中考数学复习专题五 一次函数、反比例函数与实际应用

合集下载

专题五一次函数、反比例函数的综合运用

专题五一次函数、反比例函数的综合运用

专题五 一次函数、反比例函数与实际应用教学目标:知识技能:进一步理解掌握一次函数、反比例函数的图象与性质,并能熟练运用其解决一次函数、反比例函数有关的综合题;过程方法:结合图象,分析题意,从函数的图象中获取解题信息解决实际问题,掌握解题方法技巧;情感价值:引导学生分析题意,构建函数模型,运用数形结合思想解决问题,提高学生的综合运用能力。

教学重点:运用数形结合思想从图象中获取解题信息教学难点:根据题意构建函数模型教学过程: 解题策略此专题内容多出在中档题中,主要有以下三种题型:(1)待定系数法求表达式;(2)应用题找等量关系建立函数模型;(3)两种函数的混搭.,重难点突破)一次函数与反比例函数综合题【例1】一次函数y =mx +5的图像与反比例函数y =k x(k≠0)在第一象限的图像交于A(1,n)和B(4,1)两点,过点A 作y 轴的垂线,垂足为M.(1)求一次函数和反比例函数的表达式;(2)求△OAM 的面积S ;(3)在y 轴上求一点P ,使PA +PB 最小.【解析】(1)根据待定系数法分别求出反比例函数与一次函数表达式即可;(2)根据反比例函数的性质,直接求出面积即可;(3)作点A 关于y 轴的对称点N ,连接BN 交y 轴于点P ,则点P 即为所求.【答案】解:(1)将B(4,1)代入y =k x ,得1=k 4.∴k =4,∴y =4x.将B(4,1)代入y =mx +5,得1=4m +5,∴m =-1,∴y =-x +5;(2)在y =4x 中,令x =1,解得y =4,∴A(1,4),∴S =12×1×4=2;(3)作点A 关于y 轴的对称点N ,则N(-1,4),连接BN 交y 轴于点P ,点P 即为所求.设直线BN 的关系式为y =kx +b ,由⎩⎪⎨⎪⎧4k +b =1,-k +b =4,解得⎩⎪⎨⎪⎧k =-35,b =175,y =-35x +175,∴P ⎝ ⎛⎭⎪⎪⎫0,175. 1、一次函数y =kx +b 与反比例函数y =m x的图像相交于A(-1,4),B(2,n)两点,直线AB 交x 轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S.解:(1)将A(-1,4)代入y =m x ,得4=m -1,∴m =-4,∴y =-4x. 将x =2代入y =-4x,得y =-2, ∴B(2,-2).将A(-1,4),B(2,-2)代入y =kx +b ,得⎩⎪⎨⎪⎧-k +b =4,2k +b =-2,解得:⎩⎪⎨⎪⎧k =-2,b =2, ∴y =-2x +2;(2)∵△AED 的高为4,△ACB 的高为:4+2=6.∵ED∥BC,∴△AED ∽△ACB ,∴S △AED S △ACB =(46)2=49,∴S △AED =49×12×2×6=83. 【方法指导】先综合考虑两者之间的联系,再利用待定系数法求一次函数及反比例函数的表达式.一次函数的实际应用【例2】山地自行车越来越受到中学生的喜爱,各种品牌相继投入市场,某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%。

2020年中考复习数学课件:一次函数与反比例函数的应用 (共30张PPT)

2020年中考复习数学课件:一次函数与反比例函数的应用 (共30张PPT)

(2)“ 一 元 一 次 不 等 式 ” 实 际 上 是 指 一 次 函 数 的 函 数 值 “y>0 , y<0 或 y≥0,y≤0”,从图象上看是指抛物线在x轴上方或x轴下方的情况. 5.应用反比例函数解题的注意事项 (1)要注意自变量取值范围符合实际意义; (2)确定反比例函数之前一定要考察两个变量与定值之间的关系,若k未 知时,应首先由已知条件求出k值. (3)求“至少”,“最多”时可根据函数性质得到.
∵A(2,1),∴B(-2,-1),
∵由函数图象可知,当0<x<2或x<-2时函数y1的图象在y2的上方, ∴使y1>y2的x的取值范围是x<-2或0<x<2.
123
3.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两
车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与
慢车行驶时间t(h)之间的函数图象如图所示,下列说法:
一次函数与反比例函数的应用
知识梳理
1.一次函数的应用 利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利 率、利润、租金、生产方案的设计问题. 2.应用一次函数解决实际问题的步骤 (1)认真审题,准确理解题意,领悟其数学实质; (2)舍弃与解题无关的非本质因素,将问题简单化; (3)抽象、归纳其中的数量关系,建立一次函数数学模型; (4)根据所建立的数学模型,解出模型的数学结果; (5)“翻译”回到实际问题,得到实际问题的答案.
3.一次函数y=kx+b(b≠0)的自变量x的取值范围 一次函数y=kx+b(b≠0)的自变量x的取值范围是全体实数,图象是 一条直线,因此没有最大值与最小值,但在实际问题中得到的一次 函数解析式自变量的取值范围一般受到限制,则图象为线段或射线, 根据一次函数的性质,此时就存在最大值或最小值范围. 4.一次函数与一次方程、一次不等式间的关系 (1)已知一次函数y=kx+b的函数值为,求自变量x的值,就是解一 元一次方程kx+b=h;反过来,解一元一次方程kx+b=h,就是把一 次函数y=kx+b-h的函数值看做0,求自变量x的值.

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。

一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。

2. 培养学生运用一次函数和反比例函数解决实际问题的能力。

3. 引导学生通过合作交流,提高解决问题的策略和思维能力。

二、教学内容1. 一次函数的基本概念和性质。

2. 反比例函数的基本概念和性质。

3. 一次函数和反比例函数的综合应用。

三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。

2. 教学难点:一次函数和反比例函数的综合应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。

2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。

3. 采用合作交流法,培养学生团队协作和沟通能力。

五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。

2. 自主学习:让学生自主探究一次函数和反比例函数的性质。

3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。

4. 合作交流:分组讨论,让学生分享解题策略和心得。

5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。

6. 课后作业:布置相关练习题,巩固所学知识。

六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。

引导学生提出一次函数的表达式,并解释其含义。

2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。

通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。

3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。

通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。

七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。

通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。

中考复习_一次函数与反比例函数的综合应用

中考复习_一次函数与反比例函数的综合应用

一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数a y x =与正比列函数y bx =在同一坐标系内的大致图象是( ) 考点:二次函数的图象;正比例函数的图象;反比例函数的图象.专题:数形结合.分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xa y =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-a b 2<0,∴b <0, ∴反比例函数xa y =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限.故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值.2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=错误!未找到引用源。

的大致图象是( )A 、B 、Ox yO y x A O y x B O y xD O y x CC、D、考点:反比例函数的图象;一次函数的图象。

分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=错误!未找到引用源。

过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b 及y=错误!未找到引用源。

中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx错误!未找到引用源。

在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。

一次函数与反比例涵数的专题复习

一次函数与反比例涵数的专题复习

一次函数与反比例函数专题复习第一部分 知识梳理考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征(1) 点P(x,y)在第一象限0,0>>⇔y x(2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数(2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数(3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等(2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 (3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

中考数学专题复习 反比例函数及其应用

中考数学专题复习 反比例函数及其应用
上一页 返回导航 下一页
(教材母题链接:北师九上 P162T11)
上一页 返回导航 下一页
反比例函数与几何图形的综合 9.(2020 滨州)如图,点 A 在双曲线 y=4x上,点 B 在双曲线 y=1x2上, 且 AB∥x 轴,点 C,D 在 x 轴上,若四边形 ABCD 为矩形,则它的面积为 (C )
(C ) A.k=2 B.函数图象分布在第一、三象限
C.当 x>0 时,y 随 x 的增大而增大
D.当 x>0 时,y 随 x 的增大而减小
上一页 返回导航 下一页
2.(2020 河南)若点 A(-1,y1),B(2,y2),C(3,y3)在反比例函数 y= -6x的图象上,则 y1,y2,y3 的大小关系是( C )
上一页 返回导航 下一页
2.关于反比例函数 y=-3x,下列说法不正确的是( D ) A.图象经过点(1,-3) B.图象位于第二、四象限 C.图象关于直线 y=x 对称 D.y 随 x 的增大而增大
上一页 返回导航 下一页
三、反比例函数解析式的确定 待定系数法: (1)设所求的反比例函数的解析式为 y=kx(k≠0); (2)将图象上的一点坐标代入 y=kx中,求出 k; (3)把 k 代入解析式 y=kx中,写出解析式.
第一部分 夯实基础
第三章 函 数
第3节 反比例函数及其应用
上一页 返回导航 下一页
课标导航 ·结合具体情境体会反比例函数的意义,能根据已知条件确定反比例 函数的表达式. ·能画出反比例函数的图象,根据图象和表达式 y=kx(k≠0).探索并理 解 k>0 和 k<0 时,图象的变化情况. ·能用反比例函数解决简单实际问题.
上一页 返回导航 下一页
(2)若一次函数图象与 y 轴交于点 C,点 D 为点 C 关于原点 O 的对称点, 求△ACD 的面积.

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题五一次函数、反比例函数与实际应用,河北中考命题规律)年份题型考点题号分值难易度2019解答题一次函数图象的判断、应用、反比例函数的表达式的确定24(2) 3 中等题2018解答题一次函数的图象及性质、应用、实际问题中反比例函数表达式的确定24,26(1)10+1=11容易题、中等题2017选择题、解答题一次函数综合题、应用、反比例函数的图象15,24 2+10=12 中等题考情及预测纵观近三年河北中考,此专题为必考内容,有一定难度,通常以解答题形式出现,多与方程(组)、不等式(组)、三角形相结合;还可考查平移、旋转、翻折三种位置变换,2017年第24(3)题题目新颖,适合爱动脑筋的考生,体现了教学的批判思想.预测2020年在解答题中仍会出现,中考重难点突破)备考建议►此专题内容多出在中等题中,主要有以下三种题型:(1)利用待定系数法求表达式;(2)应用题找等量关系建立函数模型;(3)两种函数的综合考查.一次函数及反比例函数综合题【例1】(2019·石家庄裕华区模拟)如图,在平面直角坐标系中,已知点A(5,3),点B(-3,3),过点A的直线y=12x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并求出△PCD与△PAB的面积比;(3)若反比例函数y=kx(k为常数且k≠0)的图象与线段BD有公共点时,请求出k的最大值和最小值.【解析】(1)将点A坐标代入直线解析式求得直线AP的解析式,进而求得点P的坐标;(2)利用待定系数法由点B,P坐标求得直线BP的解析式,根据坐标关系计算三角形的面积进而求得比值;(3)根据k>0和k<0进【解答】解:(1)∵直线y=12x+m过点A(5,3),∴3=52+m,解得m=12.∴y=12x+12.当x=1时,y=1,∴P(1,1);(2)设直线BP的解析式为y=ax+b.∵B(-3,3),P(1,1),∴⎩⎪⎨⎪⎧3=-3a+b,1=a+b.解得⎩⎨⎧a=-12,b=32.∴直线BP的解析式为y=-12x+32.当y=0时,x=3,∴D(3,0).∵点C在直线y=12x+12上,∴当y=0时,x=-1,则C(-1,0).∴S△PCDS△PAB=12×4×112×8×2=14;(3)当k<0时,若反比例函数经过点B,则k的最小值为-9.当k>0时,联立⎩⎨⎧y=-12x+32,y=kx,整理,得x2-3x+2k=0.令Δ=b2-4ac=9-8k=0,解得k=98.∴k的最大值为98.1.(2019·邯郸一模)如图,直线l1经过点A(6,0),且垂直于x轴,直线l2:y=kx+b(b>0)经过点B (-2,0),与l1交于点C,S△ABC=16.点M是线段AC上一点,直线MN∥x轴,交l2于点N,点D是MN的中点,双曲线y=mx(x>0)经过点D,与l1交于点E.(1)求l2的解析式;(2)当点M是AC的中点时,求点E的坐标;(3)当MD=1时,求m的值.解:(1)由题意,得AB=8.∵S△ABC=16,即12×8×AC=16,∴AC=4.∴C(6,4).把B(-2,0),C(6,4)分别代入y=kx+b,得⎩⎪⎨⎪⎧-2k+b=0,6k+b=4.解得⎩⎪⎨⎪⎧k=12,b=1.∴l2的解析式为y=12x+1;(2)∵点M是AC的中点,∴M(6,2).∵MN∥x轴,∴点N的纵坐标为2.把y =2代入y =12x +1,得x =2.∴N (2,2).∵点D 是MN 的中点,∴D (4,2).把D (4,2)代入y =mx ,得m =8.∴双曲线的解析式为y =8x(x>0).当x =6时,y =43,∴E ⎝⎛⎭⎫6,43; (3)设点M (6,n ),当MD =1时,D (5,n ),N (4,n ).把N (4,n )代入y =12x +1,得n =3.∴D (5,3). ∴m =15.一次函数的实际应用【例2】(2019·唐山路南区二模)某公司在甲、乙仓库共存放某种原料450 t .如果运出甲仓库所存原料的60%、乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30 t .(1)求甲、乙两仓库分别存放原料多少吨;(2)现公司需将300 t 原料运往工厂,从甲、乙两仓库到工厂的运价分别为120元/t 和100元/t .经协商,从甲仓库到工厂的运价可优惠a 元/t (10≤a ≤30),从乙仓库到工厂的运价不变.设从甲仓库运m t 原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况.【解析】(1)根据甲、乙两仓库原料运出前后的关系,可得二元一次方程组,求解即可; (2)根据甲、乙的运费与运价的关系,可得函数解析式;(3)根据一次函数的性质,首先确定a 的取值,即要分类讨论,进而得出W 的变化情况. 【解答】解:(1)设甲仓库存放原料x t ,乙仓库存放原料y t .根据题意,得 ⎩⎪⎨⎪⎧x +y =450,(1-40%)y -(1-60%)x =30.解得⎩⎪⎨⎪⎧x =240,y =210. 答:甲仓库存放原料240 t ,乙仓库存放原料210 t ;(2)由于从甲仓库运m t 原料到工厂,则从乙仓库运(300-m ) t 原料到工厂,根据题意,得 W =(120-a )m +100(300-m )=(20-a )m +30 000; (3)①当10≤a<20时,20-a>0, 此时W 随着m 的增大而增大;②当a =20时,20-a =0,W 是定值30 000, 此时W 不随m 的变化而变化; ③当20<a ≤30时,20-a<0, 此时W 随着m 的增大而减小.2.(2019·新疆中考)某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y (元)与销售量x (kg )之间的关系如图所示.请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是 元/kg ;(2)求降价后销售金额y (元)与销售量x (kg )之间的函数解析式,并写出自变量的取值范围; (3)该水果店这次销售苹果盈利了多少元?解:(1)16; (2)由题意,得降价后y =640+(16-4)(x -40)=12x +160. 当y =760时,x =50,∴自变量的取值范围是40<x ≤50; (3)760-50×8=360(元).∴该水果店这次销售苹果盈利了360元.反比例函数与其他函数综合应用【例3】某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (μg /mL )与服药时间x (h )之间的函数关系如图所示(当4<x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式; (2)问血液中药物浓度不低于4 μg /mL 的持续时间为多少小时?【解析】(1)分别利用正比例函数以及反比例函数表达式求法得出即可;(2)由y =4分别求出相应的x 的值,进而得出答案. 【解答】解:(1)由图象可知,当0≤x ≤4时,y 与x 成正比例关系,设y =kx. 当x =4时,y =8,∴4k =8,解得k =2. ∴y =2x (0≤x ≤4).当4<x ≤10时,y 与x 成反比例关系,设y =mx.当x =4时,y =8,∴m =4×8=32.∴y =32x(4<x ≤10).∴y =⎩⎪⎨⎪⎧2x (0≤x ≤4),32x(4<x ≤10);(2)血液中药物浓度不低于4 μg /mL ,即y ≥4.∴2x ≥4且32x≥4,解得2≤x ≤8.∵8-2=6(h ),∴血液中药物浓度不低于4 μg /mL 的持续时间为6 h .,3.石家庄某公司将农副产品运往北京市场进行销售,记汽车行驶时间为t h ,平均速度为v km /h (汽车行驶速度不超过100 km /h ).根据经验,v ,t 的一组对应值如下表:v/(km /h )75 80 85 90 95 t/h 4.00 3.75 3.53 3.33 3.16(1(2)汽车上午7:30从石家庄出发,能否在上午10:00之前到达北京市场?请说明理由; (3)若汽车到达北京市场的行驶时间t 满足3.5≤t ≤4,求平均速度v 的取值范围.解:(1)根据表格中的数据,可知v =kt.∵v =75时,t =4,∴k =75×4=300.∴v 关于t 的函数表达式为v =300t(t ≥3);(2)不能.理由:从上午7:30到上午10:00经过的时间为2.5 h .当t =2.5时,v =3002.5=120.∵120>100,∴汽车上午7:30从石家庄出发,不能在上午10:00之前到达北京市场; (3)∵3.5≤t ≤4,∴平均速度v 的取值范围是75≤v ≤6007.运动型问题【例4】(2019·石家庄桥西区模拟)如图1,在直角坐标系中,一次函数的图象l 1与y 轴交于点A (0,2),与一次函数y =x -3的图象l 2交于点E (m ,-5).(1)求m 的值及l 1的表达式;(2)直线l 1与x 轴交于点B ,直线l 2与y 轴交于点C ,求四边形OBEC 的面积; (3)如图2,已知矩形MNPQ ,PQ =2,NP =1,M (a ,1),矩形MNPQ 的边PQ 在x 轴上平移,若矩形MNPQ 与直线l 1或l 2有交点,直接写出a 的取值范围.【解析】(1)把点E 的坐标代入l 2,即可求出m 的值,根据点E 和点A 的坐标可求出直线l 1的表达式; (2)连接OE ,根据点B ,C 的坐标可得OB ,OC 的长,点E 纵、横坐标的绝对值分别为△OBE 和△OCE 的高,先求出这两个三角形的面积,它们的和即为四边形OBEC 的面积;(3)当矩形与l 1有交点时,临界情况是相交于顶点,分别为点Q 和点N ,根据已知条件和l 1的表达式可求出点Q 和点N 的横坐标,结合点M 的坐标,可求出a 的取值范围;同理,当矩形与l 2有交点时,也可求出a 的取值范围.【解答】解:(1)∵点E (m ,-5)在一次函数y =x -3的图象上,∴m -3=-5,解得m =-2.∴E (-2,-5).设直线l 1的表达式为y =kx +b. ∵直线l 1过点A (0,2),E (-2,-5),∴⎩⎪⎨⎪⎧b =2,-2k +b =-5.解得⎩⎪⎨⎪⎧b =2,k =72.∴直线l 1的表达式为y =72x +2;(2)连接OE.∵l 1:y =72x +2,∴y =0时,x =-47.∴B ⎝⎛⎭⎫-47,0. ∵l 2:y =x -3,∴x =0时,y =-3.∴C (0,-3).∴S 四边形OBEC =S △OBE +S △OCE =12×47×5+12×2×3=317; (3)-47≤a ≤127或3≤a ≤6.4.如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,,点B 在x 轴的正半轴上,∠OAB =90°且OA =AB ,OB =6,OC =5.(1)求点A 和点B 的坐标; (2)点P 是线段OB 上的一个动点(点P 不与点O ,B 重合),以每秒1个单位长度的速度由点O 向点B 运动,过点P 的直线a 与y 轴平行,直线a 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R ,设点P 运动时间为t s ,线段QR 的长度为m ,已知t =4时,直线a 恰好过点C.①当0<t <3时,求m 关于t 的函数关系式;②点P 出发时,点E 也从点B 出发,以每秒1个单位长度的速度向点O 运动,点P 停止时点E 也停止.设△QRE 的面积为S ,求S 与t 的函数关系式;③直接写出②中S 的最大值是 .解:(1)由题意知△OAB 是等腰直角三角形. ∵OB =6,∴A (3,3),B (6,0); (2)∵A (3,3),B (6,0), ∴直线OA 的解析式为y =x , 直线AB 的解析式为y =-x +6.∵当t =4时,直线a 恰好过点C ,OC =5,∴C (4,-3).∴直线OC 的解析式为y =-34x ,直线BC 的解析式为y =32x -9.①当0<t <3时,Q (t ,t ),R ⎝⎛⎭⎫t ,-34t , ∴m =t +34t =74t ;②当0<t <3时,S =12PE·QR =12(6-2t )·74t =-74t 2+214t ;当3<t <4时,S =12PE·QR =12(2t -6)·⎝⎛⎭⎫-t +6+34t =-14t 2+274t -18; 当4≤t <6时,S =12PE·QR =12(2t -6)·⎝⎛⎭⎫-t +6-32t +9=-52t 2+452t -45; ③458.[当0<t <3时,t =32时,S 的最大值为6316; 当3<t ≤4时,∵S =-14t 2+274t -18=-14⎝⎛⎭⎫t -2722+14×2724-18,∴t =4时,S 的值最大,最大值为5;当4≤t <6时,S =-52t 2+452t -45=-52⎝⎛⎭⎫t -922+458,∴t =92时,S 的最大值为458.综上所述,S 的最大值为458.]请完成限时训练A 本P A 72~A 73,选做B 本P B 41。

相关文档
最新文档