反比例函数在实际生活中的应用

合集下载

初中数学 文档:反比例函数在经济生活中的应用

初中数学 文档:反比例函数在经济生活中的应用

反比例函数函数在经济生活中的应用反比例函数在实际生活中的应用十分广泛,用反比例函数解决实际问题,可以培养同学们应用数学的创新能力和密切联系实际的实践能力,下面列举两例与同学们共赏.一、人均收入问题例1 某市经济继续保持平稳较快的增长态势,全市实现生产总值×10元,已知全市生产总值=全市户籍人口×全市人均生产产值,设该市户籍人口为x (人),人均生产产值为y(元).(1)求y关于x的函数解析式;(2)该市户籍人口为706684人,求该市人均生产产值(单位:元,结果精确到个位).若全年美元对人民币的平均汇率为1美元=元人民币,该市人均生产产值是否已跨越6000美元大关?分析:由于人均生产产值等于生产总值除以人口总数,于是即可求出y关于x 的函数解析式;进而由户籍人口为706684人,可以进一步求解.解:(1)因为人均生产产值等于生产总值除以人口总数,所以y=错误!(x 为整数);(2)因为该市人均生产产值=错误!≈49819(元),而错误!>6000.所以该市人均生产产值已成功跨越6000美元大关.点评:在生活中,各部门经常遇到经济预算等问题,有时各因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数解析式,进而用函数解析式解决具体问题.二、商品销售问题例2 水产公司有一种海产品共2104 kg,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(kg)与销售价格x(元/kg)之间的关系.现假定在这批海产品的销售中,每天的销售量y (kg)与销售价格x(元/kg)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/kg,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?分析:(1)可由表格中任意选择一对数值代入求得反比例函数解析式;(2)首先求得剩余海产品的数量,再由时间=总量÷单价,即可求得.解:(1)由400×30=12000,则函数解析式为y=12000x.当y=40时,x=300,当x=240时,y=50;(2)2104-(30+40+48+50+60+80+96+100)=1600(kg),即8天试销后,余下的海产品还有1600 kg.当x=150时,y=80.因为1600÷80=20(天),所以余下的这些海产品预计再用20天可以全部售出.点评:在商品销售中,我们常常会对一些销售数据进行统计分析,这时可以先探究这些数据之间所满足的函数解析式,进而用函数解析式帮助我们作一些科学的预测.。

反比例函数的应用

反比例函数的应用

反比例函数的应用反比例函数是数学中的一种特殊函数形式,也称为倒数函数。

它的形式可以表示为y=k/x,其中k是常数。

在实际生活中,反比例函数有着广泛的应用,本文将探讨几个常见的反比例函数应用场景。

1. 面积与边长的关系在几何学中,矩形的面积与其两条边长之间存在着反比例关系。

假设一个矩形的长为L,宽为W,那么它的面积S可以表示为S=L*W。

由于长度和宽度是矩形两个独立的参数,它们之间存在反比例关系。

当一个参数增加时,另一个参数相应地减小,以保持面积不变。

这种反比例关系可以应用于很多实际问题中,比如房间的面积与家具的数量,农田的面积与种植作物的产量等。

通过理解面积与边长之间的反比例关系,我们可以在实际问题中做出合理的决策。

2. 时间和速度的关系另一个常见的反比例函数应用是时间和速度之间的关系。

在物理学中,速度可以定义为物体在单位时间内所移动的距离。

假设一个物体在时间t内移动的距离为d,则它的速度v可以表示为v=d/t。

根据这个公式,我们可以看到时间和速度之间呈现出反比例关系。

这个关系在实际生活中有很多应用。

比如旅行中的车辆速度与到达目的地所需时间之间的关系,运输货物的速度与到达目的地所需的时间之间的关系等。

这种反比例关系帮助我们计算和预测在不同速度下所需的时间。

3. 电阻与电流的关系在电学中,电阻和电流之间存在着反比例关系。

根据欧姆定律,电流I通过一个电阻R时,产生的电压V可以表示为V=I*R。

由于电阻是电流通过的障碍物,当电阻增加时,电流减小,反之亦然。

这种反比例关系在电路设计和计算中起着重要的作用。

我们可以根据电阻和电流之间的关系来选择合适的电阻值,以控制电路中的电流大小。

此外,这种关系还能帮助我们解决一些实际电路中的问题,比如计算电路中的功率、阻值等。

总结:反比例函数在各个领域中都有广泛的应用。

通过理解反比例关系,我们能够分析和解决实际问题,做出合理的决策。

本文介绍了三个常见的反比例函数应用,包括面积与边长的关系、时间和速度的关系,以及电阻与电流的关系。

反比例函数在日常生活中的应用教学设计

反比例函数在日常生活中的应用教学设计

26.2 实际问题与反比例函数第1课时反比例函数在日常生活中的应用教学设计本节课是九年级下册第二十六章第2节的第1课时,是在前面学习了反比例函数的概念、反比例函数的图象和性质的基础上,通过建立反比例函数模型,解决实际问题的应用课.反比例函数的知识在数学及实际生活和生产中经常用到,掌握这些知识对学生参加实践活动、解决日常生活中的实际问题具有重要的现实意义.【复习导入】(1)什么是反比例函数?它的图象是什么?有哪些性质?(2)同学们,类比前面一次函数和二次函数的学习过程,大家知道我们将继续探究什么内容吗?有哪些基本方法?【说明与建议】说明:通过复习反比例函数的概念、图象和性质,巩固反比例函数相关知识,同时,类比学习一次函数与二次函数的过程和方法,积累从实际问题中抽象出反比例函数模型的经验,为灵活应用它们解决实际问题奠定基础.建议:在教学过程中,教师引导学生进行解答,学生回忆所学,教师做适当补充和辅导.命题角度1 实际问题中反比例函数图象的识别1.已知甲、乙两地相距s km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)关于行驶速度v(km/h)的函数图象是下图中的(C)A B C D命题角度2 反比例函数在日常生活中的应用2.学校的自动饮水机,开机加热时水温每分钟上升10 ℃,加热到100 ℃,停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温降至20 ℃时,饮水机再自动加热.若在水温20 ℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是(D)A .水温从20 ℃加热到100 ℃,需要7 minB .水温下降过程中,y 与x 的函数关系式是y =400xC .上午8点接通电源,可以保证当天9:30能喝到不超过40 ℃的水D .在第二次加热前,水温不低于30 ℃的时间为773min某市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.问题:(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下挖多深?(3)当施工队按(2)中的计划挖到地下15 m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为15 m,储存室的底面积应改为多少才能满足需要(保留两位小数)?(2)完成下表,并回答问题:如果该绿化带的长不得超过40 m ,那么它的宽应控制在什么范围内?解:(1)绿化带面积为10×40=400(m 2). 该函数的解析式为y =400x.(2)如表.从图中可以看出,如果长不超过40 m ,那么它的宽应大于等于10 m. 例2 如图所示是某一蓄水池每小时的排水量V(m 3/h)与排完蓄水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量. (2)写出此函数的解析式.(3)如果要6 h 排完蓄水池中的水,那么每小时的排水量应该是多少? 解:(1)此蓄水池的蓄水量为4 000×12=48 000(m 3). (2)V =48 000t.(3)V =48 0006=8 000(m 3).【变式训练】A ,B 两地相距400千米,某人开车从A 地匀速行驶到B 地,设小汽车的行驶时间为t 小时,行驶速度为v 千米/时,且全程限速,速度不超过100千米/时. (1)写出v 关于t 的函数解析式.(2)若某人开车的速度不超过每小时80千米,那么他从A 地匀速行驶到B 地至(1)求药物燃烧时和药物燃尽后,y 与x 之间的函数解析式.(2)研究表明:空气中每立方米的含药量不低于6毫克,且持续5分钟以上才能有效杀灭空气中的病菌,请计算说明此次消毒能否有效杀灭空气中的病菌. 解:(1)药物燃烧时的函数解析式为y =2x(0≤x ≤6),药物燃尽后,y 与(2)把y =6代入y =2x ,得6=2x ,解得x =3.x 之间函数的解析式为y =72x(x ≥6).把y =6代入y =72x ,得6=72x ,解得x =12.∵12-3=9>5,∴此次消毒能有效杀灭空气中的病菌.。

浅谈初中数学“反比例函数”在生活中的应用

浅谈初中数学“反比例函数”在生活中的应用

浅谈初中数学“反比例函数”在生活中的应用摘要:反比例函数是初中数学中的一个重要概念,它在生活中有着广泛的应用。

反比例函数是初中数学课程中的重要内容,它主要描述的是两个量的关系,其中一个量与另一个量的倒数成正比。

在我们的日常生活中,反比例函数的应用非常广泛,可以用来解决许多实际问题。

这篇文章从反比例函数的性质出发,以其在生活中的运用进行深度阐述。

本文将从三个方面探讨反比例函数在生活中的应用,分别是经济学、物理学和工程学。

关键词:初中数学反比例函数知识与应用首先,我们需要对反比例函数进行一些基本的认识。

反比例函数,通常表达为y=k/x,其中k是常数,这类函数的主要特性是:当x的值越来越大时,y的值会越来越小;相反,如果x的值变小,则y的值会增大。

其次,反比例函数还有一些其他的性质。

例如,除了上述的单调性,反比例函数还有对称性,它关于点(0,0)具有中心对称性。

这意味着,如果我们在数线上移动,无论是向左还是向右,只要两点距离原点的距离相等,那么这两点的函数值就是一对相等的负数。

最后,反比例函数不会通过任何点的函数值为0。

这是因为,任何数的倒数都不会为0,所以这里的y值也不会为0。

现在,我们来讨论一下反比例函数在生活中的应用。

常见的实际生活中,反比例函数的应用可能涵盖如下几个学科。

一、反比例函数在经济学中的应用1.1生产成本与产量的关系生产成本与产量之间存在着反比例关系。

随着产量的增加,生产成本会逐渐降低,反之亦然。

这是因为随着产量的增加,生产过程中的固定成本会分摊到更多的产品上,从而降低每个产品的固定成本。

而变动成本则随着产量的增加而增加,因为需要更多的原材料和劳动力来生产更多的产品。

例如:速度和时间之关系:这是一个最直观的例子,速度(v)和时间(t)互为反比例关系。

即,你以更高的速度前进,所花费的时间就越少;相反,速度越低,就需要更多的时间来完成相同的路程,这便是由反比例函数的性质决定的。

1.2投资回报率与投资额的关系投资回报率与投资额之间也存在着反比例关系。

反比例函数实际应用

反比例函数实际应用

反比例函数实际应用反比例函数是初中数学中一个非常重要的概念,在实际应用中也有着广泛的应用。

本文将从多个角度探讨反比例函数的实际应用。

一、比例尺比例尺是地图上一个重要的概念。

比例尺是表示地图上距离与实际距离之比的关系。

比例尺越大,表示地图上的距离与实际距离之比越小。

比例尺与实际距离的关系是反比例函数关系。

实际应用时,比例尺可以用来计算地图上两个点之间的真实距离,也可以用来计算地球上两个点之间的真实距离。

二、电阻电阻是电路中一个非常重要的概念。

电阻的大小和材料、长度和横截面积等因素有关。

电阻和电流的关系是反比例函数关系。

实际应用时,可以利用电阻来控制电路中的电流大小,从而达到控制电路的目的。

三、比例面积比例面积是建筑工程中一个非常重要的概念。

比例面积是指实际面积与图纸上的面积之比。

比例面积与实际面积的关系是反比例函数关系。

实际应用时,可以利用比例面积来计算建筑物的实际面积,从而控制建筑物的规模。

四、人口密度人口密度是一个地方人口数量与面积之比的关系。

人口密度与面积的关系是反比例函数关系。

实际应用时,可以利用人口密度来评估一个地方的人口密度状况,从而制定相应的人口政策。

五、天文学天文学中,反比例函数的应用非常广泛。

例如天体的距离与亮度之间的关系是反比例函数关系,利用这个关系可以测量天体的距离。

还有天体的质量与轨道周期之间的关系也是反比例函数关系,利用这个关系可以估算天体的质量。

总之,反比例函数在现实生活中有着广泛的应用。

熟练掌握反比例函数的概念和应用,对于提高我们的生活和工作水平具有非常重要的意义。

反比例函数生活中的例子

反比例函数生活中的例子

反比例函数生活中的例子
反比例函数是一种数学函数,其中一个变量的值增加时,另一个变量的值会减少,反之亦然。

在生活中,我们可以找到许多反比例函数的例子。

1. 速度和旅行时间。

当我们以较高的速度旅行时,旅行时间会减少;而以较低的速度旅行时,旅行时间会增加。

2. 人口密度和居住空间。

当人口密度增加时,每个人的居住空间会减少;而当人口密度减少时,每个人的居住空间会增加。

3. 投资和回报。

当我们投资的金额增加时,我们可以获得更高的回报率;而当我们投资的金额减少时,我们可以获得更低的回报率。

4. 燃油消耗和速度。

当我们以较高的速度行驶时,车辆的燃油消耗会增加;而当我们以较低的速度行驶时,车辆的燃油消耗会减少。

5. 水龙头的流量和水压。

当水龙头的水压增加时,水流的流量会减少;而当水龙头的水压减少时,水流的流量会增加。

这些例子说明了反比例函数的应用,对我们理解和应用数学知识有很大的帮助。

- 1 -。

4反比例函数在实际中的应用.docx

4反比例函数在实际中的应用.docx

反比例函数在实际中的应用
基本模型:
(1)当体积(面积)为定值时,底面积(边长)与高成反比例函数关系;
(2)当工程总量为定值时,工作时间与工作效率成反比例函数关系;
(3)当力F 所做功为定值时,力F 与物体在F 方向通过的距离S 成反比例函数关系;
(4)杠杆定律:力X 力臂二定值;
(5)压强公式:其中P 为压强,F 为压力,S 为受力面积;
(6)欧姆定律:IR=U,其中I 为电流(A ) , R 为电阻(Q ),
U 为电压(V );
(7)在温度不变的条件下,密度与体积成反比例函数关系
. 例
1、某汽车的功率为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力 F (牛)之间的函数关系如图所示:
(1)这辆汽车的功率是多少瓦?请写出这一函数表达式;
(2)当它所受牵引力为1200牛时,汽车的速度为多少于米/
(3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?
解:(1)由P=FV=3000X20=6X104瓦.
(2)当F 二1200 牛时,v-^-soCmfe).
50mfc ■ SOx3aWz fj|t/It ■ L80kmfli. 1000
& 1*竺r>2000 . 枷(米/
秒)
60 50
40
30
20
10。

反比例函数的应用

反比例函数的应用

反比例函数的应用反比例函数是一类常见的数学函数,其应用十分广泛。

本文将探讨反比例函数在实际问题中的具体应用,并通过例子进行说明。

一、水池问题水池问题是反比例函数的典型应用之一。

假设一个水池的容量为V,初始时刻水池的水量为Q1,经过一段时间后,水池的水量变为Q2。

那么水池中的水量与时间的关系可以用反比例函数表示。

具体而言,水池中的水量与时间的关系可以表示为:Q = k/V,其中,Q表示水池中的水量,k是一个常数。

由于水的流入和流出是平衡的,因此可以得到:Q1 × t1 = Q2 × t2,其中t1和t2分别表示时间段1和时间段2。

例如,一口深度为4米的水池初始时刻水量为5000升,经过5天后水量变为8000升。

那么可以通过反比例函数求解水池的容量。

根据反比例函数的定义,可以得到:5000 × t1 = 8000 × 5,进一步化简计算,得到t1 = 8。

因此,水池的容量V = k/5000 = 8/5 = 1.6升/天。

二、物体的速度问题反比例函数在物体的速度问题中也有广泛的应用。

例如,一个物体以固定的速度v行驶,在行驶的过程中被施加了一个恒定的阻力F。

那么物体的加速度a与速度v之间的关系可以表示为:a = F/mv,其中m为物体的质量。

通过反比例函数的应用,可以求解物体的质量m。

假设物体的质量为m1,速度为v1,加速度为a1,当物体的质量变为m2时,速度变为v2,加速度变为a2。

根据反比例函数的定义,可以得到:a1 = F/(m1 ×v1),a2 = F/(m2 × v2)。

进一步化简计算,可以得到:m2/m1 = v2/v1 × a1/a2。

因此,可以通过反比例函数求解物体的质量m。

三、光的强度问题光的强度问题也是反比例函数的常见应用。

光的强度I与距离r之间的关系可以用反比例函数表示:I = k/r²,其中k为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、小林家离工作单位的距离为3600米,他每天骑自 行车上班时的速度为v(米/分),所需时间为t(分) (1)则速度v与时间t之间有怎样的函数关系? (2)若小林到单位用15分钟,那么他骑车的平均速 度是多少? (3)如果小林骑车的速度为300米/分,那他需要几 分钟到达单位?
解:(1)反比例函数为:v
故v与t的函数式为
v

240
t
(t>0);
(2)把t=5代入 v

240 得
t
v

240 5

48
从结果可以看出,如果全部货物恰好用5天卸完,平均
每天卸载48吨.
若货物在不超过5天内卸完,平均每天至少卸货48吨.
1、已知某矩形的面积为20cm2,
(1)、写出其长y与宽x之间的函数表达式;
(1) y
人教版九年级数学下册
1、能运用反比例函数的概念和性质解决实 际问题。 2、能够把实际问题转化为反比例函数这一 数学模型,从而解决问题。
1、京沈高速公路全长658km,汽车沿京沈高速公
路从沈阳驶往北京,则汽车行完全程所需时间t(h)
与行驶的平均速度v(km/h)之间的函数关系式为
t

658
5、已知反比例函数
y

4
x,当x=2时,
2
2
y= ;当y =2时,x= 。
例1:市煤气公司要在地下修建一个容积为104m3 的
圆柱形煤气储存室. (1)储存室的底面积S(单位: m2)与 其深度d(单位:m)有怎样的函数关系?
解:(1)根据圆柱体的体积公式,我们有
10 s×d=104
4
变形得: S d (d 0)
v
.
2、完成某项任务可获得500元报酬,考虑由x人完
成这项任务,试写出人均报酬y(元)与人数x(人)
之间的函数关系式
y

500
x
.
3、某住宅小区要种植一个面积为1000的矩形草坪,
草坪的长y随宽x的变化而变化
y

1000
x

4、已知北京市的总面积为168平方千米,人
均占有的土地面积ss随 全1n68市总人口n的变化而 变化;______________________
(5)已知排水管的最大排水量为每时12m3,那么最少 多长时间可将满池水全部排空?
解:当Q=12(m3)时,t=48/12=4(h).所以最少需4h可 将满池水全部排空.
本节课的学习,你有什么收获?
能把实际问题,通过分析,转化为数学 模型--反比例函数
实际 问题
建立数学模型 运用数学知识解决
反比例 函数
2.已知一个长方体的体积是100立方厘米,它的 长是ycm,宽是5cm,高是xcm. (1)写出用高表示长的函数式; (2)写出自变量x的取值范围; (3)当x=3cm时,求y的值 分析:(1)根据长方形的体积公式V=长×宽×高, 可知道用高表示长的函数式;
(2)高是非负数所以x>0; (3)直接把x=3代入解析式求解即可;
(2)由于遇到紧急情况,船上的货物必须在不超过5 日内卸完,那么平均每天至少要卸多少吨货物?
分析:(1)根据装货速度×装货时间=货物的总量, 可以求出轮船装载货物的的总量;
(2)再根据卸货速度=货物总量÷卸货时间, 得到v与t的函数式。
解:(1)设轮船上的货物总量为k吨,则根据已
知条件有
k=30×8=240
(2)如果增加排水管,使每时的排水量达到Q(m3),那 么将满池水排空所需的时间t(h)将如何变化?
答:此时所需时间t(h)将减少.
(3)写出t与Q之间的函数关系式;
解:t与Q之间的函数关系式为:
t

48
Q
(4)如果准备在5h内将满池水排空,那么每时的排水 量至少为多少?
解:当t=5h时,Q=48/5=9.6m3.所以每时的排水量至 少为9.6m3.
104
解:(3)根据题意,把d=15代入 S d ,得:
s 104
15
解得: S≈666.67
答:当储存室的深为15m时,储存室的底面积应改为
m2
666.67 才能满足需要.
例2:码头工人以每天30吨的速度往一艘轮船装载货 物,把轮船装载完毕恰好用了8天时间.
(1)轮船到达目的地后开始卸货,卸货速度v(单位: 吨/天)与卸货时间t (单位:天)之间有怎样的关系?

3600 t
(2)把t=15代入函数的解析式 v

3600 t

得:
v

3600 15
=240,
答:他骑车的平均速度是:240米/分;
(3)把v=300代入函数解析式得,
300

3600
t
解得:t=12.
答:他至少需要12分钟到达单位.
点评:本题考查了反比例函数的应用,正确 理解反比例函数关系是关键.

20 x
(x

0)
(2)、当矩形的长是为12cm,求宽为多少?当矩形的
宽为4cm,其长为多少 ?
5 (2) cm,5cm.
3
(3)、如果要求矩形的长不小于8cm,其宽至多要多少?
(3) 5 cm 2
2.某蓄水池的排水管每时排水8m3,6h可将满池水全 部排空.
(1)蓄水池的容积是多少? 解:蓄水池的容积为:8×6=48(m3).
解:(1)由题意得:长方体的体积 V=y×5×x=100, ∴用高表示长的函数式y=
(2)自变量x的取值范围x>0;
20 (3)当x=3时,y= 3
点评:主要考查了反比例函数的应用.解题的关键 是根据实际意义列出函数关系式,要注意根据实际 意义求自变量x的取值范围。
3、一定质量的氧气,它的密度ρ (kg/m3)是它的体 积V( m3) 的反比例函数, 当V=10m3 时,ρ=1.43kg/m3. (1)求ρ与V的函数关系式; (2)求当V=2m3时求氧气的密度ρ.
解:(1)设ρ=
当V=10m3时,ρ=1.43kg/m3,
k
所以1.43= 10 ,即k=14.3,
所以ρ与V的函数关系式是ρ=14v.3
14.3
(2)当V=2m3时,把V=2代入ρ= v
d S
即储存室的底面积S是其深度d的反比例函数.
(2)公司决定把储存室的底面积S定为500 m2 ,施工 队施工时应该向下掘进多深?
10 解: (2)把S=500代入 S
4
,得:
d
500 104
d
解得: d 20
m2
答:如果把储存室的底面积定为500 ,施工时 应向地下掘进20m深.
(3)当施工队按(2)中的计划掘进到地下15m时,碰上 了坚硬的岩石.为了节约建设资金,储存室的底面积 应改为多少才能满足需要(保留两位小数)?
相关文档
最新文档