2018年最新人教版八年级下册数学全册教案及答案

合集下载

18.2.2.2 菱形的判定-2018年八年级下册数学名师学案(人教版)

18.2.2.2 菱形的判定-2018年八年级下册数学名师学案(人教版)

18.2.2.2 菱形的判定-2018年八年级下册数学名师学案(人教版)1. 菱形的定义菱形是指具有以下特点的四边形:•四条边的长度相等;•相邻两条边之间的夹角都是直角。

2. 菱形的性质2.1 对角线的性质菱形的两条对角线有如下性质:•两条对角线相等;•两条对角线平分菱形的内角;•两条对角线的交点为菱形的两个相邻顶点的连线中点。

2.2 内角的性质菱形的内角有如下性质:•两个相邻的内角为直角;•两个不相邻的内角之和为180°。

3. 菱形的判定判断一个四边形是否为菱形,可以根据以下条件进行判定:3.1 边长判定判断一个四边形的四条边是否相等,如果都相等,则该四边形是菱形。

3.2 角度判定判断一个四边形的四个内角是否为直角,如果都是直角,则该四边形是菱形。

3.3 边长和角度综合判定判断一个四边形既满足边长相等又满足角度为直角的条件,则该四边形是菱形。

4. 实例分析实例1已知四边形ABCD,满足AB = BC = CD = DA,且∠DBC = 90°,则判断四边形ABCD是否为菱形。

解:根据边长判定可知ABCD的四条边相等,满足菱形的边长条件。

由于∠DBC = 90°,满足菱形的角度条件。

综合边长和角度判定,可以得出结论,四边形ABCD是菱形。

实例2已知四边形EFGH,满足EF = FG = GH = HE,且∠FGH = 120°,则判断四边形EFGH是否为菱形。

解:根据边长判定可知EFGH的四条边相等,满足菱形的边长条件。

由于∠FGH = 120°,并不是直角角度,不满足菱形的角度条件。

综合边长和角度判定,可以得出结论,四边形EFGH不是菱形。

5. 总结菱形是一种四边形,它具有四条边相等和相邻两条边之间的夹角为直角的特点。

菱形的对角线相等,并且平分菱形的内角。

我们可以通过判定四边形的边长和角度是否满足菱形的条件,来确定一个四边形是否为菱形。

在考试和解题过程中,我们可以运用菱形的判定方法,准确地判断一个四边形是否为菱形,从而解决与菱形相关的问题。

2018八年级数学下册全册重点知识总结

2018八年级数学下册全册重点知识总结

2018八年级数学下册全册重点知识总结2018八年级数学下册全册重点知识总结第一章三角形的证明※知识点1 全等三角形的判定及性质判定定理简称判定定理的内容性质SSS三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等SAS两边及其夹角分别相等的两个三角形全等ASA两角及其夹边分别相等的两个三角形全等AAS两角分别相等且其中一组等角的对边相等的两个三角形全等※知识点2 等腰三角形的性质定理及推论内容几何语言条件与结论等腰三角形的性质定理等腰三角形的两底角相等。

简述为:等边对等角在△ABC中,若AB=AC,则∠B=∠C条件:边相等,即AB=AC结论:角相等,即∠B=∠C推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一在△ABC,AB=AC,AD⊥BC,则AD是BC边上的中线,且AD平分∠BAC条件:等腰三角形中一直顶点的平分线,底边上的中线、底边上的高线之一结论:该线也是其他两线※等腰三角形中的相等线段:1等腰三角形两底角的平分线相等2等腰三角形两腰上的高相等3两腰上的中线相等4底边的中点到两腰的距离相等※知识点3 等边三角形的性质定理内容性质定理等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。

它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形※知识点4 等腰三角形的判定定理内容几何语言条件与结论等腰三角形的判定定理有两个角相等的三角形是等腰三角形,简述为:等校对等边在△ABC中,若∠B=∠C则AC=BC条件:角相等,即∠B=∠C结论:边相等,即AB=AC解读【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”※知识点5 反证法概念证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果第二章一元一次不等式与一元一次不等式组一. 不等关系※1. 一般地,用符号“”(或“≤”), “”(或“≥”)连接的式子叫做不等式.※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 === 大于等于0(≥0) === 0和正数 === 不小于0非正数 === 小于等于0(≤0) === 0和负数 === 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果ab,那么a+cb+c, a-cb-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果ab,并且c0,那么acbc, .(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果ab,并且c0,那么acbc,※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果ab,那么a-b是正数;反过来,如果a-b是正数,那么ab;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果ab,那么a-b是负数;反过来,如果a-b是正数,那么ab;即:ab === a-b0a=b === a-b=0ab === a-b0三. 不等式的解集:※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2. 解一元一次不等式的过程与解一元一次方程类似,当不等式两边都乘以一个负数时,不等号要改变方向.※3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)※4. 一元一次不等式基本情形为axb(或axb)①当a0时,解为 ;②当a=0时,且b0,则x取一切实数;当a=0时,且b≥0,则无解;③当a0时, 解为 ;5. 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.六. 一元一次不等式组※1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.(解集的公共部分,通常是利用数轴来确定.)※3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且ab)xb 两大取较大xa 两小取小axb 大小交叉中间找无解在大小分离没有解(是空集)第三章图形的平移与旋转一、平移变换:1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2018年最新人教版八年级数学下册全册教案

2018年最新人教版八年级数学下册全册教案

第十六章 分式 16.1分式16.1.1从分数到分式 一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 . 2.当x取何值时,分式 无意义? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-xx x --2212312-+x x3. 当x 为何值时,分式 的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b,b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80,ba s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.x 802332xx x --212.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?43201524983432015249833.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例 5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

2018新人教版八年级数学下册知识点总结归纳(全面-实用)

2018新人教版八年级数学下册知识点总结归纳(全面-实用)

八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a ≥0,b ≥0); b b a a=(b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围a (a >0)a -(a <0)0 (a =0);(1)x x --+315;(2)22)-(x 例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知: 例5、 已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a ≥bD. a ≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( ) A. ; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-. 例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。

(完整版)最新人教版八年级数学下册全册教案

(完整版)最新人教版八年级数学下册全册教案

义务教育课程标准人教版
数学教案
九年级下册
科任老师
二次根式
16.1 二次根式(1)
一、学习目标
1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:
)0(0a a 和)
0()(2a a a 二、学习重点、难点
重点:二次根式有意义的条件;二次根式的性质.
难点:综合运用性质)0(0a a 和)0()(2a a a 。

三、学习过程
(一)复习引入:
(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______,
a 一定是_______数。

(2)4的算术平方根为2,用式子表示为 =__________;
正数a 的算术平方根为_______,0的算术平方根为_______;
式子)0(0a a 的意义是。

(二)提出问题
1、式子a 表示什么意义?
2、什么叫做二次根式?
3、式子
)0(0a a 的意义是什么?4、)0()(2a a a 的意义是什么?
5、如何确定一个二次根式有无意义?
(三)自主学习
自学课本第2页例前的内容,完成下面的问题:
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16,34,5,)0(3a a
,1
2x 2、计算:4。

2018年春八年级数学下册全一册教案(打包23套) 人教版16(免费推荐下载)

2018年春八年级数学下册全一册教案(打包23套) 人教版16(免费推荐下载)

19.2.2 一次函数()大家好,今天我说课的内容是人教版八年级数学(下册)第十九章第二节《一次函数》的第二课时——“一次函数的图象与性质”。

下面我从教材分析、学情分析、教法学法、教学过程、教学评价及板书设计等个方面来进行说课。

一、说教材分析(1)地位与作用:本节课的主要内容是探究一次函数的图象与性质。

它既是前面所学正比例函数图象与性质的延续类比运用,又为后面学习二次函数和反比例函数奠定了基础。

因此,它在教材中起着承上启下的重要作用。

总体来看,本节教学使学生对研究函数的图象和性质的基本方法有初步的认识与了解,加强了代数与几何的联系,同时提供了相应的研究方法和学习策略,对于后继数形结合的学习至关重要。

(2)课标要求:能画出一次函数的图象,根据图象和解析式理解图象的变化情况(3)教学目标与教学重、难点:基于以上教材分析,并结合我校学生的实际情况,特制定教学目标如下:教学目标:知识与能力:、会画一次函数的图象;能根据图象探知一次函数的性质。

过程与方法:、通过经历自主探究性质的过程,渗透类比、数形结合等数学思想,培养学生自主学习、归纳概括等能力。

情感态度与价值观:、通过自主学习,增强学习信心与自学能力,发现探索的快乐,体验成功,发展几何直观能力。

教学重点:一次函数的图象特点与性质;教学难点:结合图象探讨一次函数的性质。

突出重点的方法:让学生亲自动手,多次绘制函数图象,并设置探究性的问题指导学生小组讨论。

突破难点的方法:借助多媒体动态展示、几何画板等让学生直观理解一次函数的性质。

二、说学情分析(1)学生的知识与能力:学生已经学习了正比例函数的图象与性质,也学习了一次函数的概念,已有了一定的函数知识储备与自主学习的能力,这为本节课的学习打下了良好的基础。

(2)学生的心理与学习困难:八年级学生好奇心强、有强烈的求知欲和表现欲,喜欢独立思考和探究,但由于学生刚开始学习函数知识,抽象思维能力比较薄弱,类比、数形结合等数学思想意识还不强,因此自主全面地概括出函数性质有一定困难,需要教师及时点拨、指导。

2018年新人版八年级数学(下册)知识点总结归纳

2018年新人版八年级数学(下册)知识点总结归纳

第十六章 二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式. 注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.(3)积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0b ,0a (bab a >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

人教版八年级数学下册二次根式

人教版八年级数学下册二次根式

求此三角形的周长.
解:由题意得 ∴a=3,
3 a≥0, 2a 6≥0,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测 拓广探索题
先阅读,后回答问题:
16.1 二次根式/
当x为何值时, x x 1有意义?
解:由题意得x(x-1)≥0
门出来呢? 0 -4 1
我们都是非负数,
1 可出来之前我们有
-1
4 正数,零和负数.
a为任意数
a
1
1161
44
16
平方之门 算术平方根之门
a2
a2
【想一想】 你发现了什么?
33
素养目标
16.1 二次根式/
2. 会运用二次根式的两个性质进行化简计算.
1. 经历探索性质( a )2 = a(a≥0)和 a2 = a (a≥0)的过程,并理解其意义,体验归纳、 猜想的思想方法.
所以x2-2xy+y2=(x-y)2=(3+5)2=64
总结:若 y a a b ,则根据被开方数大于等于0,可得a=0.
巩固练习
16.1 二次根式/
4. 已知y = x 3 3 x 8 ,求3x+2y的算术平方根.
解:由题意得
x 3≥0, 3 x≥0,
∴x=3,∴y=8,
∴3x+2y=3×3+2×8=25.
探究新知 知识点 1
16.1 二次根式/
2
a
(a≥0)
性质
(1)什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则这个数就叫 做a的平方根. a的平方根是 a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学教学工作计划一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

3班、 4班比较,3班优生稍多一些,学生非常活跃,有少数学生不上进,思维不紧跟老师。

4班学生单纯,有部分同学基础较差,问题较严重。

要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:《义务教育教科书·数学》八年级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准(2011年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。

其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。

第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。

通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。

第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。

第18章“平行四边形”主要研究一般平行四边形的概念、性质和判定,还研究了矩形、菱形和正方形等几种特殊的平行四边形。

第19章是“一次函数”,其主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系,以及以建立一次函数模型来选择最优方案为素材的课题学习。

第20章“数据的分析”主要研究平均数(主要是加权平均数)、中位数、众数以及方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

本书供义务教育八年级下学期使用,全书共需约62课时,具体分配如下:第十六章二次根式约9课时第十七章勾股定理约9课时第十八章平行四边形约15课时第十九章一次函数约17课时第二十章数据的分析约12课时四、提高学科教育质量的主要措施:1、认真做好教学六认真工作。

把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。

激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。

引导学生写学后总结,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

8、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

9、培养学生学习数学的良好习惯。

这些习惯包括①认真做作业的习惯包括作业前清理好桌面,作业后认真检查;②预习的习惯;③认真看批改后的作业并及时更正的习惯;④认真做好课前准备的习惯;⑤在书上作精要笔记的习惯;⑥妥善保管书籍资料和学习用品的习惯;⑦认真阅读数学教材的习惯。

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?1-m m32+-m m 112+-m m 4522--x x xx 235-+23+x(1) (2) (3)3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:ab 56--=ab 56,yx 3-=yx 3-,nm --2=nm 2,n m 67--=nm67 , y x 43---=y x 43。

六、随堂练习1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a 4320152498343201524983(3) c a b ++1=()cn an + (4) ()222y x y x +-=()yx -2.约分:(1)c ab b a 2263 (2)2228mn n m (3)532164xyzyz x - (4)x y y x --3)(23.通分: (1)321ab 和cb a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a- (4)11-y 和11+y4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(-- 七、课后练习1.判断下列约分是否正确: (1)c b c a ++=ba(2)22y x y x --=y x +1 (3)nm nm ++=0 2.通分: (1)231ab 和b a 272 (2)x x x --21和x x x +-21 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)bc a 2 (2)n m 4 (3)24zx - (4)-2(x-y)23.通分:(1)321ab = cb a ac 32105, c b a 2252= c b a b 32104(2)xy a 2= y x ax 263, 23xb= y x by 262 (3)223ab c = 223812c ab c 28bc a -= 228cab ab(4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y 4.(1) 233ab y x (2) 2317b a - (3) 2135xa (4) mb a 2)(--课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是nmab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍. [引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则? 类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高. 六、随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++- 七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()y x axy 28512-÷ (4)ba ab ab b a 234222-⋅- (5))4(12x x x x -÷-- (6)3222)(35)(42x y x xy x --⋅-八、答案:六、(1)ab (2)n m 52- (3)14y - (4)-20x 2(5))2)(1()2)(1(+--+a a a a(6)23+-y y七、(1)x1- (2)227c b - (3)ax 103- (4)bb a 32+(5)xx -1 (6)2)(5)(6y x y x x -+课后反思:16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入计算(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916axb (约分到最简分式)(2)x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算)=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x=22--x六、随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-七、课后练习计算(1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(八、答案:六.(1)c a 432- (2)485c - (3)3)(4y x - (4)-y七. (1)336y xz (2) 22-b a (3)122y - (4)x1-课后反思:16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入计算下列各题:(1)2)(b a =⋅b ab a =( ) (2) 3)(b a =⋅b a ⋅b a b a=( ) (3)4)(b a =⋅ba ⋅b a b a ba⋅=( ) [提问]由以上计算的结果你能推出nba )((n 为正整数)的结果吗?五、例题讲解 (P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除. 六、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b -(3)3)32(x y -=3398x y (4)2)3(bx x -=2229b x x - 2.计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x zy x -÷- 5))()()(422xy x y y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅-七、课后练习计算(1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a b a c b a c ÷÷ (4) )()()(2232b a ab a ab b a -⋅--⋅-八、答案:六、1. (1)不成立,23)2(a b =264a b (2)不成立,2)23(ab -=2249a b (3)不成立,3)32(x y -=33278x y - (4)不成立,2)3(b x x -=22229bbx x x +-2. (1)24925y x (2)936827c b a - (3)24398yx a - (4)43z y - (5)21x(6)2234x y a七、(1) 968a b -- (2) 224+n b a (3)22a c (4)bba +课后反思:16.2.2分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R 1, R 2, …, R n 的关系为nR R R R111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R ,再利用倒数的概念得到R 的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗? 3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则? 4.请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗? 五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算 (1)2222223223yx yx y x y x y x y x --+-+--+[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223yx y x y x y x y x y x --+-+--+ =22)32()2()3(y x y x y x y x --++-+ =2222yx yx --=))(()(2y x y x y x +--=yx +2 (2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x=)3)(3(2)96(2-++--x x x x =)3)(3(2)3(2-+--x x x =623+--x x六、随堂练习计算(1)ba ab b a b a b a b a 22255523--+++ (2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563七、课后练习计算 (1)22233343365cba ba c ba ab bc a b a +--++ (2)2222224323a b ba b a b a b a a b ----+--- (3) 122+++-+-b a ab a b a b (4) 22643461461x y x y x y x ----- 八、答案:四.(1)ba b a 2525+ (2)m n n m -+33 (3)31-a (4)1五.(1)b a 22 (2) 223b a ba -- (3)1 (4)y x 231-课后反思:16.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算. 二、重点、难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 三、例、习题的意图分析1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算 (1)x xx x x x x x -÷+----+4)44122(22 [分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解: x x x x x x x x -÷+----+4)44122(22 =)4(])2(1)2(2[2--⋅----+x xx x x x x=)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x=)4()2(4222--⋅-+--x x x x x x x =4412+--x x(2)2224442y x x y x y x y x y y x x +÷--+⋅- [分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:2224442yx x y x y x y x y y x x +÷--+⋅- =22222224))((2xy x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((yx y x y x y x xy --⋅+- =))(()(y x y x x y xy +--=yx xy+-六、随堂练习 计算(1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a七、课后练习 1.计算 (1) )1)(1(yx xy x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+(3) zxyz xy xy z y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值. 八、答案:六、(1)2x (2)ba ab- (3)3 七、1.(1)22y x xy - (2)21-a (3)z 1 2.422--a a ,-31课后反思:16.2.3整数指数幂一、教学目标:1.知道负整数指数幂na-=na 1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质. 3.会用科学计数法表示小于1的数. 二、重点、难点1.重点:掌握整数指数幂的运算性质. 2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质. 2. P24观察是为了引出同底数的幂的乘法:nm n m a a a +=⋅,这条性质适用于m,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数. 四、课堂引入1.回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:nm n m a a a +=⋅(m,n 是正整数);(2)幂的乘方:mnnm aa =)((m,n 是正整数);(3)积的乘方:nnn b a ab =)((n 是正整数); (4)同底数的幂的除法:nm nmaa a -=÷( a ≠0,m,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数);2.回忆0指数幂的规定,即当a ≠0时,10=a . 3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a ≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,na -=n a1(a ≠0).五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数 指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数. 六、随堂练习 1.填空(1)-22=(2)(-2)2= (3)(-2) 0=(4)20= (5)2 -3= (6)(-2) -3= 2.计算(1) (x 3y -2)2(2)x 2y -2·(x -2y)3(3)(3x 2y -2) 2 ÷(x -2y)3七、课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 009 2.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3八、答案:六、1.(1)-4 (2)4 (3)1 (4)1(5)81 (6)81- 2.(1)46y x (2)4x y (3) 7109yx七、1.(1) 4×10-5(2) 3.4×10-2(3)4.5×10-7(4)3.009×10-32.(1) 1.2×10-5(2)4×103。

相关文档
最新文档