2018八年级下学期数学期末考试题(含答案)
2018年浙教版八年级(下)数学期末考试卷

2018年浙教版八年级(下)数学期末考试卷一、选择题(每小题 2分,共20分)1. (2分)(2010?深圳)下列图形中,是中心对称图形但不是轴对称图形的是(3V3|D .師&( 2分)(2010?丹东)把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个 等腰梯形,剪掉部分的面积为 6cm 2,则打开后梯形的周长是()* h ------- 1—►h bUIS\A . (10+2^13) cm IB . (10+Q13) cmC . 22cmD . 18cmC . 只有一个实数根D .没有实数根3.(2分)若化简11 一汎| •-J的结果为2x-5,则x 的取值范围是()A . 4.( x 为任意实数B . 1$詔C . x 昌D . x 詔2分)(2007?湖州)要比较两位冋学在五次数学测验中谁的成绩比较稳定,应选用的统计量是( )A . 5.(平均数 2分)一兀一次方程 xB .中位数 2+x - 1=0的两根分别为X 1C .众数 ,X 2,则丄+丄=()X1 x 2D . 方差 A .12JB■ 1C.D .7^6. (2分)(2007?日照)如图,在周长为20cm 的?ABCD 中,AB 朮D ,对角线AC 、BD 相交于点 O, OE 丄BD 交AD 于E ,则△ ABE 的周长为()B .有两个不相等的实数根 22. (2分)(2003?武汉)不解方程,判别方程 5x - 7x+5=0的根的情况是(A .有两个相等的实数根)B . 6cmC . 8cmD . 10cmA . 4cm 7. (2分)(2010?威海)如图,在梯形 ABCD 中,AB // CD , AD=BC ,对角线 AC 丄BD ,垂足为 O ,若CD=3 , AB=5,贝U AC 的长为()C .B .C .9.(2分)(2005?宁波)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB丄x轴于B , CD丄y 轴于D (如图),则四边形ABCD的面积为()A .1B.32C.2D.12 J10 . (2分)关于x的方程2 2kx+2 (k - 1)x+仁0有两个实数根,则k的取值范围是()A . k v丄2B.k i C.k<2且k旳2D.k气且⑴二、填空题(每小题3分,共30分)11. (3分)化简:. 吕」'= ________________________ .212. (3分)当x= _____________ 时,代数式6x +15X+12的值等于21.13. (3分)某公司在2012年的盈利额为200万元,预计2014年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在 _______________________ 2013年的盈利额为万元. 14. (3分)(2006?芜湖)一组数据5, 8, x, 10 , 4的平均数是2x,则这组数据的方差是 _____________________________215. ________________________________________________________________________________________ (3分)关于x的一元二次方程(a- 1)x+x+|a|- 1=0的一个根是0,则实数a的值为_____________________________________ 16. ______________________ (3分)如图①,将长为20cm,宽为2cm的长方形白纸条,折成如图②的图形并在其一面着色,则着色的面积为________________ cm2.17. (3分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A , B点构成直角三角形ABC的顶点C的位置有____________________________________________________ 个.A18. (3分)已知n是正整数,P n (X n, y n)是反比例函数「图象上的一列点,其中X〔=1 , X2=2 ,…,X n=n ,X记T1=x1y2, T2=x2y3, …,T9=x9y10;若T1=1,贝y T1?T2--T9 的值是 _____________________ .19. (3 分)如图,在 Rt △ ABC 中,/ BAC=90 ° AB=3 , AC=4,点 P 为 BC 边上一动点,PE 丄 AB 于点 E , PF 丄AC 于点F ,连结EF ,点M 为EF 的中点,贝U AM 的最小值为 ___________________________ .20. ( 3分)(2009?莆田)如图,在 x 轴的正半轴上依次截取 OA 1 =A i A 2=A 2A 3=A 3A 4=A 4A 5,过点A A 2、 A 3、A 4、A 5分别作x 轴的垂线与反比例函数y= : (x 老)的图象相交于点P i 、P 2、P 3、P 4、P 5,得直角三 X角形 OP i A i 、A 1P 2A 2、A 2P 3A 3、A 3P 4A 4、A 4P 5A 5,并设其面积分别为S i 、S 2、S 3、S 4、S 5,则S 5 的值为三、解答题(共50分)2i . ( 6分)计算:_(":—;22. ( 6分)解方程:2(1) 2x - x — 6=0 ;(2) - I '' W J(V3-V2)叮(逅)2(2) y -I =—23. (6分)(2006?扬州)某校九年级(1)班积极响应校团委的号召,每位同学都向希望工程”捐献图书,全班40名同学共捐图书320册•特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书•班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数45-r\)6785人数68J152■■(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.24. (6分)(2007?呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克, 每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25. (8分)如图,在厶ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF 和四边形CDHN 都是正方形.求证:△ FMH是等腰直角三角形.B CD26. (8分)已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3•当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD的面积.27. (10分)(2008?镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T (m , n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000 米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O (北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m - n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).北奥林匹克厂场京路占。
河北省石家庄市桥西区2018-2019学年八年级(下)期末数学试卷(含解析)

2018-2019学年河北省石家庄市桥西区八年级(下)期末数学试卷一、精心选择(本大题共16个小题,每小题2分,共32分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(2分)下列函数中,是正比例函数的是()A.B.y=2x2C.y=x+2D.y=﹣2x2.(2分)一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.(2分)如图,小手盖住的点的坐标可能是()A.(4,﹣1)B.(﹣1,﹣4)C.(2,3)D.(﹣2,2)4.(2分)已知▱ABCD的周长为24,△ABD的周长为19,则对角线BD的长是()A.4B.5C.6D.75.(2分)下列调查中,你认为最适宜用普查的是()A.调查一批显像管的使用寿命B.调查全班学生的视力情况C.调查某罐头厂生产的一批罐头的质量D.调查全市中学生每天体育锻炼的时间6.(2分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.97.(2分)已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3B.﹣1C.1D.38.(2分)在函数y=中,自变量x的取值范围是()A.x>0B.x≥0C.x>3D.x≥39.(2分)某校有500名学生参加体育测试,其成绩在25﹣30分之间的有300人,则在25﹣30分之间的频率是()A.0.6B.0.5C.0.3D.0.110.(2分)已知正比例函数y=kx(k≠0)的函数值随x的增大而增大,则一次函数y=x+2k 的图象大致是()A.B.C.D.11.(2分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形12.(2分)对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大13.(2分)如图所示,在矩形ABCD中,点E是对角线AC,BD的交点,点F是边AD的中点且AB=8,BC=6,则△DEF的周长是()A.10B.12C.14D.2414.(2分)如图6×6的正方形网格放置在平面直角坐标系中,每个小正方形的顶点称为格点.每个小正方向的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k ≠0)与正方形ABCD有公共点,则k不可能是()A.1B.C.3D.215.(2分)如图,把矩形ABCD沿EF翻折,使点B恰好落在AD边的B'处,若矩形的面积为9,AE=B'D.∠EFB=60°,则线段BE的长是()A.B.3C.D.616.(2分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形EFGD,动点P从点A出发,沿A→E→F→G→C→B的路线,绕多边形的边匀速运动到点B时停止,则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.二、准确填空(本大题共3个小题,17、18每小题3分,19题每空2分,共10分,)17.(3分)点P(2,4)到y轴的距离是18.(3分)已知直线y=ax+b与y=x交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.19.(4分)如图,将矩形ABCD在直线上按顺时针方向无滑动翻滚,可依次得到矩形A1B1C1D1,矩形A2B2C1D1矩形A3B2C2D2,…,若AB=2,BC=4,那么AA3的长为,AA15的长为.三、挑战技能(本大题共4个小题,20、21题每题6分,22、23题每题8分,共28分)20.(6分)如图表示的是热带风暴从发生到结束的全过程.请结合图象回答下列问题:(1)热带风暴从开始发生到结束共经历了个小时;(2)从图象上看,风速在(小时)时间段内增大的最快,最大风速是千米/小时;(3)风速从开始减小到最终停止,平均每小时减小多少千米?21.(6分)如图,已知网格线是由边长为1的小正方形组成,△A′B′C′是由△ABC平移得到的,建立适当的平面直角坐标系后,C点坐标为(1,2)(1)请在图中画出这个平面直角坐标系;(2)根据(1)中建立的平面直角坐标系,点A′,B′,C′的坐标分别是A′B′C′;(3)若△ABC内点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.22.(8分)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)求m的值并补全条形统计图;(3)在扇形统计图,“围棋”所在扇形的圆心角度数为;(4)设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.23.(8分)学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.四、能力展示(本大题共2个小题,24题9分、25题10分,共19分)24.(9分)如图1,△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F(1)求证:△AEF≌△BED;(2)小明在完成(1)的证明后继续探索,连接AD,BF,如图2所示,并提出猜想,你觉得小明的猜想正确吗?请说明理由.小明:如果AD平分∠BAC,那么四边形AFBD是矩形.25.(10分)甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了10个小时,乙车间在中停工一段时间维修设备,然后按停工前的作效率维续加工,直到与甲车间同时完成这批零件的加任务为止.设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为个;这批零件的总个数为个;(2)求乙车间维护设备后,乙车间加工零件的数量y与x之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间的时间.五、挑战自我(本大题11分)26.(11分)如图1所示,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AB、AF.(1)求证:AE=AF;(2)取求的中点M,EF的中点为N,连接MD,MN.则MD,MN的数量关系是,MD、MN的位置关系是(3)将图2中的直角三角板ECF,绕点C旋转180°,图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.2018-2019学年河北省石家庄市桥西区八年级(下)期末数学试卷参考答案与试题解析一、精心选择(本大题共16个小题,每小题2分,共32分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(2分)下列函数中,是正比例函数的是()A.B.y=2x2C.y=x+2D.y=﹣2x【分析】一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:A、分母中含有自变量x,不是正比例函数,故A错误;B、y=2x2是二次函数,故B错误;C、y=x+2是一次函数,故C错误;D、y=﹣2x是正比例函数,故D正确.故选:D.【点评】本题主要考查的是一次函数的定义,熟练掌握一次函数的定义是解题的关键.2.(2分)一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)【分析】根据一次函数图象与x轴交点的纵坐标等于零解答.【解答】解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).3.(2分)如图,小手盖住的点的坐标可能是()A.(4,﹣1)B.(﹣1,﹣4)C.(2,3)D.(﹣2,2)【分析】先判断出小手盖住的点在第二象限,再根据各象限内点的坐标特征解答.【解答】解:由图可知,小手盖住的点在第二象限,(4,﹣1),(﹣1,﹣4),(2,3),(﹣2,2)中只有(﹣2,2)在第二象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(2分)已知▱ABCD的周长为24,△ABD的周长为19,则对角线BD的长是()A.4B.5C.6D.7【分析】利用平行四边形的性质可知AD=BC,AB=CD,可求得AB+AD,再结合△ABD 的周长可求得BD.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,∴2(AB+AD)=24,∴AB+AD=12,又∵△ABD的周长为19,∴AB+AD+BD=19,∴12+BD=19,∴BD=7,故选:D.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对边相等是解题的关键.5.(2分)下列调查中,你认为最适宜用普查的是()A.调查一批显像管的使用寿命B.调查全班学生的视力情况C.调查某罐头厂生产的一批罐头的质量D.调查全市中学生每天体育锻炼的时间【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查一批显像管的使用寿命具有破坏性,适合抽样调查,故A不符合题意;B、调查全班学生的视力情况,适合普查,故B符合题意;C、调查某罐头厂生产的一批罐头的质量,适合抽样调查,故C不符合题意;D、调查全市中学生每天体育锻炼的时间调查范围广,适合抽样调查,故D不符合题意;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(2分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.9【分析】任意多边形的外角和为360°,用360°除以45°即为多边形的边数.【解答】解:360°÷45°=8.故选:C.【点评】本题主要考查的是多边形的外角和的应用,明确正多边形的每个外角的数×边数=360°是解题的关键.7.(2分)已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3B.﹣1C.1D.3【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出b的值即可.【解答】解:∵点A(﹣1,3)关于x轴对称的点B的坐标为(﹣1,b),∴b=﹣3,故选:A.【点评】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.8.(2分)在函数y=中,自变量x的取值范围是()A.x>0B.x≥0C.x>3D.x≥3【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣3≥0,解得x≥3.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(2分)某校有500名学生参加体育测试,其成绩在25﹣30分之间的有300人,则在25﹣30分之间的频率是()A.0.6B.0.5C.0.3D.0.1【分析】根据频率=频数÷总数,进行计算即可.【解答】解:根据题意,得:在25﹣30分之间的频率是300÷500=0.6.故选:A.【点评】此题考查了频数与频率,掌握频率的正确计算方法:频率=频数÷总数是解题的关键.10.(2分)已知正比例函数y=kx(k≠0)的函数值随x的增大而增大,则一次函数y=x+2k 的图象大致是()A.B.C.D.【分析】先根据正比例函数y=kx(k是常数,k≠0)的函数值y随x的增大而增大判断出k的符号,再根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵正比例函数y=kx(k是常数,k≠0)的函数值y随x的增大而增大,∴k>0,∵一次函数y=x+2k,∴k′=1>0,b=2k>0,∴此函数的图象经过一、二、三象限.故选:A.【点评】本题主要考查一次函数的图象与系数的关系,掌握y=kx+b(k≠0)的图象与系数的关系是解题的关键.当k>0,b>0时,图象过一、二、三象限,当k>0,b<0时,图象过一、三、四象限,当k<0,b>0时,图象过一、二、四象限,当k<0,b<0时,图象过二、三、四象限.11.(2分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【解答】解:∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项A不符合题意;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是正方形,选项C不符合题意;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,选项D符合题意;故选:D.【点评】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.12.(2分)对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大【分析】根据一次函数的性质和一次函数图象上点的坐标特征可以判断各个选项是否正确,从而可以解答本题.【解答】解:A.当x>4时,y<0,符合题意;B.它的图象经过第一、二、四象限,不符合题意;C.它的图象必经过点(﹣1,4),不符合题意;D.y的值随x值的增大而减小,不符合题意;故选:A.【点评】本题考查一次函数的性质和一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.(2分)如图所示,在矩形ABCD中,点E是对角线AC,BD的交点,点F是边AD的中点且AB=8,BC=6,则△DEF的周长是()A.10B.12C.14D.24【分析】根据勾股定理得出DB的长,再利用三角形中位线定理和三角形周长解答即可.【解答】解:∵矩形ABCD,AB=8,BC=6,∴DB=10,∵点E是对角线AC,BD的交点,点F是边AD的中点,∴EF==4,∴△DEF的周长=4+5+3=12,故选:B.【点评】此题考查了矩形的性质、三角形的中位线定理.关键是根据勾股定理得出DB 的长.14.(2分)如图6×6的正方形网格放置在平面直角坐标系中,每个小正方形的顶点称为格点.每个小正方向的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k ≠0)与正方形ABCD有公共点,则k不可能是()A.1B.C.3D.2【分析】结合图形找出点A、C的坐标,分别将其代入正比例函数解析式中求出k值,进而可找出k的取值范围,对照四个选项即可得出结论.【解答】解:观察图形可知,点A(1,2),点C(2,1),当直线y=kx过点A时,有2=k;当直线y=kx过点C时,有1=2k,解得:k=.∴若直线y=kx(k≠0)与正方形ABCD有公共点,≤k≤2.故选:C.【点评】本题考查了两条直线相交或平行问题以及一次函数图象上点的坐标特征,由点A、C的坐标找出k的取值范围是解题的关键.15.(2分)如图,把矩形ABCD沿EF翻折,使点B恰好落在AD边的B'处,若矩形的面积为9,AE=B'D.∠EFB=60°,则线段BE的长是()A.B.3C.D.6【分析】由矩形的性质得出AD∥BC,由平行线的性质得出∠DEF=∠EFB=60°,由翻折的性质得出∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E,AB=A′B′,由三角形内角和定理得出∠EB′F=60°,在Rt△A′EB′中,∠A′B′E=∠A′B′F﹣∠EB′F=30°,则B′E=2A′E,推出AD=4A′E,AB=A′B′===A′E,由AD•AB=4A′E×A′E=9,求出A′E=,得出AE=,AB=,由勾股定理得出BE==3,即可得出结果.【解答】解:连接BE,如图所示:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E,AB=A′B′,∴∠EB′F=180°﹣∠DEF﹣∠EFB′=180°﹣60°﹣60°=60°,Rt△A′EB′中,∠A′B′E=∠A′B′F﹣∠EB′F=90°﹣60°=30°,∴B′E=2A′E,∵AE=B'D=A′E,∴AD=4A′E,AB=A′B′===A′E,∵矩形ABCD的面积为9,∴AD•AB=4A′E×A′E=9,解得:A′E=,∴AE=,AB=,BE===3,故选:B.【点评】本题考查了翻折的性质、矩形的性质、勾股定理、含30°角直角三角形的性质、三角形面积与矩形面积的计算等知识,熟练掌握翻折的性质是解题的关键.16.(2分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形EFGD,动点P从点A出发,沿A→E→F→G→C→B的路线,绕多边形的边匀速运动到点B时停止,则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【分析】用面积公式计算出点P在线段运动的函数表达式,即可求解.【解答】解:①当点P在AE上运动时,S=×AB×AP=2×t=t;②当点P在EF上运动时,S=×1×2=1;③当点P在FG上运动时,S=×(t﹣1)=t﹣1;④当点P在GC上运动时,同理S=2;⑤当点P在BC上运动时,同理可得:函数的表达式为一次函数,图象为线段;故选:B.【点评】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、准确填空(本大题共3个小题,17、18每小题3分,19题每空2分,共10分,)17.(3分)点P(2,4)到y轴的距离是2【分析】根据点到y轴的距离等于横坐标的绝对值解答.【解答】解:点P(2,4)到y轴的距离为2.故答案为:2.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.18.(3分)已知直线y=ax+b与y=x交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=x交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.19.(4分)如图,将矩形ABCD在直线上按顺时针方向无滑动翻滚,可依次得到矩形A1B1C1D1,矩形A2B2C1D1矩形A3B2C2D2,…,若AB=2,BC=4,那么AA3的长为12,AA15的长为60.【分析】根据图形和AB=2,BC=4,可以求得AA3的长,再根据题意,可以求得AA15的长,本题得以解决.【解答】解:∵AB=2,BC=4,∴AA3的长为:4+2+4+2=12,AA15的长为:(15÷3)×12=5×12=60,故答案为:12,60.【点评】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.三、挑战技能(本大题共4个小题,20、21题每题6分,22、23题每题8分,共28分)20.(6分)如图表示的是热带风暴从发生到结束的全过程.请结合图象回答下列问题:(1)热带风暴从开始发生到结束共经历了16个小时;(2)从图象上看,风速在2~5(小时)时间段内增大的最快,最大风速是54千米/小时;(3)风速从开始减小到最终停止,平均每小时减小多少千米?【分析】(1)根据函数图象中的数据可以直接写出热带风暴从开始发生到结束共经历了多长时间;(2)根据函数图象可以得到风速在哪个时间段内增大的最快,最大风速是多少千米/小时;(3)根据函数图象中的数据可以计算出风速从开始减小到最终停止,平均每小时减小多少千米.【解答】解:(1)由图象可得,热带风暴从开始发生到结束共经历了16个小时,故答案为:16;(2)从图象上看,风速在2~5(小时)时间段内增大的最快,最大风速是54千米/小时,故答案为:2~5,54;(3)风速从开始减小到最终停止,平均每小时减小:54÷(16﹣10)=54÷6=9(千米/小时),即风速从开始减小到最终停止,平均每小时减小9千米/小时.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.21.(6分)如图,已知网格线是由边长为1的小正方形组成,△A′B′C′是由△ABC平移得到的,建立适当的平面直角坐标系后,C点坐标为(1,2)(1)请在图中画出这个平面直角坐标系;(2)根据(1)中建立的平面直角坐标系,点A′,B′,C′的坐标分别是A′(﹣1,0)B′(2,4)C′(﹣1,3);(3)若△ABC内点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.【分析】(1)首先根据C点坐标确定原点位置,再画出坐标系即可;(2)利用坐标系可直接得到点A′,B′,C′的坐标;(3)根据△A′B′C′位置可得△ABC的平移方法,进而可得点P的对应点P′坐标.【解答】解:(1)如图所示;(2)A′(﹣1,0),B′(2,4),C′(﹣1,3),故答案为:(﹣1,0),(2,4),(﹣1,3);(3)△ABC向上平移1个单位,向左平移2个单位到△A′B′C′的位置,故点P的对应点P′的坐标为(a﹣2,b+1).【点评】此题主要作图﹣﹣平移变换,关键是掌握图形的平移方向、平移距离.22.(8分)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)求m的值并补全条形统计图;(3)在扇形统计图,“围棋”所在扇形的圆心角度数为36°;(4)设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)m=100﹣25﹣25﹣20﹣10=20,∴“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.23.(8分)学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.【分析】首先设买电脑x台,根据题意表示出在两个公司的花费情况,在甲店花费是:3000x×80%=2400x(元),在乙店花费是:3000(x﹣1)×90%=2700x﹣2700(元),再根据合算则花费少可得不等式,解不等式即可.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.【点评】本题考查了一元一次不等式的应用,关键是根据题意表示出在两个店内的花费情况.四、能力展示(本大题共2个小题,24题9分、25题10分,共19分)24.(9分)如图1,△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F(1)求证:△AEF≌△BED;(2)小明在完成(1)的证明后继续探索,连接AD,BF,如图2所示,并提出猜想,你觉得小明的猜想正确吗?请说明理由.小明:如果AD平分∠BAC,那么四边形AFBD是矩形.【分析】(1)根据AAS或ASA证全等即可;(2)根据对角线互相平分的证明四边形AFBD是平行四边形,再根据等腰三角形三线合一证明∠ADB=90°,进而根据有一个角是直角的平行四边形是矩形得证.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E为AB的中点,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形AFBD是平行四边形,∵AB=AC,AD平分∠BAC,∴AD⊥BD,∴四边形AFBD是矩形.【点评】本题考查了矩形的判定,三角形全等的判定及性质,能够了解矩形的判定定理是解答本题的关键,难度不大.25.(10分)甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了10个小时,乙车间在中停工一段时间维修设备,然后按停工前的作效率维续加工,直到与甲车间同时完成这批零件的加任务为止.设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为75个;这批零件的总个数为1110个;(2)求乙车间维护设备后,乙车间加工零件的数量y与x之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间的时间.【分析】(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工零件件数,再根据乙车间停工前后的作效率不变求出乙加工的件数即可解答;(2)根据待定系数法,即可求出乙车间维修设备后,乙车间加工零件数量y与x之间的函数关系式;(3)根据加工的零件总件数=工作效率×工作时间,求出甲车间加工零件数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于930,求出x值,此题得解.【解答】解:(1)甲车间每小时加工零件件数为750÷10=75(件),这批零件的总件数为750+90÷2×(10﹣4+2)=1110(件).故答案为:75;1110.(2)设乙车间维护设备后,乙车间加工零件的数量y与x之间的函数关系式y=kx+b,由图象经过(4,90)与(10,360)两点可得,,解得,所以y=45x﹣90;(3)甲车间加工零件数量y与x之间的函数关系式为y=75x,当75x+45x﹣90=930时,x=8.5.答:甲、乙两车间共同加工完930件零件时甲车间所用的时间为8.5小时.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.五、挑战自我(本大题11分)26.(11分)如图1所示,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AB、AF.(1)求证:AE=AF;(2)取求的中点M,EF的中点为N,连接MD,MN.则MD,MN的数量关系是MD =MN,MD、MN的位置关系是MD⊥MN(3)将图2中的直角三角板ECF,绕点C旋转180°,图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【分析】(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,位置关系式垂直,理由三角形的中位线定理,直角三角形斜边中线的性质即可解决问题.(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再有。
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
东莞市2018-2019学年八年级下期末考试数学试题及答案

东莞市2018-2019学年度第二学期教学质量自查八年级数学参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 DA B CD BD ADA二、填空题题号 11 121314 15 答案 ≠2335°,145°,35°,145°540三、解答题16. 解:原式=y x xx y xy x -⨯+-222-----------------------------------------2分=yx xx y x -⨯-2)(----------------------------------------------------------3分 =y x ---------------------------------------------------------------------5分 17. 解:依题意有:⎩⎨⎧⨯=+⨯+=++102.89287102y x y x --------------------------------2分解得:⎩⎨⎧==53y x -------------------------------------------------------------4分答:x 的值为3,y 的值为5. --- ---------------------------------------------5分 18. 解:(1)xy 6-=-------------------------------------------------------2分 (2)当1=x 时,6-=y ----------------------------------------------------3分 当3=x 时,2-=y ---------------------------------------------------------4分 ∴当31<<x 时,26-<<-x -----------------------------------------------5分 19. 解:在梯形ABCD 中,AD//BC∴∠AEB =∠CBE --------------------------------------------------------------------------------------------1分 ∵BE 平分∠ABC∴∠ABE =∠CBE --------------------------------------------------------------------------------------------2分 ∴∠ABE =∠AEB --------------------------------------------------------------------------------------------3分 ∴AB=AE -------------------------------------------------------------------------------------------------------4分 ∵E 为AD 中点,且AD=10∴AB=AE=5----------------------------------------------------------------------------------------------------5分20. 解:∵CD ⊥AB∴∠ADC=∠BDC=90° ------------------------------------------1分 在Rt △BCD 中,DB=59, BC=3 222BC CD DB =+∴512=CD -----------------------------------------------------------------3分在Rt △ACD 中,512=CD , AC=4222AC CD AD =+---------------------------------------------------------4分∴516=AD ----------------------------------------------------------------5分四、解答题21.解:(1)500×(8%+18%+28%)=270(人)答:这一天的零花钱不超过7元的有270人 -------------------------------------4分 (2)5×8%+6×18%+7×28%+8×26%+9×14%+10×6%=7.38(元)答:这一天500名同学的零花钱的平均数是7.38元. ----------------------------8分22.解:设甲单独完成这项工程需要x 天,依题意有,---------------------1分121112=⎪⎭⎫ ⎝⎛+⨯x x ---------------------------------------------4分解得:18x = ---------------------------------------------------5分经检验,18x =是方程的解且符合题意-----------------------------------6分 这时,236x =-------------------------------------------------------7分 答:甲单独完成这项工程需要18天,乙单独完成这项工程需要36天. ----------8分 23.解:(1))∵DE ⊥AB ,AE=BE∴△ABD 是等腰三角形---------------------------------------------------1分 ∴AD=BD------------------------------------------------------------2分 ∵四边形ABCD 是菱形∴AD=AB-------------------------------------------------------------3分 ∴AD=AB=BD∴△ABD 是等边三角形∴∠ABD=60°-------------------------------------------------------4分 (2) )∵AD=AB=2,E 是中点∴AE=1 -------------------------------------------------------------5分 在Rt △AED 中,222AD DE AE =+∴3=DE -----------------------------------------------------7分∴32=⋅=DE AB S ABCD 菱形 ------------------------------------------8分24.解:(1)由题意得:n + 7<0------------------------------------------1分 解得:n <-7∴常数n 的取值范围是n <-7--------------------------------------------- 3分(2)在3432+-=x y 中,令y = 0,得x = 2∴OB = 2------------------------------------------------4分过A 作x 轴的垂线,垂足为C ,如图. ∵ S △AOB = 2 ∴21OB · AC = 2 即 21×2×AC = 2 解得AC = 2∴A 点的纵坐标为2--------------------------------------------------5分把y = 2代入3432+-=x y 中得x =-1∴点A 的坐标为(-1,2)-----------------------------------------------6分 将A (-1,2)代入xn y 7+=,得: 172-+=n ∴n =-9---------------------------------------------------------8分25.(1)△BEC 是直角三角形---------------------------------------------1分 理由是:∵四边形ABCD 是矩形∴∠ADC=∠BAD =90°,AD=BC=5,AB=CD=2---------------------------2分 在Rt △CDE 中,51222222=+=+=DE CD CE在Rt △ABE 中,AEAD-DE=1∴20222=+=AE AB BE ------------------------------------3分 又25522==BC∴222BC CE BE =+ ∴∠BEC=90°∴△BEC 是直角三角形--------------------------------------4分(2)四边形EFPH 为矩形----------------------------------------5分 证明:∵四边形ABCD 是矩形 ∴AD=BC ,AD ∥BC ∵DE=BP∴四边形DEBP 是平行四边形---------------------------------------6分 ∴BE ∥DP∵AD=BC ,AD ∥BC ,DE=BP∴AE=CP∴四边形AECP是平行四边形-------------------------------------7分∴AP∥CE∴四边形EFPH是平行四边形∵∠BEC=90°∴平行四边形EFPH是矩形------------------------------------8分。
2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
山西太原市2018-2019学年八年级下学期期末数学试题(解析版)

一.选择题
1.若a>b,则下列不等式成立的是( )
A. B.a+5<b+5C.-5a>-5bD.a-2<b-2
【答案】A
【解析】
【分析】
根据不等式的性质逐项分析即可.
【详解】不等式的两边同时除以一个正数,不等号的方向不变,故A正确.
不等式的两边同时加上或减去一个数,不等号的方向不变,故B、D错误;
A.5.5元/千克B.5.4元/千克C.6.2元/千克D.6元/千克
【答案】D
【解析】
【分析】
设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.
【详解】设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得
(1-10%)mx-4m≥4m×35%,
8.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是( )
A. (3,6)B. (3,7)C. (3,8)D. (6,4)
【答案】C
【解析】
【分析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.
A.x≠2B.x≠-2C.x≠ D.x≠-
【答案】B
【解析】
【分析】
根据分母不 零列式求解即可.
【详解】分式中分母不能为0,
所以,3 x+6≠0,解得:x≠-2,
故选B.
【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.
鲁教版(五四制)2018学年度八年级数学第二学期期末测试题(含答案详解)

鲁教版(五四制)2018学年度八年级数学第二学期期末测试题(含答案详解)1.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是( )A.2 B.4 C.6 D.82.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形3.如图,在矩形ABCD中,AB=4,BC=8,点E为CD中点,P、Q为BC边上两个动点,且PQ=2,当四边形APQE周长最小时,BP的长为()A.1 B.2 C.2D.44.如图,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁5.某公司10月份的利润为320万元,要使12月份的利润达到500万元,则平均每月增长的百分率是()A.30% B.25% C.20% D.15%6.如图,矩形ABCD和菱形EFGH均以直线HF、EG为对称轴,边EH分别交AB,AD于点M,N,若M,N分别为EH的三等分点,且菱形EFGH的面积与矩形ABCD的面积之差为S,则菱形EFGH的面积等于()A.7S B.8S C.9S D.10S7.如图,是斜边上的高,,,则的长为(A.B.C.D.8.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是()A.x2+3x﹣2=0 B.x2+3x+2=0 C.x2﹣3x+2=0 D.x2﹣2x+3=09.已知两个相似三角形的面积比是,其中小三角形的周长为,则大三角形的周长为()A.45cm B.54cm C.72cm D.48cm10.一元二次方程x2—3x+1=0的两根为x1,x2,则的值是()A.﹣3 B.-1 C.1 D.311.如图,与是位似图形,点是位似中心,若,,则________.12.若线段a 、b 满足12a b ,则a+b b的值为_____. 13.已知实数a 在数轴上的位置如图所示,化简:+|a ﹣1|=_____.14.为落实“两免一补”政策,某市年投入教育经费万元,预计年要投入教育经费万元.已知年至年的教育经费投入以相同的百分率逐年增长,则年该市要投入的教育经费为________万元.15.若一元二次方程x 2-x -1=0的两根分别为x 1,x 2,则1211+x x = . 16.请写出一个以 -2为一根的一元二次方程:___________________17.长江二桥位于长江大桥下游3公里处、桥梁长度2400米,一张平面地图上桥梁长度是4.8厘米,这张平面地图的比例尺为________18.若式子在实数范围内有意义,则x 的取值范围是_____________. 19.计算:_________. 20.如图,在中,已知,,则与的面积比为________.21.文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?22.有甲、乙两位同学,根据“关于x 的一元二次方程kx 2﹣(k+2)x+2=0”(k 为实数)这一已知条件,他们各自提出了一个问题考查对方,问题如下:甲:你能不解方程判断方程实数根的情况吗?乙:若方程有两个不相等的正整数根,你知道整数k 的值等于多少吗?请你帮助两人解决上述问题.23.关于x 的一元二次方程有两个不相等的实数根. (1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.24.已知:关于x 的方程.(1)求证:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求m 的值.25.如图,菱形花坛ABCD 的边长为20m ,DE=CE ,AE ⊥CD ,沿对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积。
浙江省杭州市萧山区2018学年初二第二学期期末考试数学试卷(含答案)

萧山区2018学年第二学期期末教学质量检测八年级数学 试题卷一、选择题(本题有10小题,每小题3分,共30分)1、计算:22-)(=( )A. 2B. -2C. ±2D. 42、中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.3、若x=1是方程x 2-2mx+3=0的解,则m 的值为( )A. 25B. 2C. 21D. -24、已知平行四边形ABCD 中,∠A+∠C=200°,则∠B 的度数是( )A. 60°B. 80°C. 100°D. 160°5、对于一组数据:85,95,85,80,80,85,下列说法不正确的是( )A. 平均数为85B. 众数为85C. 中位数为82.5D. 方差为25 6、已知反比例函数x k y(k 为常数,且k ≠0)的图象经过点(3,4),则该函数图象必不经过点( )A. (2,6)B. (-1,-12)C. (21,24)D. (-3,8)7、若m=37-4,则( )A. 1.5<m <2B. 2<m <2.5C. 2.5<m <3D. 3<m <3.58、据统计,湘湖景区跨湖桥遗址参观人数2016年为10.8万人次,2018年为16.8万人次,设该景点2016-2018年参观人次的年平均增长率为x ,则可列方程( )A. 10.8(1+x )=16.8B. 10.8(1+2x )=16.8C. 10.8(1+x )2=16.8D. 10.8[(1+x )+(1+x )2]=16.89、如图,点A ,B ,E 在同一条直线上,正方形ABCD ,BEFG 的面积分别为m ,n ,H 为线段DF 的中点,则BH 的长为( )A. 222n m +B. 222n m +C. 22222n m + D. )(n m +22 10、已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数32的图象上,且x 1<x 2<x 3,( )A. 若y 3<y 1<y 2,则x 1+x 2+x 3>0B. 若y 1<y 3<y 2,则x 1x 2x 3<0C. 若y 2<y 3<y 1,则x 1+x 2+x 3>0D. 若y 2<y 1<y 3,则x 1x 2x 3<0二、填空题:本题有6小题,每小题3分,共18分.11.当x=54时,二次根式√x +1的值为 . 12. 甲、乙两地某10天的日平均气温统计图如图所示.则甲、乙两地这10天的日平均气温的方差大小关系为:S 甲2 S 乙2.(用>,=,<填空)13. 当0<m <3时,一元二次方程x 2+mx+m=0的根的情况是 .14.如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D 落在y 轴正半轴上点D’处,则点C 的对应点C ’的坐标为 .15.如图,△OAB 的顶点A 在双曲线y=6x (x >0)上,顶点B 在双曲线y=-4x (x <0)上,AB 中点P 恰好落在y 轴上,则△OAB 的面积为 .16.在菱形ABCD 中,∠A=60°,对角线BD=3,以BD 为底边作顶角为120°的等腰三角形BDE ,则AE 的长为 .三、解答题:本题有7小题,共52分.解答应写出文字说明,证明过程或推演步骤.17.(本题满分6分)计算:(1)√18-4√12; (2)(1-√2)2+√24÷√3.18.(本题满分6分)选用适当的方法解下列方程:(1)(x -2)2-9=0; (2)x (x+4)=x+4.19.(本题满分7分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你依据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).20.(本题满分7分)关于x的方程ax2+bx+c=0(a≠0).(1)已知a,c异号,试说明此方程根的情况.(2)若该方程的根是x1=-1,x2=3,试求方程a(x+2)2+bx+2b+c=0的根.21.(本题满分8分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.(1)求证:CM⊥EF.,请直接写出CM的长.(2)设正方形ABCD的边长为2,若五边形BCDEF的面积为23822.(本题满分8分)的图象交于点A(a,3),B(-1,b).已知一次函数y1=3x-3的图象与反比例函数y2=mx(1)求a,b的值和反比例函数的表达式.(2)设点P(h,y1),Q(h,y2)分别是两函数图象上的点.①试直接写出当y1>y2时h的取值范围;②若y2- y1=3,试求h的值.23.(本题满分10分)如图,矩形ABCD中,BC>AB,E是AD上一点,△ABE沿BE折叠,点A恰好落在线段CE上的点F处.(1)求证:CF=DE;(2)设AB=m.AD,试求∠AB E的度数;①若m=√32②设AE=k,试求m与k满足的关系式.AD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下期末试题2018
一、选择题(本大题共15小题,每小题3分,共45分)
1.若a >b ,则下列各式中一定成立的是( )
A .a +2<b +2
B .a 一2<b 一2
C .a 2>b
2 D .-2a >-2b
2.下面式子从左边到右边豹变形是因式分解的是( )
A .x 2-x -2=x (x 一1)-2
B .x 2—4x +4=(x 一2)2
C .(x +1)(x —1)=x 2 - 1
D .x -1=x (1-1
x )
3下列所培图形中·既是中心对称图形又是轴对称图形的是( )
A B C D 4.多项式x 2-1与多项式x 2一2x +1的公因式是( )
A .x 一1
B .x +1
C .x 2一1
D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )
A .四边形
B .五边形
C .六边形
D .七边形 6. 下列多项式能用完全平方公式分解因式的有 ( )
A .m 2-mn +n 2
B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +4 7.如图,将一个含30°角的直角三角板AB
C 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120°
D .150°
30°
B'
C '
C
B
A
8.运用分式的性质,下列计算正确的是( )
A .x 6
x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y =0
9.如图,若平行四边形ABCD 的周长为40cm ,BC =2
3AB ,则BC =( )
A .16crn
B .14cm
C .12cm
D .8cm
O
C
B
D
10.若分式方程x -3x -1=m
x -1有增根,则m 等于( )
A .-3
B .-2
C .3
D .2
11.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )
A .18
B .14
C .12
D .6
E
D
B
C
A
12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )
x
y
2
-1
P
O
A .
B .
C .
D .
13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( ) A .5
B .125
C .24
5
D .185
A D
O
B
C
E
14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )
A .-1<x <1或x <-2
B .x <-2或1<x <2
C .-2<x <1或x >1
D .x <-2或x >2
15.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( ) A .(22017,-22017) B .(22016,-22016) C .(22017,22017) D .(22016,22016)
x y B 2
A 2
B 1
A 1
A
B
O
二、填空题(本大题共5小题,每小题4分,共20分)
16.若分式1x -1
有意义,则x 的取值范围是_______________.
17.若m =2,则m 2-4m +4的值是_________________.
18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.
C D A
O
B
P
19.不等式组⎩⎨⎧x >4
x >m
(m ≠4)的解集是x>4,那么m 的取值范围是_______________.
20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.
21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =
12
5
.其中正确结论的是____________(只填序号).
22.(本小题满分7分) (1)分解因式:ax 2-ay 2;
(2)解不等式组⎩⎨⎧x -1<2 ①
2x +3≥x -1 ②
,并把不等式组的解集在数轴上表出来.
23(本小题满分7分)
(1)如图,在 ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .
(2)先化简,再求值:(1a +2-1a -2)÷1
a -2
,其中a =6
24.(本小题满分8分)
在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长1个单位长度的正方形).
(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1; (2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2; (3)直接写出点B 2、C 2的坐标.
25.(本小题满分8分)
某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?
(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?
26.(本小题满分9分)
探索发现:11×2
=1-12;12×3=12-13;13×4=13-1
4……
根据你发现的规律,回答下列问题:
(1) 14×5=___________,1n ×(n +1)
=___________;
(2)利用你发现的规律计算:
11×2+12×3+13×4+……+1n ×(n +1)
(3)灵活利用规律解方程:
1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.
27.(本小最满分9分)
如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .
(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:
(2)将正方形EFGH 绕点E 顺时针方向旋转
①如图2,判断BH 和 AF 的数量关系,并说明理由;
②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.
28.(本小题满分9分)
如图,矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(一6,8).矩形ABCO 沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与OA 、x 轴分别交于点D 、F .
(1)直接写出线段BO 的长: (2)求点D 的坐标;
(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.
11。