DPG ∠=∠,∴BCP GDP △≌△,∴=BC GD ,∴BA GA AD GD AD BC ==+=+;(3)分两种情况讨论,①当//AB EF 时,如图2,延长BP 交AD 的延长线于点G ,∴由已知条件可知,此时四边形ABFE 是平行四边形,∴AE BF =,∵3BP a =,4AP a =,BP AP ⊥,∴在Rt ABP 中,222AB BP AP =+,解得,5AB a =,由(2)可知,ABP AGP ≌,∴5BA GA a ==,3BP GP a ==,由(2)可知,BCP GDP △≌△,∴=CP DP ,=BC GD ,∵//BC AD ,∴BFP GEP ∠=∠,在CFP 和DEP 中,CFP DEP ∠=∠,=CP DP ,CPF DPE ∠=∠,∴CFP ≌DEP ,∴CF DE =,∵=BC GD ,∴BC CF GD DE +=+,∴BF EG =,又∵四边形ABFE 是平行四边形,∴BF AE =,∴BF AE EG ==,∴25AG AE a ==, ∴52AE a =;图2②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,∴CF DE =,∴BF AE BF AD DE BF AD CF BC AD +=++=++=+,∴5BF AE BC AD AB a +=+==,在Rt ABP 中,2162ABP S BP AP a =⋅=△, 由(2)可知,梯形ABCD 的面积2212ABP S a ==△,梯形ABCD 的面积2122BC AD BH a +=⨯=, 解得,245BH a =, 在Rt ABH 中,2275AH AB BH a =-=, ∵//BC AD ,∴BH FI =,BF HI =,∵在Rt BHA △和Rt FIE △中,BH FI =,AB EF =,∴Rt BHA △≌Rt FIE △, ∴75AH EI a ==, ∴2()BF AE BF AH EI HI BF AH +=+++=+, ∴2()BF AE BF AH +=+,∴1110BF a =, ∴3910AE AB BF a =-=.图3 【点睛】本题考查了平行线的性质、角平分线的性质、勾股定理、全等三角形的证明和性质、三角形面积、梯形面积、线段的和差、三角形内角和等知识,解答本题的关键是正确的作出辅助线,证明三角形全等.25.11x x -+,33. 【分析】 先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】解:22111121x x x x x x --÷+--+ 21(1)1(1)(1)1x x x x x x -=-++--111x x x =-++ 11x x -=+, 当31x =时,原式311311+-=++。
【鲁教版】八年级数学下期末试卷(及答案)

一、选择题1.下列命题是假命题的是()A.三角形的外角和是360°B.线段垂直平分线上的点到线段两个端点的距离相等C.有一个角是60°的等腰三角形是等边三角形D.有两边和一个角对应相等的两个三角形全等2.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形 D.两组对角分别相等的四边形是平行四边形3.如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是()A.7 B.3 C.3.5 D.44.甲乙两地相距60km,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h,若设此轮船在静水中的速度为x km/h,可列方程为()A.6060855x x+=+-B.120120855x x+=+-C.6058x+=D.6060855x x+=+-5.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为()A.10 B.15 C.18 D.206.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x元,则可列出方程为()A.420420200.5x x-=-B.420420200.5x x-=+C .420420200.5x x-=+ D .420200.5x =- 7.若22()x y A x y -+⋅=-,则代数式A 等于( ) A .x y --B .-+x yC .x y -D .x y + 8.下列因式分解正确的是( ) A .x 2+1=(x +1)2B .x 2+2x ﹣1=(x ﹣1)2C .2x 2﹣2=2(x +1)(x ﹣1)D .x 2﹣x +2=x (x ﹣1)+2 9.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an10.如图,已知ABC 和A B C '''关于点O 成中心对称,则下列结论错误的是( ).A .ABC ABC '''∠=∠B .AOB A OB ''∠=∠C .AB A B ''=D .OA OB '=11.已知不等式()33a x a -<-的解集是1x >-,则a 的取值范围是( )A .3a >B .3a ≥C .3a <D .3a ≤12.如图,在ABC 中,AB =AC =6,且15ABC S =△,AD ,BE 是ABC 的两条高线,P 是AD 上一动点,则PC PE +的最小值是( )A .4B .5C .6D .8二、填空题13.已知平行四边形ABCD 中,∠A 的平分线交BC 于点E ,若AB =AE ,则∠BAD =_____度.14.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为__________.15.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______. 16.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.17.分解因式:2312ax a -=____________________.18.如图,在正方形ABCD 中,点M 是边CD 的中点,那么正方形ABCD 绕点M 至少旋转_________度与它本身重合.19.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________. 20.如图,在ABC 中,AE BC ⊥于点,E BD AC ⊥于点D .点F 是AB 的中点,连接,DF EF ,设,DFE x ACB y ∠=∠=︒︒,求y 关于x 的函数关系式_________.三、解答题21.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF求证:AC 、EF 互相平分.22.若甲做400个机器零件与乙做300个机器零件的时间相等,又知每小时甲比乙多做10个机器零件,求甲,乙每小时各做多少个机器零件?23.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.24.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;25.已知点()39,210A m m --,分别根据下列条件解决问题:(1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.26.如图,已知四边形ABCD .(1)在边BC 上找一点P ,使得AP +PD 的值最小,在图①中画出点P ;(2)请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹): ①在线段AC 上找一点M ,使得BM =CM ,请在图②中作出点M ;②若AB 与CD 不平行,且AB =CD ,请在线段AC 上找一点N ,使得△ABN 和△CDN 的面积相等,请在图③中作出点N .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形外角和的性质即可对A进行判断;根据垂直平分线的性质即可对B进行判断;根据等边三角形的判定即可对C进行判断;根据三角形全等的证明即可对D进行判断;【详解】A、三角形的外角和为360°,故A正确;B、垂直平分线上的点到线段两端的距离相等,故B正确;C、有一个角是60°的等腰三角形是等边三角形,故C正确;D、由两边和它们的夹角对应相等的两个三角形全等,故D错误;故选:D.【点睛】本题考查了命题与定理,命题的真假是就命题的内容而言,正确掌握定理是解题的关键.2.A解析:A【分析】根据平行四边形的判定定理解答即可.【详解】由已知可得AO=CO,BO=DO,∴四边形ABCD是平行四边形,依据是:对角线互相平分的四边形是平行四边形,故选:A.【点睛】此题考查平行四边形的判定定理,熟练掌握平行四边形的五种判定定理并运用解决问题是解题的关键.3.D解析:D【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB 是解决问题的关键.4.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 5.D解析:D【分析】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可.【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++, 解得x=20,且x=20是所列方程的根,故选D .【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.6.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.7.A解析:A【分析】利用平方差公式将等号右边写成()()x y x y +-,即可求解.【详解】解:∵()()22()y x y A x y x y x -+=+⋅--=, ∴A x y =--,故选:A .【点睛】本题考查平方差公式,掌握平方差公式是解题的关键.8.C解析:C【分析】根据因式分解的定义及方法对各项分解得到结果,即可作出判断.【详解】解:A 、原式不能分解,不符合题意;B 、原式不能分解,不符合题意;C 、原式=2(x 2﹣1)=2(x +1)(x ﹣1),符合题意;D 、原式不能分解,不符合题意,故选:C .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 9.B解析:B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.10.D【分析】根据三角形和中心对称的性质求解,即可得到答案.【详解】∵ABC 和A B C '''关于点O 成中心对称∴ABC A B C '''∠=∠AOB A OB ''∠=∠AB A B ''=OA OA '=OB OB '=∴OA OB '=错误,其他选项正确故选:D .【点睛】本题考查了三角形和中心对称图形的知识;解题的关键是熟练掌握三角形和中心对称图形的性质,从而完成求解.11.C解析:C【分析】根据已知解集得到a-3为负数,即可确定出a 的范围.【详解】解:不等式(a-3)x <3-a 的解集为x >-1,∴a-3<0,解得a <3.故选:C .【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解题关键.12.B解析:B【分析】连接PB ,根据等腰三角形的性质和垂直平分线的性质计算即可;【详解】连接PB ,∵AB AC =,BD CD =,∴AD 是等腰△ABC 底边BC 边的中垂线,∴PB PC =,∴PC PE PB PE +=+,又PB PE BE +≥,∴B ,P ,E 三点共线时,PB PE +最小,即等于BE 的长,又∵△1152ABC S AC BE ==,6AC =, ∴5BE =;故答案选B .【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质,结合轴对称的性质计算是解题的关键. 二、填空题13.120【分析】由平行四边形的性质和已知条件易证△ABE 为等边三角形则∠BAE =60°进而可求出∠BAD 的度数【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠EAD =∠AEB ∵AE 平分∠BAD解析:120【分析】由平行四边形的性质和已知条件易证△ABE 为等边三角形,则∠BAE =60°,进而可求出∠BAD 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAD =∠AEB ,∵AE 平分∠BAD ,∴∠BAE =∠EAD ,∴∠BAE =∠AEB ,∴AB =EB ,∵AB=AE,∴AB=AE=BE,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAD=2∠BAE=120°,故答案为:120.【点睛】本题主要考查了平行四边形的性质、平行线的性质、角平分线的定义以及等边三角形的判定和性质,正确证明△ABE是等边三角形是解题关键.14.60°【分析】先根据平行四边形的性质得出∠A+∠B=180°∠A=∠C再由∠B=2∠A可求出∠A的度数进而可求出∠C的度数【详解】解:如下图∵四边形ABCD是平行四边形∴∠A+∠B=180°∠A=∠解析:60°【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【详解】解:如下图,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故答案为:60°.【点睛】本题考查的是平行四边形的性质.熟知平行四边形的对角相等,邻角互补是解答此题的关键.15.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.【详解】 解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 16.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.17.【分析】先提取公因式再用平方差公式完成因式分解【详解】故答案为:【点睛】本题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键注意要分解彻底解析:()()322a x x +-【分析】先提取公因式3a ,再用平方差公式完成因式分解.【详解】2312ax a -23(4)a x =-3(2)(2)a x x =+-.故答案为:3(2)(2)a x x +-.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.注意要分解彻底.18.360【分析】根据旋转对称图形的定义即可得【详解】点M 是边CD 的中点不是正方形ABCD 的中心正方形ABCD 绕点M 至少旋转360度才能与它本身重合故答案为:360【点睛】本题考查了旋转对称图形掌握理解解析:360【分析】根据旋转对称图形的定义即可得.【详解】点M 是边CD 的中点,不是正方形ABCD 的中心,∴正方形ABCD 绕点M 至少旋转360度才能与它本身重合,故答案为:360.【点睛】本题考查了旋转对称图形,掌握理解定义是解题关键.19.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求 解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 20.y=x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°根据直角三角形的性质得到AF=DFBF=EF 根据等腰三角形的性质得到∠DAF=∠ADF ∠EFB=∠BEF 于是得到结论【详解】解:∵AE ⊥解析:y=12-x+90【分析】由垂直的定义得到∠ADB=∠BEA=90°,根据直角三角形的性质得到AF=DF,BF=EF,根据等腰三角形的性质得到∠DAF=∠ADF,∠EFB=∠BEF,于是得到结论.【详解】解:∵AE⊥BC于点E,BD⊥AC于点D;∴∠ADB=∠BEA=90°,∵点F是AB的中点,∴AF=DF,BF=EF,∴∠DAF=∠ADF,∠EBF=∠BEF,∴∠AFD=180°-2∠CAB,∠BFE=180°-2∠ABC,∴x°=180°-∠AFD-∠BFE=2(∠CAB+∠CBA)-180°=2(180°-y°)-180°=180°-2y°,∴y=12-x+90,故答案为:y=12-x+90.【点睛】本题考查了直角三角形的性质,等腰三角形的性质,三角形的内角和,一次函数,正确的识别图形是解题的关键.三、解答题21.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.22.甲每小时做40个机器零件,乙每小时做30个机器零件.【分析】首先设乙每小时做x 个机器零件,则甲每小时做()10x +个机器零件,再根据关键词语:“甲做400个机器零件与乙做300个机器零件的时间相等,又知每小时甲比乙多做10个机器零件,”列出方程即可.【详解】解:设乙每小时做x 个机器零件,则甲每小时做()10x +个机器零件, 由题意得40030010x x=+,解得30x =, 经检验得:30x =是原方程的解,则甲每小时做301040+=(个).答:乙每小时做30个机器零件,则甲每小时做40个机器零件.【点睛】本题考查分式方程的应用,解题的关键是正确理解题意,找出等量关系.23.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.【详解】解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒,2185D ∴∠=∠+∠=︒.【点睛】此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.24.(1)见解析;A 1(﹣4,1);(2)见解析,B 2(﹣1,5)【分析】(1)直接利用平移的性质,将A 、B 、C 三点往左平移5个单位,则A 、B 、C 各个顶点对应的横坐标分别减5即可得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)先把点A 、B 、C 向左平移5个单位,得到A 1、B 1、C 1,再顺次连结A 1B 1,B 1C 1,C 1A 1,如图所示:△A 1B 1C 1,即为所求,点A 1(﹣4,1)(2)连结OA ,OB ,OC ,先把点A 、B 、C 绕点O 逆时针方向旋转90,得到A 2、B 2、C 2,再顺次连结A 2B 2,B 2C 2,C 2A 2,如图所示:△A 2B 2C 2,点B 2(﹣1,5).【点睛】本题考查了平移、旋转图形的变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.(1)m=5;(2)()3,2A -【分析】(1)根据点A 在x 轴上可知点A 的纵坐标为0,从而可以解答本题;(2)点A 在第四象限,并且m 为整数,从而可以求得点A 的坐标;【详解】解:根据题意,∵点()39,210A m m --在x 轴上,∴2100m -=,解得:5m =;()2点()39,210A m m --在第四象限.390,2100,m m ->⎧∴⎨-<⎩①② 解不等式①得3m >,解不等式②得5m <,所以,m 的取值范围是:35m << m 为整数4m ∴=,()3,2A ∴-;【点睛】坐标与图形的性质,解题的关键是明确每一问提供的信息,能正确知道与坐标之间的关系,灵活变化,求出所求问题的答案.26.(1)见解析;(2)①见解析;②见解析.【分析】(1)作A点关于BC的对称点A′,连接DA′交BC于P点,利用PA=PA′,则PA+PD=DA′,根据两点之间线段最短可判断P点满足条件;(2)①作BC的垂直平分线交AC于M;②BA和CD的延长线相交于O点,作∠BOC的平分线交AC于N.【详解】解:(1)如图①,点P为所作;(2)①如图①,点M为所作;②如图②,点N为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了最短路径问题.。
鲁教版初二数学第二学期期末考试题-学生用卷

鲁教版初二数学第二学期期末考试题-学生用卷(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--初二下数学期末考试题(时间:120分钟总分: 120分)题号 一 二 三 四 总分 得分一、选择题(本大题共8小题,共分)1. 若a >a ,a <0,则下列四个不等式中成立的是( )A. aa >aaB. aa <aaC. a −a <a −aD. a +a <a +a2. 下列方程组中,是二元一次方程组的是( )A. {a +2a =13a −a =2B. {2a +3a =5a −a =1C. {a +a =2aa =−3D. {a =3a −22a−1=03. 二元一次方程组{2a +a =5a 2a −a =7a的解满足方程13a −2a =5,那么k 的值为( ) A. 35B. 53C. −5D. 14. 下列说法正确的是( )A. 在同一平面内两条直线被第三条直线所截,同旁内角互补B. 如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等C. 两个相等的角一组边平行,那么另一组边也平行D. 一条直线垂直于平行线中的一条,也一定垂直于另一条5. 如图,已知aa //aa .则角a 、a 、a 之间关系为()A. a +a +a =180∘B. a −a +a =180∘C. a+a−a=180∘D. a+a+a=360∘6.已知点a(a−1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C. D.7.在aa△aaa中,∠aaa=90∘,aa=aa,CD是斜边AB的中线,若aa=2√2,则点D到BC的距离为()A. 1B. √2C. 2D. √228.如图,△aaa中,∠a=90∘,aa=aa,AD平分∠aaa交BC于点D,aa⊥aa,垂足为E,且aa=6aa,则△aaa的周长为()A. 4cmB. 6cmC. 8cmD. 10cm二、填空题(本大题共8小题,共分)2a−3<0的整数解为______ .9.不等式组{a+1≥03a+a=1+3a的解a+a>0,则m的取值范围是10.已知方程组{a+3a=1−a______ .11.如图△aaa中,∠a:∠a=1:2,aa⊥aa于E,且∠aaa=75∘,则∠a= ______ .12.13.如图,已知△aaa中,∠a=65∘,∠a=45∘,AD是∠aaa的高线,AE是∠aaa的平分线,则∠aaa= ______ .14.15.16.当k ______ 时,代数式23(a−1)的值不小于代数式1−5a−16的值.17.若关于x的不等式(1−a)a>2可化为a>21−a,则a的取值范围是______ .18.命题:“等腰三角形两腰上的中线相等”的逆命题是______ .这条逆命题是______ 命题(填“真”或“假”)19.如图,已知aa=aa,∠aaa=∠aaa,要使△aaa≌△aaa,则应添加的一个条件为______ .(答案不唯一,只需填一个)三、计算题(本大题共1小题,共分)20.解下列方程组:21.(1){a−a=44a+2a=−1(2){3a+4a=−3.46a−4a=5.222.(3){7a−3a=5−5a+6a=−6(4){a4+a3=7 a3+a2=8.23.24.25.26.27.四、解答题(本大题共8小题,共分)28.解下列不等式(组),并把解集在数轴上表示出来29.(1)2a−12<1−4a−1630.(2){a−23+3>a−11−3(a+1)≥6−a.32.33.34.35.36.某校5名教师要带若干名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,车站提出两种优惠方案供学校选择.甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款.设一共有x名学生,请问选择哪种方案合算?37.38.39.40.41.42.43.44.某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件获利16元,每加工一个乙种零件获利24元,若派x人加工甲种零件,其余的人加工乙种零件.45.(1)此车间每天所获利润为y元,求出y与x的函数关系式.46.(2)要使车间每天所获利润不低于1800元,至多派多少人加工甲种零件?47.48.50.51.52.53.54.已知:如图,aa//aa,∠1=∠2,求证:∠a=∠a.55.56.57.枣庄大酒店客房部有三人间、双人间和单人间客房,收费数据如下表:58.(例如三人间普通间客房每人每天收费50元).为吸引客源,在十一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)则三人间、双人间普通客房各住了多少间?(2)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少为什么59.平面内的两条直线有相交和平行的位置关系.60.(1)aa//aa,如图a,点P在AB、CD外部时,由aa//aa,有∠a=∠aaa,又因∠aaa是△aaa的外角,故∠aaa=∠aaa+∠a,得∠aaa=∠a−∠a.61.(2)如图b,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠aaa、∠a、∠a之间有何数量关系?请证明你的结论.62.63.如图所示,有一个直角三角形纸片,两直角边aa=6aa,aa=8aa,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE 重合,你能求出CD的长吗?64.65.66.如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.67.(1)求证:△aaa≌△aaa;68.(2)求:∠aaa的大小;69.(3)如图2,△aaa固定不动,保持△aaa的形状和大小不变,将△aaa绕着点O旋转(△aaa和△aaa不能重叠),则∠aaa的大小______.(填“变”或“不变”)。
鲁教版-五四制--初二下学期期末数学试卷

第1页(共6页)初二下学期数学综合测试题一、选择题(共12小题,每小题3分,满分36分)1.已知是方程2x ﹣ay=3的一个解,那么a 的值为( ) A .1 B .﹣1 C .5D .﹣5 2.下列事件是确定事件的是( )A .买彩票中奖B .走到路口正好是绿灯C .掷一枚均匀的骰子,掷出的点数为6D .早上的太阳从西方升起3.如右图,下列选项中,不能判断a ∥b 的是( )A .∠1=∠3B .∠2=∠4C .∠2=∠3D .∠2+∠3=180°4.一个小球在如下几种图案地砖上自由滚动,小球停在阴影区域的概率最大的是( )A .B .C .D .5.下列命题中是假命题的是( )A .两点确定一条直线B .如果两个角的两边分别平行,那么这两个角相等C .过直线外一点有且只有一条直线与这条直线平行D .三角形的外角大于任何一个和它不相邻的内角第2页(共6页)6.不等式组的最小整数解为( )A .x=0 B .x=﹣1 C .x=1 D .x=27.如右图,△ABC 中,∠A=65°,直线DE 交AB 于点D ,交AC 于点E ,∠BDE +∠CED 的值为( )A .180°B .215°C .235°D .245°8.若a <b ,则下列不等式变形错误的是( )A .a +x <b +xB .3﹣a <3﹣bC .2a ﹣1<2b ﹣1D .﹣<09.如右图,在△ABC 和△ADE 中,已知AB=AD ,还需要添加两个条件,才能使△ABC ≌△ADE ,不能添加的一组是( )A .BC=DE ,AC=AEB .∠B=∠D ,∠BAC=∠DAEC .BC=DE ,∠C=∠ED .AC=AE ,∠BAD=∠CAE10.已知一个等腰三角形的两边长a ,b 满足方程组,则此等腰三角形的周长为( )A .3B .4C .5D .4或511.如右图,m ∥n ,△ABC 的顶点C 在直线m 上,若AB=AC ,∠A=40°,∠1=20°,则∠2的度数为()A .40°B .50°C .60°D .70°12.如右图,△ABC 和△CDE 均为等边三角形,且AB=DE ,AC ⊥CD ,连接AE ,BD ,分别交CD ,AC 于点G ,连接FG ,BE .下列结论:①AE=BD=BE ;②BC 平分∠DBE ;③直线EC ⊥AB ;正确结论的个数为( )A .0个 B .1个 C .2个 D .3个第3页(共6页)二、填空题(共6小题,每小题3分,满分18分)13.“面积相等的两个三角形全等”的逆命题是: .14.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P (摸到红球)= ,P (摸到白球)= ,P (摸到黄球)= .15.如右图,BD ,CE 分别是△ABC 两个外角的角平分线,DE 过点A ,且DE ∥BC .若DE=14,BC=7,则△ABC 的周长为 .16.若关于x 的一元一次不等式组无解,则a 的取值范围是 .17.如右图所示,在桌面上放着A 、B 两个正方形,共遮住的面积为21cm 2.若这两个正方形折叠部分(阴影部分)的面积为3cm 2,且正方形B 除重叠部分外的面积是正方形A 除重叠部分外的面积的2倍,则正方形A 的面积是 .18.在△ABC 中,∠C=90°,∠BAC=60°.AD 平分∠BAC ,交BC 于点D ,DE ⊥AB ,垂足为点E ;DF 平分∠BDE ,交AB 于点F ,FG ⊥BC ,垂足为点G ,若AC=9,则FG= .三、解答题(共7小题,满分66分)19.解不等式组,并把解集在数轴上表示出来.第4页(共6页)20.已知:线段a ,b ,求作:△ABC ,使∠C=90°,AC=a ,AB=b .(不写作法,保留作图痕迹)21.小明和小颖利用一枚均匀的骰子做游戏.(1)若游戏规则为:每人投掷一次骰子,谁掷出的点数大谁就获胜,小明先掷,如果小明掷出的点数是2,那么小颖获胜的概率为 ; (2)若规则为:每人可以只投掷一次骰子,也可以连续的投掷多次骰子.当掷出的点数和不超过10时,如果停止投掷,那么得分就是所掷出的点数和;当掷出的点数和不超过10时,必须停止投掷,并且得分为0.谁的得分多谁就获胜.小明连续投掷两次后,掷出的点数和是5,请帮助他决定是否继续投掷,并说明理由.22.某企业为贫困山区的甲、乙两所学校捐赠图书共1600册,已知捐给甲校的图书册数比捐给乙校的图书册数的2倍少200册,求该企业第5页(共6页)捐给甲、乙两所学校的图书各多少册.23.如图所示,AB ∥CD 且AB=CD ,AD ,BC 交于点O ,点E ,F 分别是OA ,OD 上的点,且OE=OF ,连接CE ,BF .求证:BF=CE .24.某游泳馆普通票价为25元/次,暑假期间为了促销,推出优惠卡.优惠卡售价150元,每次凭卡另收10元.优惠卡仅限暑假期间使用,次数不限.同时,暑假期间普通票正常出售.设暑假中游泳x 次时,所需总费用为y 元.(1)请分别写出选择选择普通消费卡和选择优惠卡消费时,y 与x 之间的函数表达式:y 普通消费= ,y 优惠卡消费= ;(2)在同一坐标系中,两种消费方式对应的函数图象如图所示,请求出点B 的坐标,并说出它的实际意义;(3)根据图象直接写出选择哪种消费方式更合算?第6页(共6页)25.如图,在△ABC 中,∠ACB=90°,点D 为AB 边上一点,AD 的垂直平分线交AD 于点E ,交BC 于点F ,交AC 的延长线于点G ,连接DF ,BG ,∠EDF=45°.求证:(1)BF=AG ;(2)∠DFB=∠GBF .。
鲁教版(五四学制)八年级下学期期末考试数学试卷(解析版)

鲁教版(五四学制)八年级下学期期末考试数学试卷一、选择题(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题纸指定位置.)1.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.对边平行C.对边相等D.对角线互相平分2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=44.如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cm B.12cm C.18cm D.24cm5.如果5x=6y,那么下列结论正确的是()A.x:6=y:5B.x:5=y:6C.x=5,y=6D.x=6,y=56.在下列图形中,不是位似图形的是()A.B.C.D.7.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b8.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=9.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.10.宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取AD,BC的中点E,F,连接EF,DF,作∠DFC的平分线,交AD的延长线于点H,作HG⊥BC,交BC的延长线于点G,则下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH11.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A.B.C.D.12.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10B.8C.5D.6二、填空题(本题共5小题,请将结果填在答题纸指定位置)13.计算:﹣×=.14.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为.16.已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:,使得四边形BCDE成为菱形.17.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG . 其中正确的是 .(把所有正确结论的序号都选上)三、解答题(本大题共7小题,请将解答及证明过程写在答题纸指定位置.)18.计算: (1)7﹣(2+4) (2)(5+)(3﹣2) 19.用适当的方法解下列方程:(1)5x 2=4x(2)(x +1)(3x ﹣1)=020.如图,在矩形ABCD 中,AB =6,AD =12,点E 在AD 边上,且AE =8,EF ⊥BE 交CD 于点F . (1)求证:△ABE ∽△DEF .(2)求CF 的长.21.如图,△ABC 三个顶点的坐标分别为A (0,﹣3)、B (3,﹣2)、C (2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移4个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C ,使△A 2B 2C 与△ABC 位似,且△A 2B 2C 与△ABC 的位似比为2:1,并直接写出点B 2的坐标.22.2017年5月14日﹣﹣﹣5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?23.已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足+=﹣,求k的值.24.已知:如图,O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC.求证:△AOE∽△CFO.(3)若OE=OF,求的值.参考答案与试题解析一、选择题(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题纸指定位置.)1.解;A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选:A.2.解:A、=|a|与不是同类二次根式;B、与不是同类二次根式;C、=2与是同类二次根式;D、与不是同类二次根式;故选:C.3.解:移项得:x2+6x=5,配方可得:x2+6x+9=5+9,即(x+3)2=14,故选:A.4.解:∵DE∥BC,∴△AED∽△ABC∴,设屏幕上的小树高是x,则,解得x=18cm.故选:C.5.解:∵5x=6y,∴=,故选项A正确.故选:A.6.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选:D.7.解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.8.解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.9.解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选:C.10.解:设正方形ABCD的边长为1,∵点E,F分别为AD,BC的中点,∴=,DF==,∴矩形ABFE不是黄金矩形,A错误;同理,矩形EFCD不是黄金矩形,B错误;∵FH是∠DFC的平分线,∴∠DFH=∠GFH,∵AH∥BG,∴∠DFH=∠GFH,∴∠DHF=∠GFH,∴∠DFH=∠DHF,∴DH=DF=,∴==,∴矩形EFGH是黄金矩形,C正确;==,∴矩形DCGH不是黄金矩形,D错误;故选:C.11.解:三角形纸片ABC中,AB=8,BC=4,AC=6.A、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B、=,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D、==,对应边===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选:D.12.解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为==2,所以BE=4.∵△ABC∽△EFB,∴=,即=EF=8.故选:B.二、填空题(本题共5小题,请将结果填在答题纸指定位置)13.解:原式=2﹣=2﹣=.故答案为.14.解:设方程的另一根为x,∵方程x2+5x+m=0的一个根为﹣2,∴x+(﹣2)=﹣5,解得x=﹣3,即方程的另一根是﹣3,故答案为:﹣3.15.解:设竿长为x尺,由题意得,(x﹣2)2+(x﹣4)2=x2.故答案为:(x﹣2)2+(x﹣4)2=x2.16.解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:∵DC=AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形BCDE是平行四边形,∵AB=2BC,∴BE=BC,∴四边形BCDE是菱形.故答案为:AB=2BC.17.解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴=,∴===,而==2,∴≠,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH.所以②正确.故答案是:①②④.三、解答题(本大题共7小题,请将解答及证明过程写在答题纸指定位置.)18.解:(1)原式=7﹣﹣4=2;(2)原式=15﹣10+6﹣6=9﹣4.19.解:(1)由原方程,得x(5x﹣4)=0,则x=0或5x﹣4=0,解得x1=0,x2=;(2)(x+1)(3x﹣1)=0,x+1=0或3x﹣1=0,x1=﹣1,x2=.20.(1)证明:∵EF⊥BE,∴∠EFB=90°,∴∠DEF+∠AEB=90°.∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°,∴∠DEF=∠ABE,∴△ABE∽△DEF.(2)解:∵AD=12,AE=8,∴DE=4.∵△ABE∽△DEF,∴=,∴DF=,∴CF=CD﹣DF=6﹣=.21.解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C为所求三角形,点B2的坐标为(4,0).22.解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%.(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.23.解:(1)∵关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根,∴△≥0,即[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣;(2)由根与系数的关系可得x1+x2=2k+1,x1x2=k2﹣2,由+=﹣可得:2(x1+x2)=﹣x1x2,∴2(2k+1)=﹣(k2﹣2),∴k=0或k=﹣4,∵k≥﹣,∴k=0.24.(1)解:在FC上截取FM=FE,连接OB,OM,OC.∵C=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,△EBF的周长∴BE=MC,∵O为正方形中心,∴OB=OC,∠OBE=∠OCM=45°,在△OBE和△OCM中,,∴△OBE≌△OCM,∴∠EOB=∠MOC,OE=OM,∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,在△OFE与△OFM中,,∴△OFE≌△OFM(SSS),∴∠EOF=∠MOF=∠EOM=45°.(2)证明:由(1)可知:∠EOF=45°,∴∠AOE+∠FOC=135°,∵∠EAO=45°,∴∠AOE+∠AEO=135°,∴∠FOC=∠AEO,∵∠EAO=∠OCF=45°,∴△AOE∽△CFO.(3)解:∵△AOE∽△CFO,∴===,∴AE=OC,AO=CF,∵AO=CO,∴AE=×CF=CF,∴=.。
鲁教版(五四制)八年级数学下册期末综合测试卷含答案

鲁教版(五四制)八年级数学下册期末综合测试卷一、选择题(每题3分,共36分)1.【2023·济南期末】若a5=b8,则ab等于()A.85B.53C.35D.582.【2023·滨州滨城区期中】如表是代数式ax2+bx的值的情况,根据表格中的数据,可知方程ax2+bx=12的根是()x…-3 -2 -1 0 1 2 3 4 …ax2+bx…12 6 2 0 0 2 6 12 …A.x1=0,x2=1 B.x1=-1,x2=2C.x1=-2,x2=3 D.x1=-3,x2=43.【2023·滨州邹平市月考】用配方法解方程2x2+3=7x时,方程可变形为()A.(x-72)2=374B.(x-72)2=434C.(x-74)2=116D.(x-74)2=25164.【2023·德州期末】如图,将长方形和直角三角形的直角顶点重合,若∠AOE=128°,则∠COD的度数为()A.28°B.38°C.52°D.62°5.下列各式与427是同类二次根式的是()A.216 B.125 C.48 D.32 6.【2023·重庆】如图,已知△ABC∽△EDC,AC∶EC=2∶3,若AB的长度为6,则DE的长度为()A.4 B.9 C.12 D.13.5 7.【2023·东营东营区月考】表示实数a,b的点在数轴上的位置如图所示,化简a2-b2+(a-b)2的结果是()A.-2a B.-2b C.0 D.2a-2b 8.【2023·济宁邹城市期末】如图,图形甲与图形乙是位似图形,点O是位似中心,点A,B的对应点分别为点A′,B′,若OA′=2OA,则图形乙的面积是图形甲的面积的()A.2倍B.3倍C.4倍D.5倍9.【新定义题】定义运算:a☆b=ab2-ab-1,例如:3☆4=3×42-3×4-1,则方程1☆x=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根10.【2023·丽水】如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为()A.12B.1 C.32D. 311.【2023·泰安泰山区一模】矩形ABCD与矩形CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D.5212.如图,在边长为4的正方形ABCD中,点E,F分别是BC,CD的中点,DE,AF交于点G,AF的中点为H,连接BG,DH.给出下列结论:①AF⊥DE;②DG=85;③HD∥BG;④△ABG与△DHF相似.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)13.【2022·济宁】若二次根式x-3有意义,则x的取值范围是________.14.若x2=y3=z4,则2x-y+3zx+y-z=________.15.若关于x的一元二次方程(k-2)x2-2kx+k=6有实数根,则k的取值范围为________.16.【2023·济南历下区期末】如图,等边三角形ABC被矩形DEFG所截,EF∥BC,线段AB被截成三等份.若△ABC的面积为12 cm2,图中阴影部分的面积为________cm2.17.【2023·苏州改编】如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OAB C.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC·EF的值为________.18.如图,边长为2的正方形ABCD中,E,F分别是边BC,CD的中点,连接AE,G是AE上的一点,∠EGF=45°,则GF=________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)33-(3)2+(π+3)0-27+|3-2|.(2)24+3113-54÷6×2348.20.【2023·临沂兰山区期末】解下列方程:(1)(2x-1)2=(3-x)2.(2)x2-4x-7=0.21.已知关于x的一元二次方程x2+3x+k-2=0有实根,方程的两个实数根分别为x1,x2,若(x1-1)(x2-1)=-1,求k的值.22.【2023·滨州改编】如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,23),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)用x表示线段DF.(2)求S关于x的函数表达式.23.为了加快发展新能源和清洁能源,助力实现“双碳”目标,大力发展高效光伏发电关键零部件制造.青岛上合示范区某工厂生产的某种零件按供需要求分为8个档次.若生产第一档次(最低档次)的产品,一天可生产38件,每件的利润为12元,每提高一个档次,每件的利润增加3元,每天的产量将减少2件.请解答下列问题,设产品的档次(每天只生产一个档次的产品)为x,若该产品一天的总利润为756元,求这天生产产品的档次x的值.24.【2023·温州】如图,已知矩形ABCD,点E在CB的延长线上,点F在BC的延长线上,过点F作FH⊥EF交ED的延长线于点H,连接AF交EH于点G,GE=GH.(1)求证:BE=CF.(2)当ABFH=56,AD=4时,求EF的长.25.【2023·杭州】如图,在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=13,求DF的长.(2)求证:AE·CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.答案一、1.D 【点拨】∵a 5=b 8,∴a b =58.2.D 【点拨】由表中数据得,当x =-3时,ax 2+bx =12;当x =4时,ax 2+bx =12,所以方程ax 2+bx =12的解为x 1=-3,x 2=4. 3.D 【点拨】∵2x 2+3=7x ,∴2x 2-7x =-3,∴x 2-72x =-32,∴x 2-72x +4916=-32+4916, ∴(x -74)2=2516.4.C 【点拨】∵将长方形和直角三角形的直角顶点O 重合,∴∠AOC =∠DOE =90°.∵∠AOE =128°,∴∠COE =∠AOE -∠AOC =128°-90°=38°, ∴∠COD =∠DOE -∠COE =90°-38°=52°. 5.C 【点拨】∵427=239,216=66,125=55,48=43,32=42,∴与427是同类二次根式的是48.6.B 【点拨】∵△ABC ∽△EDC ,AC ∶EC =2∶3,∴AB ED =AC EC =BC DC =23,∴当AB =6时,DE =9. 7.A 【点拨】由数轴可知a <0,b >0,a -b <0,∴原式=-a -b -(a -b )=-a -b -a +b =-2a .8.C 【点拨】由题意可得,甲乙两图形相似,且相似比为12,根据相似图形的面积比是相似比的平方可得,图形乙的面积是图形甲的面积的4倍. 9.A10.D 【点拨】如图,连接BD 交AC 于点O .∵四边形ABCD是菱形,∠DAB =60°,∴OA =OC ,∠BAO =12∠DAB =30°,AC ⊥BD ,∴∠AOB =90°,∴OB =12AB =12, ∴OA =AB 2-OB 2=12-⎝ ⎛⎭⎪⎫122=32,∴AC =2OA = 3.11.C 【点拨】如图,延长GH 交AD 于点P .∵四边形ABCD和四边形CEFG 都是矩形,∴∠ADC =∠ADG = ∠CGF =90°,AD =BC =2,GF =CE =1,∴AD ∥GF ,∴∠GFH =∠P AH .又∵H 是AF 的中点,∴AH =FH ,在△APH 和△FGH 中,⎩⎨⎧∠P AH =∠GFH ,AH =FH ,∠AHP =∠FHG ,∴△APH ≌△FGH (ASA),∴AP =GF =1,GH =PH =12PG ,∴PD =AD - AP =1.∵CG =2,CD =1,∴DG =1,∴GH =12PG =12×PD 2+DG 2=22. 12.B 【点拨】∵四边形ABCD 为正方形,∴∠ADC =∠BCD =90°,AD =CD .∵E 和F 分别为BC 和CD 的中点,∴DF =EC ,∴△ADF ≌△DCE (SAS), ∴∠AFD =∠DEC ,∠F AD =∠EDC .∵∠EDC +∠DEC =90°,∴∠EDC + ∠AFD =90°,∴∠DGF =90°,即DE ⊥AF ,故①正确;∵AD =4,DF = 12CD =2,∴AF =AD 2+DF 2=42+22=25,又∵S △ADF =12AD ·DF =12AF ·DG ,∴DG =AD ·DF AF =455,故②错误;∵H 为AF 的中点,∴HD =HF =12AF =5,∴∠HDF =∠HFD .∵AB ∥DC ,∴∠HDF =∠HFD =∠BAG .∵AG =AD 2-DG 2=855,AB =4,∴AB DH =455=AGDF ,∴△ABG ∽△DHF ,故④正确;由④可知∠ABG =∠DHF .∵AB ≠AG ,∴∠ABG 和∠AGB 不相等,∴∠AGB ≠∠DHF ,∴HD 与BG 不平行,故③错误.综上所述①④正确. 二、13.x ≥3 【点拨】根据题意,得x -3≥0,解得x ≥3.14.13 【点拨】设x 2=y 3=z4=k (k ≠0),则x =2k ,y =3k ,z =4k ,∴2x -y +3z x +y -z=4k -3k +12k2k +3k -4k=13.15.k ≥1.5且k ≠2 【点拨】∵关于x 的一元二次方程(k -2)x 2-2kx +k =6有实数根,∴⎩⎨⎧k -2≠0,Δ=(-2k )2-4×(k -2)×(k -6)≥0,解得k ≥1.5且k ≠2.16.4 【点拨】易知△AHM ∽△ABC .∵AH =HK =KB ,S △ABC =12 cm 2,∴S △AHMS △ABC=(AH AB )2=(13)2=19,∴S △AHM =19S △ABC =19×12=43(cm 2).又易知△AKN ∽△ABC , ∴S △AKN S △ABC=(AK AB )2=(23)2=49,∴S △AKN =49S △ABC =49×12=163(cm 2),∴S 阴影= S △AKN -S △AHM =163-43=4(cm 2),∴图中阴影部分的面积为4 cm 2. 17.30 【点拨】如图,连接AC ,EF ,则AC =OC 2+OA 2=32+92=310.∵四边形OABC 为矩形,∴B (9,3).又∵OE =BF =4,∴E (4,0),F (5,3). ∴EF =(5-4)2+32=10,∴AC ·EF =310×10=30.18.3105 【点拨】如图,连接BF ,交AE 于点H .∵四边形ABCD 是正方形,∴AB =BC =CD ,∠ABE =∠C =90°.∵点E ,F 分别是边BC ,CD 的中点,∴BE =CF ,在△ABE 与△BCF 中,⎩⎨⎧AB =BC ,∠ABE =∠BCF ,BE =CF ,∴△ABE ≌△BCF (SAS),∴∠BAE =∠CBF ,AE =BF .∵∠BAE +∠AEB =90°,∴∠AEB +∠EBH =90°.∴∠BHE =90°,∴∠GHF =90°.∵∠FGH =45°,∴△FGH 是等腰直角三角形,∵AB =BC =2,∴AE =BF =AB 2+BE 2= 5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =AB ·BE AE =255,∴HG =HF =BF -BH =5-255=355,∴GF =GH 2+HF 2=3105.三、19.【解】(1)33-(3)2+(π+3)0-27+|3-2|=3-3+1-33+2-3=-3 3.(2)24+3113-54÷6×2348=26+23-546×23×4 3=26+23-8 3 =26-6 3.20.【解】(1)(2x -1)2=(3-x )2,(2x -1)2-(3-x )2=0,[(2x -1)+(3-x )][(2x -1)-(3-x )]=0,∴x +2=0或3x -4=0,∴x 1=-2,x 2=43.(2)x 2-4x -7=0,x 2-4x =7,x 2-4x +4=7+4,即(x -2)2=11,∴x -2=±11,∴x 1=2+11,x 2=2-11.21.【解】∵关于x 的一元二次方程x 2+3x +k -2=0有实根,∴Δ=32-4(k -2)≥0,解得k ≤174.∵方程的两个实数根分别为x 1,x 2,∴x 1+x 2=-3,x 1x 2=k -2.∵(x 1-1)(x 2-1)=-1,∴x 1x 2-(x 1+x 2)+1=-1,∴k -2+3+1=-1,解得k =-3,符合题意.故所求k 的值为-3. 22.【解】(1)如图,过点A 作AG ⊥OC 于点G ,连接AC .∵顶点A 的坐标为(2,23),∴OG =2,AG =23,∴OA =22+(23)2=4, ∴OG AO =12,∴∠OAG =30°,∴∠AOG =60°. ∵四边形OABC 是菱形,∴∠BOC =∠AOB =30°,AC ⊥BO ,AO =OC , ∴△AOC 是等边三角形,∴∠ACO =60°.∵DE ⊥OB ,∴DE ∥AC ,∴∠EDO =∠ACO =60°, ∴△EOD 是等边三角形,∴ED =OD =x .∵DF∥OB,∴△CDF∽△COB,∴DFOB=CDCO.∵A(2,23),AO=4,∴B(6,23),∴OB=62+(23)2=43,∴DF43=4-x4,∴DF=3(4-x).(2)∵DF=3(4-x),∴S=-32x2+23x(0≤x≤4).23.【解】∵该工厂生产产品的档次(每天只生产一个档次的产品)为x,∴每件产品的利润为12+3(x-1)=(9+3x)元,一天可生产38-2(x-1)=(40-2x)件产品.根据题意得(9+3x)(40-2x)=756,整理得x2-17x+66=0,解得x1=6,x2=11(不符合题意,舍去).∴这天生产产品的档次x的值为6.24.(1)【证明】∵HF⊥EF,∴∠HFE=90°.∵GE=GH,∴FG=12EH=GE=GH,∴∠E=∠GFE.∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,∴△ABF≌△DCE(AAS),∴BF=CE,∴BF-BC=CE-BC,即BE=CF.(2)【解】∵四边形ABCD是矩形,∴BC=AD=4.∵∠HFE=∠DCB=90°,∠HEF=∠DEC,∴△ECD∽△EFH,∴ECEF=CDFH,∴ECEF=ABFH.∵ABFH=56,∴ECEF=56.设BE=CF=x,则EC=x+4,EF=2x+4,∴x+42x+4=56,解得x=1,∴EF=6.25.(1)【解】∵四边形ABCD是正方形,∴AD∥BC,AB=AD=BC=CD=1,∴∠DEF=∠CBF,∠EDF=∠BCF,∴△DEF ∽△CBF ,∴DE BC =DF CF ,∴131=DF DF +1,∴DF =12. (2)【证明】∵AB ∥CD ,∴∠ABE =∠F .又∵∠A =∠BCD =90°,∴△ABE ∽△CFB ,∴AB CF =AE BC ,∴AE ·CF =AB ·BC =1.(3)【解】设EG =ED =x ,则AE =AD -ED =1-x ,BE =BG +GE =BC +GE =1+x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴1+(1-x )2=(1+x )2,∴x =14,∴ED =14.。
【鲁教版】八年级数学下期末试题(带答案)

一、选择题1.如图,在□ABCD 中,AB=5,BC=6,点O 是AC 的中点,OE ⊥AC 交边AD 于点E ,则△CDE 的周长为等于( )A .5.5B .8C .11D .222.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30° 3.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( ) A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm 4.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 5.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④6.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y++=--有正整数解,则所有满足条件的整数a 的值之和是( )A .4B .5C .6D .37.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个 8.如果917255+能被n 整除,则n 的值可能是( ) A .20B .30C .35D .40 9.下列变形是分解因式的是( ) A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+--10.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 11.若关于x 的不等式组0721x m x -⎧⎨-≤⎩<的整数解有且仅有3个,则实数m 的取值范围是( ) A .56m ≤<.B .56m <<C .56m ≤≤D .56m <≤ 12.如图,CD 是ABC 的角平分线,2,7,4B A AC BC ∠=∠==,则BD 的长为( )A .2B .3C .23D .32二、填空题13.如图,平行四边形ABCD ,将四边形CDMN 沿线段MN 折叠,得到四边形QPMN ,已知68BNM ︒∠=,则AMP ∠=_______.14.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA ,PR 的中点.如果DR=3,AD=4,则EF 的长为______.15.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____. 16.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 17.分解因式 -2a 2+8ab-8b 2=______________.18.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长为___________.三、解答题21.如图1在Rt △ABC 中,∠ACB =90°,CA =CB =2,P 为AB 上一个点,将线段CP 绕点C 逆时针旋转90°得到线段CD ,连接PD ,BD .(1)判断BD 与AP 的关系,并证明你的结论.(2)如图2,设点B 关于直线CP 的对称点为E ,连接BE ,CE .① 依题意补全图2;② 证明:BE ∥CD ;③ 当四边形CDBE 为平行四边形时,求AP 的长.22.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?23.分解因式(1)22363ax axy ay -+(2)()()22162x x x ---24.如图1,已知ABC 中,1,90,AB BC ABC ==∠=︒把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为,DE 长直角边为DF ),将直角三角板DEE 绕D 点按逆时针方向旋转.(1)在图1中.DE 交AB 于,M DF 交BC 于N .①求证:DM DN =;②在这一过程中,直角三角板DEF 与三角形ABC 的重叠部分为四边形,DMBN 请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.(2)继续旋转至如图2的位置,延长AB 交DE 于,M 延长BC 交DF 于,N DM DN =是否仍然成立?(请写出结论,不用证明.)(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于,M DM DN =是否仍然成立?(请写出结论,不用证明.)25.已知点()39,210A m m --,分别根据下列条件解决问题:(1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.26.如图,在等腰ABC 中,AB AC =,045ACB ︒<∠<︒,点C 关于直线AB 的对称点为点D ,连接BD 与CA 的延长线交于点E ,在BC 上取点F ,使得BF DE =,连接AF .(1)依题意补全图形.(2)求证:AF AE =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,继而可得△CDE的周长等于AD+CD,又由平行四边形ABCD的AB+BC=AD+CD=11.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=5,BC=6,∴AD+CD=11,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11.故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.2.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=15×540°=108°,又∵EA=ED,∴∠EAD=12×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF 的内角∠BAG =90°,∴∠DAG =90°﹣72°=18°,故选:A .【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.3.D解析:D【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.【详解】A. ∵2+3<10,不能够成三角形,故此选项错误;B. 4+3<10,不能够成三角形,故此选项错误;C. 4+6=10,不能够成三角形,故此选项错误;D. 10+10>15,能构成三角形,故此选项正确.故选D.4.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.5.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】 原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++1111x x x -=-++ 1x x =+ 又因为x 为正整数, 所以1121x x ≤<+, 故选B .【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.6.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.7.B解析:B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 8.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.9.B解析:B【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】C 和D 不是积的形式,应排除;A 中,不是对多项式的变形,应排除.故选B .【点睛】考查了因式分解的定义,关键在于能否正确应用分解因式的定义来判断.10.D解析:D【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+212⨯=2 ∴C(2,1由题意可得:第1次变换后点C 的坐标变为(2-1,1),即(1,1-,第2次变换后点C 的坐标变为(2-21),即(0,1第3次变换后点C 的坐标变为(2-3,1),即(-1,1-第n 次变换后点C 的坐标变为(2-n ,1)(n 为奇数)或(2-n ,1为偶数), ∴连续经过2021次变换后,等边ABC 的顶点C 的坐标为(-2019,1-, 故选:D .【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键. 11.D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式0x m -<,得:x m <,解不等式721x -≤,得:3x ≥,则不等式组的解集为3x m ≤<,∵不等式组的整数解有且仅有3个,∴不等式组的整数解为3、4、5,则56m <≤.故答案为:D .【点睛】本题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.12.B解析:B【分析】延长CB 至点F ,使CF=CA ,连接DF ,证明△FCD ≌△ACD ,得到∠F=∠A ,结合已知得到线段的关系,从而计算BD .【详解】解:延长CB 至点F ,使CF=CA ,连接DF ,∵CD 是△ABC 的角平分线,∴∠ACD=∠FCD ,在△FCD 和△ACD 中,CF CA FCD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ACD (SAS ),∴∠F=∠A ,∴∠ABC=2∠A 且∠ABC=∠F+∠FDB ,∴∠F=∠FDB ,∴BF=BD ,∴CF=BC+BF=BC+BD ,∴AC=BD+BC ,∴BD=AC-BC=7-4=3,故选B .【点睛】本题考查了全等三角形的判定和性质,解题的关键是合理作出辅助线,构造全等三角形.二、填空题13.【分析】根据平行四边形的性质得得根据折叠的性质得根据平角的性质即可求解【详解】∵四边形ABCD 是平行四边形∴∴∵将四边形CDMN 沿线段MN 折叠得到四边形QPMN ∴∴故答案为【点睛】本题考察了平行四边 解析:44︒【分析】根据平行四边形的性质得//AD BC ,得68NMD ︒∠=,根据折叠的性质得68PMN NMD ︒∠=∠=,根据平角的性质即可求解.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴68NMD BNM ︒∠=∠=∵将四边形CDMN 沿线段MN 折叠,得到四边形QPMN∴68PMN NMD ︒∠=∠=∴18044AMP PMN NMD ︒∠=︒-∠-∠=故答案为44︒.【点睛】本题考察了平行四边形的性质,平行线的性质,和利用平角求解未知角的度数;其中两直线平行,同位角相等,内错角相等,同旁内角互补.14.5【解析】试题分析:根据勾股定理求AR ;再运用中位线定理求EF 试题 解析:5【解析】试题分析:根据勾股定理求AR ;再运用中位线定理求EF .试题∵四边形ABCD 是矩形,∴△ADR 是直角三角形∵DR=3,AD=4∴∵E 、F 分别是PA ,PR 的中点∴EF=12AR=12×5=2.5. 考点:1.三角形中位线定理;2.矩形的性质.15.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k -+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 16.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0.故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 17.-2(a-2b)2【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)2解析:-2(a-2b)2【详解】解:-2a 2+8ab-8b 2=-2(a 2-4ab+4b 2)=-2(a-2b)2故答案为-2(a-2b)218.-1【分析】由A (32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC 的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A (32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.【分析】由已知条件利用线段的垂直平分线的性质得到AD =CDAC =2AE 结合周长进行线段的等量代换可得答案【详解】解:∵DE 是AC 的垂直平分线∴AD =CDAC =2AE =6cm 又∵ABD 的周长=AB+B解析:19cm【分析】由已知条件,利用线段的垂直平分线的性质,得到AD =CD ,AC =2AE ,结合周长,进行线段的等量代换可得答案.【详解】AE ,解:∵DE是AC的垂直平分线,3cm∴AD=CD,AC=2AE=6cm,又∵ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴ABC的周长=AB+BC+AC=13+6=19cm.故答案为:19cm.【点睛】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.三、解答题21.(1)BD⊥AP,BD=AP,证明见解析;(2)①见解析;②见解析;③2【分析】(1)由旋转的性质及题意易得△ACP ≌△PCD,进而问题得证;(2)①根据题意直接作图即可;②根据轴对称的性质及题意可直接得证;③由(1)及平行四边形的性质可得AP=BD,然后根据对称可求解.【详解】解:(1)结论:BD⊥AP,BD=AP证明:∵∠ACB=90°,∠PCD=90°∴∠ACP=∠BCD ,∠A=∠ABC =45°∵AC=BC,PC=DC∴△ACP ≌△BCD∴BD=AP,∠A=∠CBD =45°∴∠ABD=∠ABC+∠CBD=90°∴BD⊥AP(2)① 如图② ∵点B关于直线CP的对称点为E∴CG⊥BE∵∠PCD=90°即CG⊥CD∴BE∥CD③∵四边形CDBE为平行四边形∴BD=CE由(1)可得AP=BD∵B、E关于直线CP的对称∴BC=CE∴AP=BC=2.【点睛】本题主要考查轴对称的性质、全等三角形的判定与性质及平行四边形的性质,熟练掌握各个知识点是解题的关键.22.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x套新型防护服,则乙工厂每天能加工1.5x套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40,经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服. (2)选择甲工厂所需费用为200×120040=6000(元); 选择乙工厂所需费用为350×120060=7000(元). ∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 23.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.24.(1)①见解析;②不变,14;(2)成立;(3)成立 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)成立.同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)结论仍然成立,方法同(1).【详解】解:()1①如图,连接DB ,在Rt ABC ∆中,,,AB BC AD DC ==45,90,45A C BDC ABD CBD ∴∠=∠=︒∠=︒∠=∠=︒45,ABD C ∴∠=∠=︒,DB DC AD ∴==90,MDB BDN CDN BDN ∠+∠=∠+∠=,MDB NDC ∴∠=∠,BMD CND ∴∆≅∆DM DN ∴=;②四边形DMBN 的面积不发生变化;由①知,,BMD CND ∆≅∆BMD CND S S ∆∴∆=DBN DMB DBN DNC DMBN S S S S S ∆∆∆∆∴=+=+四边形 1111112224DBC ABC S S ∆∆===⨯⨯⨯= ()2DM = DN 仍然成立.理由如下:连接BD由(1)知BD⊥AC,BD= CD,∴∠ABD=∠ACB = 45°,∴∠ABD+∠MBD= 180°,∠ACB+∠NCD= 180°,∴∠MBD=∠NCD,∵BD⊥AC,∴∠MDB +∠MDC = 90°,又∠NDC +∠MDC = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中,∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NDC (ASA)∴DM = DN,()3DM = DN成立,理由如下:连接BD,由(1) 知BD⊥AC,BD= AD,∴∠BAD=∠ABD = 45°,∴∠MBD=∠NCD= 45°,∵BD⊥AC,∴∠MDB +∠NDB = 90°,又∠NDC +∠NDB = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NCD (ASA),∴DM = DN.【点睛】本题考查了利用ASA 求三角形全等,还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理,勾股定理和面积公式的利用等知识.25.(1)m=5;(2)()3,2A -【分析】(1)根据点A 在x 轴上可知点A 的纵坐标为0,从而可以解答本题;(2)点A 在第四象限,并且m 为整数,从而可以求得点A 的坐标;【详解】解:根据题意,∵点()39,210A m m --在x 轴上,∴2100m -=,解得:5m =;()2点()39,210A m m --在第四象限.390,2100,m m ->⎧∴⎨-<⎩①② 解不等式①得3m >,解不等式②得5m <,所以,m 的取值范围是:35m << m 为整数4m ∴=,()3,2A ∴-;【点睛】坐标与图形的性质,解题的关键是明确每一问提供的信息,能正确知道与坐标之间的关系,灵活变化,求出所求问题的答案.26.(1)见解析;(2)见解析【分析】(1)根据几何语言画出对应的几何图形;(2)利用对称的性质得AB 垂直平分CD ,则BC =BD ,AC =AD ,利用等腰三角形的性质得∠ADE =∠ACB ,再利用AB =AC 得到∠ACB =∠ABF ,AD =AB ,所以∠ABF =∠ADE ,然后证明△ABF ≌△ADE ,从而得到结论.【详解】(1)解:如图,(2)证明:连接AD ,如图,∵点C ,D 关于直线AB 对称,∴AB 垂直平分CD ,∴BC BD =,AC AD =,∴ADE ACB ∠=∠,∵AB AC =,∴ACB ABF ∠=∠,AD AB =,∴ABF ADE =∠∠,在ABF 和ADE 中,AB AD ABF ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,∴()ABF ADE SAS ≅△△,∴AF AE =.【点睛】本题考查了作图-轴对称变换,等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,熟练掌握各知识点是解答本题的关键.。
【鲁教版】初二数学下期末试卷(带答案)

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6B .2,2105C .6,0.4D .6,21053.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐4.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .85.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)6.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C .D .7.函数2y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限8.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④9.已知y 1110x x --,那么252x yx y+-的值等于( )A .1B .78 C .54-D .45-10.下列说法正确的是( )A .有一个角是直角的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .有一组邻边相等的菱形是正方形D .各边都相等的四边形是正方形11.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个12.如图,一圆柱高8cm ,底面周长为12cm ,一只蚂蚁从A 点爬到点B ,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm二、填空题13.若一组数据3、4、5、x 、6的平均数是5,则这组数据的方差为_____14.某次数学竞赛共有15道题,下表是对于做对n (n=0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了______人. n 0 1 23… 12 13 14 15做对 n 道题的人数7 8 10 21 … 15 63115.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 16.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.17.如图,△ABC 中,∠ACB =90°,AC =BC =4,D 是斜边AB 上一动点,将线段CD 绕点C 逆时针旋转90°至CE ,连接BE ,DE ,点O 是DE 的中点,连接OB 、OC ,下列结论:①△ADC ≌△BEC ;②OB =OC ;③DE >BC ;④AO 的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)18.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b+.19.3x -在实数范围内有意义,则 x 的取值范围是_______ .20.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?22.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):第1次 第2次 第3次 第4次 第5次甲 86 83 90 80 86 乙 7882848992中位数 平均数 方差甲 ▲ 85 ▲ 乙 848524.823.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围. 24.已知:如图,在梯形ABCD 中,AD ∥BC ,点E 、F 在边BC 上,DE ∥AB ,AF ∥CD ,且四边形AEFD 是平行四边形.(1)试判断线段AD 与BC 的长度之间有怎样的数量关系?并证明你的结论; (2)现有三个论断: ①AD AB =; ②=B C +∠∠90°; ③=2B C ∠∠.请从上述三个论断中选择一个论断作为条件,证明四边形AEFD 是菱形.25.计算:(1)113(4)2484π-⎛⎫--- ⎪⎝⎭(2)422877726.阅读材料,并解决问题. 有趣的勾股数定义:勾股数又名毕氏三元数.凡是可以构成一个直角三角形三边长的一组正整数,称之为勾股数.一般地,若三角形三边长a ,b ,c 都是正整数,且满足222=a b c +,那么数组()a b c ,,称为勾股数.公元263年魏朝刘徽著《九章算术注》,文中除提到勾股数()3,4,5以外,还提到()5,12,13,()7,24,25,()8,15,17,()20,21,29等勾股数.数学小组的同学研究勾股数时发现:设m ,n 是两个正整数,且m n >,三角形三边长a ,b ,c 都是正整数.下表中的a ,b ,c 可以组成一些有规律的勾股数()a b c ,,.通过观察这个表格中的数据,小明发现勾股数a b c ,,可以写成()2222mn b m n -+,,.解答下列问题:(1)表中b 可以用m ,n 的代数式表示为_____________. (2)若4m =,2n =,则勾股数()a b c ,,为______________. (3)小明通过研究表中数据发现:若1c b -=,则勾股数的形式可表述为()211k b b ++,,(k 为正整数),请你通过计算求此时的b .(用含k 的代数式表示b )【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.D解析:D 【分析】根据平均数和方差公式直接计算即可求得. 【详解】 解:()12312n x x x x x n=+++⋯+=, ∴()1231424242424226n x x x x n -+-+-+⋯+-=⨯-=, ()()()()22222123122220.1n S x x x x n ⎡⎤=-+-+-+⋯+-=⎣⎦,()()()()22222421231426426426426x n S x x x x n -⎡⎤=--+--+--+⋯+--⎣⎦ 0.116=⨯1.6=,∴42x S -=故选:D . 【点睛】本题考查了方差和平均数,灵活利用两个公式,进行准确计算是解答的关键.3.B解析:B 【解析】 【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键4.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B.【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.5.B解析:B【分析】根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k <0,y随x的增大而减小,即可判断A项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C;使x=0时,对应的纵坐标即可判断D.【详解】A. 因为k=-3,所以y随x的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y轴的交点坐标(0,-2),那么在y轴上的截距为-2,故此项不正确;D. y=-3x-2与x轴交于点(23,0),故此项不正确;故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.6.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q 表示的数为4-2x 或2x-4,具体计算画图即可. 【详解】∵A 表示-2,B 表示4, ∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q 的速度是2个单位/s , ∴Q 运动到原点的时间为4÷2=2(s ), ∴当0<x≤2时,点P 表示的数为-2-x,点Q 表示的数为4-2x, ∴PQ=4-2x-(-2-x )=6-x , ∴当x=2时, y=6-2=4,∴当2<x≤4时,点Q 从返回运动, 点P 表示的数为-2-x,点Q 表示的数为2x-4, ∴PQ=2x-4-(-2-x )=3x-2, ∴当x=4时, y=12-2=10,只有B 图像与上面的分析一致, 故选B. 【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ 的长度是解题的关键.7.B解析:B 【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案. 【详解】 解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <,∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限; 故选:B . 【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.8.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得156kb⎧=⎪⎨⎪=⎩,所以,直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.9.D解析:D【分析】先根据二次根式的性质求出x、y的值,再代入代数式计算即可.【详解】解:因为y+10,可知10 10 xx-≥⎧⎨-≥⎩,即11xx≥⎧⎨≤⎩,解得x=1,所以y=10;所以,252x yx y+-=210520+-=﹣1215=﹣45.故选:D.【点睛】本题考查了二次根式的意义.解决此题的关键是要先根据二次根式意义求出x,y的值再代入所求的代数式中求值.10.B解析:B【分析】根据正方形的判定:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角进行分析即可.【详解】解:A.有一个角是直角的平行四边形是正方形,说法错误,应是矩形,不符合题意;B.对角线互相垂直的矩形是正方形,说法正确,符合题意;C.一组邻边相等的矩形是正方形,说法错误,不合题意;D.各边都相等的四边形是菱形,不是正方形,不合题意.故选B.【点睛】本题主要考查了正方形的判定,关键是掌握正方形的判定方法.11.A解析:A【分析】由平行四边形性质和等腰三角形“三线合一”即可得ED⊥CA,根据三角形中位线定理可得EF=12AB;由直角三角形斜边上中线等于斜边一半可得EG=12CD,即可得EF=EG;连接EG,可证四边形DEFG是平行四边形,即可得EH=12 EG.【详解】解:如图,连接FG,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E,F,G分别是OA,OB,CD的中点,∴EF∥AB,EF=12AB,∵∠CED=90°,CG=DG=12CD,∴EG=12CD,∴EF=EG,故②正确;∵EF∥CD,EF=DG,∴四边形DEFG是平行四边形,∴EH=HG,即EH=12EG,故③正确;故选:A.【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线等于斜边一半,等腰三角形性质等;熟练运用三角形中位线定理、等腰三角形“三线合一”、直角三角形斜边上中线等于斜边一半等性质是解题关键.12.C解析:C【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【详解】沿着过点A的高将圆柱侧面展开,再过点B作高线BC,如图:则,∠ACB=90°,AC=1212=6(cm),BC=8cm,由“两点之间,线段最短”可知:线段AB的长为蚂蚁爬行的最短路程,在Rt ABC∆中,()22226810AB AC BC cm=+=+=,故选C.【点睛】本题考查了平面展开图最短路径问题,解题的关键是根据题意画出展开图,表示各线段的长度.二、填空题13.2【分析】先根据平均数的定义求出x然后运用方程公式求解即可【详解】解:根据题意得(3+4+5+x+6)=5×5解得:x=7则这组数据为34576的平均数为5所以这组数据的为s2=(3﹣5)2+(4﹣解析:2【分析】先根据平均数的定义求出x,然后运用方程公式求解即可.【详解】解:根据题意得(3+4+5+x+6)=5×5,解得:x=7,则这组数据为3,4,5,7,6的平均数为5,所以这组数据的为s2=15[(3﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(6﹣5)2]=2.故答案为:2.【点睛】本题考查了平均数的定义和方差公式,解答本题的关键是理解平均数的定义和掌握求方差的方法.14.200【解析】【分析】设统计的总人数为x答对11道题的人数为a根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人解析:200【解析】【分析】设统计的总人数为x,答对11道题的人数为a,根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人数乘以其平均分加上做对10个以上题的人答对的总题数等于所有被统计的人答对的总题数.做对10个题和10个以下的人数乘以其平均分加上做对11,12,13,14道题的人答对的总题数等于所有被统计的人答对的总题数列方程求解即可.【详解】设统计的总人数为x ,答对11道题的人数为a .∵做对4个题和4个以上的人数为(x-7-8-10-21)=(x-46)人,∴所有学生做的总题数为:(x-46)×6+0×7+1×8+2×10+3×21=6x-185;又∵做对10个题和10个以下的人数为(x-a-15-6-3-1)=(x-a-25)人,∴所有学生做的总题数为:(x-a-25)×4+15×1+14×3+13×6+12×15+11a=4x+215+7a , ∴6x-185=4x+215+7a ,2x=400+7a , x=200+ 72a , ∵a 为自然数,∴当a=0时x 取最小值200.所以至少统计了200人.故答案为200【点睛】本题考查了加权平均数及方程的应用,有一定的难度.解题关键是根据答对的总题数不变列方程.15.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩.故答案为:27x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.16.70【分析】利用待定系数法求出相遇前y 与x 的关系式确定出甲乙两地的距离进而求出两车的速度即可确定出所求【详解】解:设线段AB 的解析式为把与代入得:解得即令则即甲乙两地相距280千米设两车相遇时慢车行 解析:70【分析】利用待定系数法求出相遇前y 与x 的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.【详解】解:设线段AB 的解析式为y kx b =+,把()1.5,70与()2,0代入得: 1.57020k b k b +=⎧⎨+=⎩, 解得140280k b =-⎧⎨=⎩, 即140280y x =-+,令0x =,则280y =,即甲乙两地相距280千米,设两车相遇时,慢车行驶了x 千米,则快车行驶了()40x +千米,根据题意得:40280x x ++=,解得:120x =,即两车相遇时,慢车行驶了120千米,则快车行驶了160千米,∴快车的速度为80千米/时,慢车速度为60千米/时,根据题意得:()28016080 1.5-÷=(小时),1.56090⨯=(千米),2801209070--=(千米),则快车到达乙地时,慢车还有70千米到达甲地.【点睛】本题考查一次函数的应用,解题的关键是能看懂函数图象,利用数形结合的思想将图象与已知条件联系在一起,灵活变化,找出所求问题需要的条件.17.①②【分析】先证明∠ACD=∠BCE 根据三角形全等判定定理SAS 可证明△ADC ≌△BEC ;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE ,根据三角形全等判定定理SAS 可证明△ADC ≌△BEC ;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得OB =OC ;利用三角形三边关系可得DE BC ≥;根据OB =OC 可知点O 在BC 的垂直平分线上,找到点O 的起始位置及终点位置,即可求出OA 的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE 是由CD 旋转得到.∴CE=CD则在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D 在AB 边上运动时,O 在线段PQ 上运动,∴当O 与P 重合时,AO 的值最小为1222AB =, 故④错误;故答案是:①②.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O 的运动路线. 18.②③【分析】利用三角形的中位线的性质证明四边形是矩形四边形是菱形四边形是矩形四边形是菱形从而可得到规律序号n 是奇数时四边形是矩形当序号n 是偶数时四边形是菱形再探究n 是奇数时四边形的周长即可解决问题【 解析:②③【分析】利用三角形的中位线的性质证明四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,从而可得到规律,序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,再探究n 是奇数时四边形的周长即可解决问题.【详解】解: 1111,,,A B C D 分别是,,,AB BC CD DA 的中点,1111111111//,,//,,22A B AC A B AC C D AC C D AC ∴== 11//,A D BD 11111111//,,A B C D A B C D ∴=∴ 四边形1111D C B A 是平行四边形,,AC BD ⊥ 11//,A B AC 11//,A D BD 1111,A B A D ∴⊥∴ 四边形1111D C B A 是矩形,1111,AC B D ∴=如图,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,∴ 2211221111,,22A B AC A D B D == 四边形2222A B C D 是平行四边形, 2222,A B A D ∴=∴ 四边形2222A B C D 是菱形,故①不符合题意,2222,A C B D ∴⊥同理可得:四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,故②符合题意,······总结规律:四边形n n n n A B C D , 当序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,111111111111,,2222A B C D AC a A D B C BD b ====== ∴ 四边形1111D C B A 的周长为,a b +如图, 四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,222222112211,,,A C B D A C A D B D A B ∴⊥==由中位线的性质同理可得:33332233332211111111,,22242224A DBC BD a a D C A B A C b b ===⨯====⨯= 所以四边形3333A B C D 的周长为()1,2a b + 由规律可得:四边形5555A B C D 是矩形, 同理可得:四边形5555A B C D 的周长是()11.224a b a b +⨯+=故③符合题意. 故答案为②③.【点睛】本题考查三角形的中位线的性质,中点四边形,菱形的判定与性质,矩形的判定与性质,解题的关键是学会从特殊到一般,探究规律,利用规律解决问题.19.【分析】根据二次根式的性质被开方数大于等于0列出不等式即可求解【详解】由题意得:解得:故答案为:【点睛】本题主要考查了二次根式熟练掌握二次根式的性质并列出不等式是解决本题的关键解析:3x ≥【分析】根据二次根式的性质,被开方数大于等于0,列出不等式即可求解.【详解】由题意得:30x -解得:3x故答案为:3x .【点睛】本题主要考查了二次根式,熟练掌握二次根式的性质并列出不等式是解决本题的关键. 20.8【分析】过B 点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B 点作于点与交于点作点E 关于AM 的对称点G 连结GD 则ED=GD 当点BDG 三点在 解析:8【分析】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知 BD DE +的最小值是线段BF 的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,则ED=GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.三、解答题21.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=36 40⨯︒︒;(3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.(1)86,11.2;(2)见解析【分析】(1)根据中位数的定义和方差的公式进行解答即可求解;(2)从中位数和方差的意义进行分析即可求解.【详解】(1)把甲同学5次测试成绩按从小到大的顺序排列如下,80,83,86,86,90, 则中位数即为86, 甲同学成绩的方差:()()()()()22222186858385+9085+8085+86855⎡⎤⨯-+----⎣⎦()()22222112+5+5+15⎡⎤=⨯+--⎣⎦ ()114+25+25+15=⨯+ 1565=⨯ 11.2=(2)数据的集中趋势:①从中位数看,甲的中位数略大于乙的中位数,说明甲的数学成绩略好于乙;数据的离散程度:②从方差看,甲的方差小于乙的方差,且两人的平均成绩相同,说明甲的成绩比乙更稳定;数据的变化趋势:③从两人成绩的变化趋势看,乙的成绩在逐渐上升,说明乙的成绩进步较大.【点睛】本题考查中位数的定义、方差的计算公式及意义,解题的关键是熟练掌握求一组数据的中位数和方差的方法公式.23.(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,则233a b b =+⎧⎨-=⎩,解得:533a b ⎧=⎪⎨⎪=-⎩, ∴直线BC 的表达式为533yx ; (2)在直线3(0)y kx k =-≠中, 令x=0,则y=-3,即直线3(0)y kx k =-≠必经过(0,-3),∵直线3(0)y kx k =-≠与线段AB 没有交点,AC :33y x =--,BC :533y x , 可得k 的取值范围是:-3<k <53且k≠0. 【点睛】本题考查了一次函数表达式,一次函数图象上点的坐标特征,理解直线3(0)y kx k =-≠与线段AB 没有交点是解题的关键.24.(1)3BC AD =,见解析;(2)见解析【分析】(1)先证明四边形ABED 是平行四边形,得到AD BE =,同理得到AD FC =,根据四边形AEFD 是平行四边形,得到AD EF =,从而得到AD BE EF FC ===,进而得到3BC AD =;(2)选择论断②作为条件.根据DE ∥AB ,得到B DEC ∠=∠,从而证明90DEC C ∠+∠=,得到90EDC ∠=,根据EF FC =,得到DF EF =,从而证明平行四边形AEFD 是菱形.【详解】解:(1)线段AD 与BC 的长度之间的数量为:3BC AD =.证明:∵AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形.∴AD BE =.同理可证,四边形AFCD 是平行四边形.∴AD FC =.又∵四边形AEFD 是平行四边形,∴AD EF =.∴AD BE EF FC ===.∴3BC AD =.(2)选择论断②作为条件.证明:∵DE ∥AB ,∴B DEC ∠=∠.∵90B C ∠+∠=,∴90DEC C ∠+∠=.即得90EDC ∠=.又∵EF FC =,∴DF EF =.∵四边形AEFD 是平行四边形,∴平行四边形AEFD 是菱形.【点睛】本题考查平行四边形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半等知识,熟知相关定理并根据题意灵活应用是解题关键.25.(1)3;(2)2.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、二次根式的除法,然后再计算加减运算,即可得到答案;(2)先由二次根式的性质进行化简,然后计算乘法运算和加法运算即可.【详解】解:(1)101(4)4π-⎛⎫-- ⎪⎝⎭=14=3;(2)=2=2.【点睛】本题考查了二次根式的性质,二次根式的混合运算,零指数幂,负整数指数幂,解题的关键是熟练掌握运算法则进行解题.26.(1)2b mn =;(2)(12,16,20);(3)222b k k =+【分析】(1)根据表格中提供的数据可得答案; (2)把4m =,2n =代入()22222m n mn m n -+,,即可求解;(3)根据勾股定理求解即可;【详解】(1)∵4=2×2×1,12=2×3×2,8=2×4×1,24=2×4×3,…,∴2b mn =,故答案为:2b mn =;(2)当4m =,2n =时,a=m 2-n 2=42-22=12,2b mn ==2×4×2=16,c=m 2+n 2=42+22=20,∴勾股数()a b c ,,为(12,16,20),故答案为:(12,16,20);(3)根据题意,得222(21)(1)k b b ++=+,∴22244121k k b b b +++=++,解得222b k k =+.【点睛】本题考查了数字类规律探究,以及勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学下学期期末测试题
一、选择题
1. 下列事件中,属于不确定事件的是( )
A .通常水加热到100 ℃时沸腾
B .测量聊城某天的最低气温,结果为-150 ℃
C .袋中装有5个黑球,从中摸出一个是黑球
D .篮球队员在罚球线上投篮一次,未投中 2、等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为( ) A 、22厘米 B 、17厘米 C 、13厘米 D 、17厘米或22厘米
3、在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P 、O 、A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A 、2个 B 、3个 C 、4个 D 、5个 4某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分 钟的概率 ( ) A .2
1
B .31
C .41
D .5
1
5.下列语言是命题的是( )A.画两条相等的线段 B.等于同一个角的两个角相等吗?
C.延长线段AO 到C ,使OC =OA
D.两直线平行,内错角相等. 6、下列方程组中,二元一次方程组一共有 ( )个
(1)⎩⎨⎧=+-=x y y x 51(2)⎩⎨⎧=+=-032y x y x (3)⎪⎩
⎪⎨⎧=-=-1
2
3
1y x y x (4)⎩⎨⎧-==-532x y y x
A 、1个
B 、2个
C 、3个
D 、4个
7. 某同学掷一枚硬币,结果是一连9次都掷出正面朝上,请问他第10次掷出硬币时出现正面朝上的概率为( )A .小于 1
2
B .大于 1
2
C . 12
D .不能确定
8.(如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3. A 、1个 B 、2个 C 、3个 D 、4个 9. 观察函数y 1和y 2的图象, 当x=1,两个函数值的大小为 ( ) A 、y 1> y 2 B 、y 1< y 2 C 、 y 1=y 2 D 、 y 1≥ y 2 10、满足下列条件的△ABC 中,不是直角三角形的是( ) A 、∠B+∠A=∠C B 、∠A :∠B :∠C=2:3:5
C 、∠A=2∠B=3∠C
D 、一个外角等于和它相邻的一个内角
-1
-2
1
2
3
x
y
31-1
24
y y 1
2
11.下列说法①x =0是2x -1<0的解;②x =3
1
不是3x -1>0的解;③-2x
-1<0的解集是x >2;④不等式⎩⎨⎧>>2
1
x x 的解集是x >1,其中正确的个数是
( )A .1个 B .2个 C .3个 D .4个
12、已知:正方形ABCD 的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b 的长分别是 ( )
A 、a=3,b=5
B 、a=5,b=3
C 、a=6.5,b=1.5
D 、a=1.5,b=6.5 二、填空题
13 一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为 .
14.如果不等式3x -m ≤0的正整数解只有3个,那么k 的范围是 .
15.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是 。
16.若不等式组⎩⎨⎧<->+253
2b x a x 的解集为-1<x <1,那么a ·b 的值等于
17.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设
这个三角形中 _________
18.如图,在Rt △ABC 中,∠ABC=90°,DE 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,∠BAE=20°,则∠C= _________ . 19.如图,在△ABC 中,BI 、CI 分别平分∠ABC 、∠ACF ,DE 过点I ,且DE ∥BC .BD=8cm ,CE=5cm ,则DE 等于 _________ .
20. 若不等式组⎩
⎨⎧->+<121
m x m x 无解,则m 的取值范围是 .
三、解答题 21、解不等式:
2192
136
x x -+-≤,并把解集表示在数轴上.
22.如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论)
b
a
B
D
A
C
23.某种商品进价150元,标价200元,但销量较小。
为了促销,商场决定打折销售,若为了保证利润率不底于20%,那么至多打几折?
26、有一个小正方体,正方体的每个面分别标有1,2,3,4,5,6这六个数字.现在有
甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利
者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什
么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?
27、某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.
(1)求购进甲,乙两种钢笔每支各需多少元?
(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?
(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
28.已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F.
(1)求证:BF=AC;
(2)求证:.。