九上半期数学试题
河北省唐山市路南区2023-2024学年九年级上学期期中数学试题(含答案)

2023-2024学年度第一学期期中学业评估九年级数学试卷2023.11注意事项:1.本次考试试卷共25个题,共6页,满分100分,考试时间为90分钟.2.用黑色水性笔答卷,答卷前务必将密封线内各项填写清楚.一、选择题(本大题共15个小题,每小题2分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程的二次项系数、一次项系数、常数项分别是( )A .1,1,0B .0,1,0C .0,,0D .1,,02.若方程有一根是1,则另一根是( )A .1B .2C .D .3.下列数学符号既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.如图,是由绕A 点旋转得到的,若,,,则旋转角的度数为()A .B .C .D .5.如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该桨轮船的轮子直径为()A .10mB .8mC .6mD .5m 6.任意下列两个图形不一定相似的是( )A .正方形B .等腰直角三角形C .矩形D .等边三角形7.如图,已知的半径为6,AB ,BC 是的弦,若,则的长是()20x x -=1-1-230x x m -+=1-2-ADE △ABC △40C ∠=︒90B ∠=︒10CAD ∠=︒60︒50︒40︒10︒O O 60ABC ∠=︒ ACA .B .C .D .8.用配方法解方程,配方后的方程是( )A .B .C .D .9.亮亮在解一元二次方程时,不小心把常数项丢掉了,已知这个一元二次方程有实数根,则丢掉的常数项的最大值是( )A .1B .0C .7D .910.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .11.某商品原价200元,经连续两次降价后售价为162元,设平均每次降价的百分率为x ,则下面所列方程正确的是()A .B .C .D .12.下列关于二次函数的说法,正确的是( )A .图象的对称轴是直线B .抛物线的顶点为C .当时,函数y 有最大值D .当时,y 随x 的增大而增大13.如图,PA 、PB 分别与相切于A 、B 两点,点C 为上一点,连接AC 、BC ,若,则的度数为( )A .B .C .D .14.记实数、中的最小值为,例如,当x 取任意实数时,则的最大值为()3π4π10π12π2430x x --=()227x -=()227x +=()221x -=()221x +=260x x -+=□()1,2P --()1,2-()1,2-()1,2()2,1--()22001162x -=()21621200x -=()220012162x -=()216212200x -=()2231y x =--3x =-()3,1--3x =1-3x >O O 80P ∠=︒ACB∠80︒40︒50︒100︒1x 2x {}12min ,x x {}min 0,11-=-{}2min 4,3x x -+-A .B .C .2D .315.如图,锐角三角形ABC 中,点O 为AB 中点.甲、乙二人想在AC 上找一点P ,使得的外心为点O ,其作法分别如下.对于甲、乙二人的作法,下列判断正确的是()甲的作法过点B 作与AC 垂直的直线,交AC 于点P ,则P 即为所求乙的作法以O 为圆心,OA 长为半径画弧,交AC 于点P ,则P 即为所求A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)16.将抛物线向上平移3个单位长度,所得抛物线的解析式为________.17.若,则________.18.嘉淇同学将一张半径为16的圆形卡纸平均分成4份,用其中一份作一个圆锥的侧面,则这个圆锥的底面半径是________.19.如图,AB 是半圆O 的直径,点C 在半圆上,,,D 是上的一个动点,连接AD .过点C 作于E ,连接BE ,则BE 的最小值是________.三、解答题(本大题共6个小题,共58分.解答应写出文字说明、证明过程或演算步骤)20.解下列方程:(本题满分8分)(1);(2);21.(本题满分8分)如图,在中,,若,,求AC 的长.3-2-ABP △22y x =-()2242x ax x ++=+a =5AB =4AC = BCCE AD ⊥2412x x =2430x x ++=ABC △DE BC ∥14AD DB =2AE =22.(本题满分9分)已知二次函数的图象经过点.(1)求a 的值;(2)求此抛物线的对称轴;(3)直接写出函数y 随自变量的增大而减小的x 的取值范围.23.(本题满分10分)如图,AB 为的直径,OD 为的半径,的弦CD 与AB 相交于点F ,的切线CE 交AB 的延长线于点E ,.(1)求证:OD 垂直平分AB ;(2)若的半径长为3,且,求OF 的长.24.(本题满分11分)有一块长32cm ,宽14cm 的矩形铁皮.图1图2(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为的无盖长方体盒子,求裁去的正方形的边长.(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,问能否折出底面积为的有盖盒子?如果能,请求出盒子的体积;如果不能,请说明理由.()2420y ax x a =++≠()3,4A -O O O O EF EC =O BF BE =2280cm 2180cm25.(本题满分12分)在平面直角坐标系中,已知二次函数,.(1)若点在二次函数的图象上,求二次函数的表达式;(2)当时,二次函数的图象与(t 为常数)的图象只有一个公共点,求t 的值;(3)已知点,,若二次函数的图象与线段AB 有两个不同的交点,直接写出m 的取值范围.2023-2024学年度第一学期期中学业评估九年级数学参考答案及评分标准2023.11说明:1.阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.解答右端所注分数,表示正确做到这一步应得的累加分数.3.只给整数分数.一.DBDAACBADC ADCDA 二.16.;17.4;18.4;19三.20.解:(1),,1分,2分解得,;4分(2),()210y mx x m =-+≠()2,314m =21y mx x =-+y t =()1,0A -()1,1B 21y mx x =-+223y x =-+2-2412x x =24120x x -=()430x x -=10x =23x =2430x x ++=,6分解得,;8分21.解:∵,∴2分∵,,4分∴6分∴,8分22.解:(1)∵二次函数的图象经过点,∴,2分解得:,4分∴a 的值为;(2)由(1)可知,,6分∴抛物线对称轴为直线;7分(3)∵抛物线开口向下,对称轴为,∴当时,y 随x 的增大而减小9分23.(1)证明:如图,连接OC ,∵CE 切于点C ,∴,∴,∵,,∴,,2分又∵,∴,∴,4分∴,∵,∴OD 垂直平分AB ;6分(2)解:设,则,,在中,,∴,8分()()130x x ++=11x =-23x =-DE BC ∥AD AEDB EC =14AD DB =2AE =214EC =8EC =10AC =242y ax x =++()3,4A -49122a -=++2a =-2-()22242214y x x x =-++=--+1x =1x =1x >O OC CE ⊥90OCF ECF ∠+∠=︒OC OD =EF EC =OCF ODF ∠=∠ECF EFC ∠=∠OFD EFC ∠=∠90ODF OFD ∠+∠=︒90DOF ∠=︒OD AB ⊥OA OB =BF BE x ==2EC EF x ==3OE x =+Rt OCE △222OC CE OE +=()()222323x x +=+解得:,(舍去),9分∴.10分24.解:(1)设截去的小正方形的边长为x cm1分,4分解得:,(舍去),6分∴截去的小正方形的边长2cm .(2)能.7分设左边的小正方形的边长为x cm ,根据题意得8分解得:或,9分经检验不符合题意,舍去,10分∴盒子的体积为:.11分25.解:(1)∵点在二次函数的图象上,∴,2分∴,4分∴二次函数的表达式为;5分(2)当时,二次函数关系式为,6分∵,7分∴抛物线的顶点为,8分∵二次函数的图象与(t 为常数)的图象只有一个公共点,∴;10分(3)m 的取值范围为或.12分12x =20x =321OF OB BF =-=-=()()322142280x x --=12x =221x =()3221421802xx --⋅=1x =22x =22x =31801180cm ⨯=()2,321y mx x =-+3421m =-+1m =21y x x =-+14m =2114y x x =-+()2124y x =-()2,021y mx x =-+y t =0t =2m ≤-918m ≤<。
江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

2023—2024学年度第一学期期中九年级数学试题2023.11满分:140分,时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分.四个选项中只有一个正确选项)1. 已知的半径为,点在内,则的长可能是()A. B. C. D.答案:D解析:解:∵的半径为,点在内,∴,即的长可能是.故选:D.2. 用配方法解方程,下列配方正确的是()A. B. C. D.答案:D解析:解:因为所以则即故选:D3. 给出下列说法:①经过平面内的任意三点都可以确定一个圆;②等弧所对的弦相等;③长度相等的弧是等弧;④相等的弦所对的圆心角相等.其中正确的是()A. ①③④B. ②C. ②④D. ①④答案:B解析:解:①经过平面内不共线的三点确定一个圆,故①不符合题意;②等弧所对的弦相等,正确,故②符合题意;③长度相等的弧不一定是等弧,故③不符合题意;④在同圆或等圆中,相等的弦所对的圆心角相等,故④不符合题意,∴其中正确的是②.故选:B.4. 函数与在同一平面直角坐标系中的图像大致是()A. B.C. D.答案:C解析:解:A、二次函数的开口方向向上,即,反比例函数经过第一、三象限,即,因为的对称轴,故该选项是不符合题意;B、二次函数的开口方向向上,即,反比例函数经过第二、四象限,即,此时互相矛盾,故该选项是不符合题意;C、二次函数的开口方向向下,即,反比例函数经过第二、四象限,即,因为的对称轴,故该选项是符合题意;D、二次函数的开口方向向下,即,反比例函数经过第一、三象限,即,此时互相矛盾,故该选项是不符合题意;故选:C5. 有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,你的结论是:长比宽多( )A. 12步B. 24步.C. 36步D. 48步答案:A解析:设矩形田地的长为步,则宽为步,根据题意得,,整理得,,解得或(舍去),所以.故选A.6. 如图,是的切线,切点为,的延长线交于点,若,则的度数为()A. B. C. D.答案:A解析:解:如图所示,连接,∵,∴,∵是的切线,∴,∴,∴的度数为.故选:A.7. 以正六边形的顶点为旋转中心,按顺时针方向旋转,使得新正六边形的顶点落在直线上,则正六边形至少旋转的度数为( )A. B. C. D.答案:B解析:解:连接,∵正六边形的每个外角,∴正六边形的每个内角,∴,,∵∴∴∴正六边形至少旋转的度数为故选:B.8. 二次函数的图像如图所示,若关于的一元二次方程(为实数)的解满足,则的取值范围是()A. B. C. D.答案:C解析:解:方程的解相当于与直线的交点的横坐标,∵方程(为实数)的解满足,∴当时,,当时,,又∵,∴抛物线的对称轴为,最小值为,∴当时,则,∴当时,直线与抛物线在的范围内有交点,即当时,方程在的范围内有实数解,∴的取值范围是.故选:C.二、填空题(本大题共10小题,每小题4分,共40分)9. 已知关于的方程的一个根是,则_______.答案:解析:解:∵关于的方程的一个根是,∴,解得:,故答案为:.10. 请在横线上写一个常数,使得关于的方程_______.有两个相等的实数根.答案:9解析:解:,故答案为:9.11. 方程的两根为、,则_______.答案:3解析:解:移项得:,,故答案为:3.12. 圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.答案:15解析:解:圆锥的侧面积=•2π•3•5=15π.故答案为15π.13. 某学习机的售价为2000元,因换季促销,在经过连续两次降价后,现售价为1280元,设平均每次降价的百分率为,根据题意可列方程为________.答案:解析:解:依题意得:,故答案为:.14. 已知拋物线经过点、,则________(填“”“ ”或“”).答案:解析:解:依题意得:抛物线的对称轴为:,关于对称点的坐标为:,,且抛物线开口向下,,故答案为:.15. 已知二次函数的图象与坐标轴有三个公共点,则k的取值范围是__.答案:且解析:解:由题意可知:且,解得:且,故答案为:且.16. 如图是二次函数的图像,给出下列结论:①;②;③;④.其中正确的是________(填序号)答案:①②④解析:解:∵抛物线与轴有两个不同交点,∴,故结论①正确;∵对称轴为直线,∴,∴,故结论②正确;由图像知,当时,,∴,故结论③不正确;∵抛物线开口向上,∴,∴,∵抛物线与轴的交点在负半轴,∴,∴,故结论④正确;∴正确的是①②④.故答案为:①②④.17. 如图,在中,,,则能够将完全覆盖的最小圆形纸片的半径是_______.答案:4解析:解:要使能够将完全覆盖的最小圆形纸片,则这个小圆形纸片是的外接圆,作的外接圆,连接,,作交于,如图:,,,,,在中,,,,故答案为:4.18. 如图,的半径为,点是半圆的中点,点是的一个三等分点(靠近点),点是直径上的动点,则的最小值_______.答案:解析:解:如图,作点关于直径的对称点,则点在圆上,连接,交直径于点,∴,则的最小值是的长,∵点是半圆的中点,的半径为,∴等于半圆的一半,∴,∵点是的一个三等分点(靠近点),∴等于的,∴,∵点与点关于直径的对称,∴,∴,∴,,∴,∵,∴,∴,∴,∴,即的最小值是.故答案为:.三、解答题(本大题共8小题,共76分.要求写出解答或计算过程)19. 解方程:(1);(2).答案:(1)或(2)或小问1解析:解:则那么或即或小问2解析:解:则故所以即或20. 下表是二次函数的部分取值情况:根据表中信息,回答下列问题:(1)二次函数图象的顶点坐标是_______;(2)求的值,并在平面直角坐标系中画出该二次函数的图象;(3)观察图象,写出时的取值范围:_______.答案:(1)(2),作图见解析(3)小问1解析:∵抛物线的对称轴为直线,∴二次函数图象的顶点坐标为,故答案为:;小问2解析:把代入中,得:,解得:,如图,小问3解析:由(2)知:二次函数的解析式为,当时,,解得:,,∴抛物线与轴的交点坐标为,,由图可知:当时,二次函数的图象在轴的上方,即,∴时的取值范围为.故答案为:.21. 如图,在中,,点是的中点,以为直径的交于点.请判断直线与的位置关系,并说明理由.答案:直线与相切,理由见解析解析:解:直线与相切.理由:连接、,则,∴,∵是的直径,∴,∴,∵点是的中点,,∴,∴,∴,∴,∵是的半径,∴直线是的切线,∴直线与相切.22. 某商店经销一种手提包,已知这种手提包成本价为50元/个.市场调查发现,这种手提包每天的销售量(单位:个)与销售单价(单位:元)有如下关系:.设这种手提包每天的销售利润为元.(1)当这种手提包销售单价定为多少元时,该商店每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种手提包的销售单价不得高于68元,该商店销售这种手提包每天要获得200元的销售利润,销售单价应定为多少元?答案:(1)当这种手提包销售单价定为65元时,该商店每天的销售利润最大,最大利润是元(2)该商店销售这种手提包每天要获得200元的销售利润,销售单价应定为60元小问1解析:解:依题意得:,整理得:,当时,有最大值为,答:当这种手提包销售单价定为65元时,该商店每天的销售利润最大,最大利润是元.小问2解析:当时,,解得:,,,,答:该商店销售这种手提包每天要获得200元的销售利润,销售单价应定为60元.23. 如图,一座石桥的主桥拱是圆弧形,某时刻测得水面宽度为8米,拱高(弧的中点到水面的距离)为2米.(1)求主桥拱所在圆的半径;(2)若水面下降1米,求此时水面的宽度(保留根号).答案:(1)主桥拱所在圆的半径长为5米(2)此时水面的宽度为米小问1解析:∵点是的中点,,∴经过圆心,设拱桥的桥拱弧所在圆的圆心为,连接,设半径,在中,,解得.答:主桥拱所在圆的半径长为5米;小问2解析:设与相交于点,连接,∴,∴,在中,,答:此时水面的宽度为米.24. 定义:若、是方程的两个整数根,且满足,则称此类方程为“自然方程”.例如:是“自然方程”.(1)下列方程是“自然方程”是_______;(填序号)①;②;③.(2)若方程是“自然方程”,求的值.答案:(1)③(2)或小问1解析:解:①,解得:,,则该方程的解不是整数,故此选项不符合题意;②,,∵,∴,则该方程的解不是整数,故此选项不符合题意;③,,或,解得:,,∴,故此选项符合题意;故答案为:③;小问2解析:,,或,解得:,,∵方程“自然方程”,∴,解得:或,∴的值为或.25. 据《尔雅·释器》记载:“好倍肉,谓之瑗(yuàn).”如图1,“好”指中间的孔,“肉”指中孔以外的边(阴影部分),“好倍肉”指中孔和环边比例为.(1)观察:“瑗”的主视图可以作两个同心圆,根据图1中的数据,可得小圆与大圆的半径之比是_______;(2)联想:如图2,在中,,,平分交于点,则_______;(3)迁移:图3表示一个圆形的玉坯,若将其加工成玉瑗,请利用圆规和无刻度的直尺先确定圆心,再以题(2)的知识为作图原理作出内孔.(不写作法,保留作图痕迹)答案:(1)(2)(3)作图见解析小问1解析:解:如图1,小圆半径是:,大圆半径是:,∴小圆与大圆的半径之比是:,故答案:;小问2解析:∵在中,,,∴,∵平分,∴,∴,,∴,∴,,∴,,故答案为:;小问3解析:作直线交圆于点,,作的垂直平分线交圆于点,,作的垂直平分线交圆于点,,交于点,过点作,以点为圆心,为半径画弧交圆于点,连接并延长交于点,作的平分线交于点,以点为圆心,为半径画圆,∵垂直平分,是圆的弦,∴线段为圆的直径,∵垂直平分于点,∴点为大圆的圆心,,∵以点为圆心,为半径画弧交圆于点,∴,∴为等边三角形,∴,∴,∵,∴,∵平分,由(2)知:,,则小即为所作.26. 如图1,已知抛物线的图象经过点,,,过点作轴交抛物线于点,点是抛物线上的一个动点,连接,设点的横坐标为.(1)填空:_______,_______,_______;(2)在图1中,若点在轴上方的拋物线上运动,连接,当四边形面积最大时,求的值;(3)如图2,若点在抛物线的对称轴上,连接,是否存在点使为等腰直角三角形?若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.答案:(1)(2)(3)点的坐标是或或或或或小问1解析:将点代入得,,解得,∴抛物线的解析式:,令,则,解得或1,∴,∴,故答案为:;小问2解析:连接,∵轴交抛物线于点,∴点的纵坐标为,,解得或4,∴,∵点的横坐标为,∴,∴,∵,∴当时,有最大值,∴的值为;小问3解析:∵,∴抛物线的对称轴为直线,∴点的横坐标为2,分三种情况:①当为直角顶点时,,如图2,过作轴,过作于,过作于,∴,∵是等腰直角三角形,且,∴,∴,∴,∴,∵,点的横坐标为2,∴,解得或,∴点的坐标为或(;②当为直角顶点时,,如图3,过作轴,过作于,过作于,同理,∵,点的横坐标为2,∴,解得或,∴点的坐标为或,;③当为直角顶点时,,如图4,过作于,过作于,同理,∵,点的横坐标为2,∴,解得或5,∴点的坐标为或;综上所述,点的坐标是或或或或或.。
湖北省部分学校2023-2024学年九年级上学期期中数学试题(含答案解析)

湖北省部分学校2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________A .点AB .点8.如图,在⊙О中,弦AB A .2B .329.如图,P 为等边三角形ABC 4,5,则△ABC 的面积为(A .25394+B .10.如图,已知二次函数交点B 在(0,2)-和(0,1)C -①0abc >;②42a b c ++>A.1个B.2个C.3个D.4个二、填空题16.将二次函数223y x x=-++的图象在=+与新函数的图象恰有象如图所示.当直线y x b三、解答题17.按要求解方程:(1)x 2﹣x ﹣2=0(公式法);(2)2x 2+2x ﹣1=0(配方法).18.某商场一种商品的进价为每件30元,售价为每件40元.每天可销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求每次降价的百分率;(2)经调查,若该商品每降价1元,每天可多销售8件.若每天要想获得504元的利润且尽快减少库存,每件应降价多少元?19.如图,点E 为正方形ABCD 外一点,90AEB ∠=︒,将Rt ABE 绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由;(2)已知7,13BH BC ==,求DH 的长.20.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD AB ⊥于点E .(1)求证:BCO D ∠=∠(2)若42CD =,OE =21.在58⨯的网格中建立如图的平面直角坐标系,四边形(0,0)O ,(3,4)A ,(8,4)B 图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段(2)在线段AB 上画点E ,使45BCE ∠=(3)连接AC ,画点E 关于直线AC 的对称点22.某区某水产养殖户利用温棚养殖技术养殖白虾,并从原来的每年养殖两季提高至每年三季.市周期的70天里,销售单价P (元/千克)与时间第()()120140415040702t t P t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩,,(t 都为整数)函数关系如图所示.(1)求日销售量y 与时间t 的函数关系式;备用图(1)求该抛物线的解析式;(2)点P是抛物线上一点,且位于第一象限,当参考答案:【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点8.D【分析】由圆周角定理可得∠【详解】解:∵∠ACB=45°,∴∠O=2∠ACB=90°,∵OA=OB,25+12)∵∠90,30ABC ACB ︒︒=∠=,AC 2,AB ∴=由勾股定理得:2BC AC AB =-∵将△BCP 绕点B 顺时针旋转60°∴△BPC BHG≅∆∴,60BP BH PBH ︒=∠=,HG =∴△PBH 是等边三角形,∴PH BP=∴PA PB PC PA PH HG++=++∴当点A ,点P ,点G ,点H 共线时,∵∠ABP PBH GBH ABP +∠+∠=∠∴∠150ABG ︒=∴∠30GBN ︒=∵GN AB⊥∴1123322GN BG ==⨯=,由勾股定理得,2BN BG NG =-∴235AN AB BN =+=+=∴22253AG AN NG =+=+=∴PA PB PC ++最小值为27∴3+b =0,解得b =-3;当直线y =x +b 与抛物线(y x =恰好有三个公共点,即()214x x b --=+有相等的实数解,整理得b =214-,所以b 的值为-3或214-,(2)∠BCE 为所求的角,点E 为所求的点(3)连接(5,0)和(0,5)点,与AC 的交点为【点睛】本题考查了作图-旋转变换,正方形的性质,全等三角形的性质和轴对称的性质,熟悉相关性质是解题的关键.22.(1)()2200170y x x =-+≤≤(2)第26天利润最大,最大利润为2738元∴∠QEP =∠QCP =60°.故答案为60;(2)∠QEP =60°.以∠DAC 是锐角为例.证明:如图2,∵△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∵线段CP 绕点C 顺时针旋转60°得到线段CQ ,∴CP =CQ ,∠PCQ =60°,∴∠ACB +∠BCP =∠BCP +∠PCQ ,即∠ACP =∠BCQ ,在△ACP 和△BCQ 中,CA CB ACP BCQ CP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BCQ (SAS ),∴∠APC =∠Q ,∵∠1=∠2,∴∠QEP =∠PCQ =60°;(3)连结CQ ,作CH ⊥AD 于H ,如图3,与(2)一样可证明△ACP ≌△BCQ ,∴AP =BQ ,由于A(4,0),B(1,3)∴3=32ABPPMS=△,∴3=32ABPPNS=△,易得∠BAC=45°,若BAG OBC BAO ∠+∠=∠则∠OBC=∠GAE,∴△BOC∽△AGE,即∠+∠=∠,若BAG OBC BAO则∠OBC=∠GAO,。
浙教版九年级上册数学期中考试试卷含答案

浙教版九年级上册数学期中考试试题一、单选题1.下列关系式中,属于二次函数的是( )A .y =21x 8B .yC .y =21xD .y =x 3﹣2x 2.下列说法正确的是( )A .掷一枚质地均匀的骰子,掷得的点数为3的概率是13B .一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C .连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D .在同一年出生的400个同学中至少会有2个同学的生日相同3.如图所示,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB',若△AOB =15°,那么△AOB'的度数是( )A .15°B .30°C .45°D .60°4.已知二次函数223y x x =-+-,用配方法化为()2y a x h k =-+的形式,结果是( ) A .()212y x =--- B .()212y x =--+ C .()214y x =--+ D .()214y x =-+- 5.如图,已知AB 是O 的直径,CD 是弦,若36,BCD ∠=则ABD ∠等于( )A .54B .56C .64D .666.如图,△O 是△ABC 的外接圆,△B=60°,OP△AC 于点P ,△O 的半径为A .B .C .8D .127.如图,正方形三个顶点的坐标依次为()3,1,()1,1,()1,3.若抛物线2y ax =的图象与正方形的边有公共点,则实数a 的取值范围是( )A .139a ≤≤B .119a ≤≤C .133a ≤≤ D .113a ≤≤ 8.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE△AC ,若S △BDE :S △CDE =1:4,则S △BDE :S △ADC 的值为( )A .1:16B .1:18C .1:20D .1:249.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,动点P 从点B 出发,沿着B→A→D 在菱形ABCD 的边AB ,AD 上运动,运动到点D 停止.点P′是点P 关于BD 的对称点,连接PP'交BD 于点M ,若BM =x (0<x <8),△DPP′的面积为y ,下列图象能正确反映y 与x 的函数关系的是( )A .B .C .D . 10.如图,已知在O 中,CD 为直径,A 为圆上一点,连结OA ,作OB 平分AOC ∠交圆于点B ,连结BD ,分别与AC ,AO 交于点N ,M .若AM AN =,则DM DN的值为( )A B .23 C .12 D 二、填空题11.把抛物线y =﹣3x 2向左平移2个单位,再将它向下平移3个单位,得到抛物线为_________. 12.已知A (-3,y 1),B (-1,y 2)是抛物线上y =-(x -3)2+k 的两点,则y 1,y 2的大小关系为________.13.一个直角三角形的两条边长是方程27120x x -+=的两个根,则此直角三角形的外接圆的直径为________.14.如图,在3×3正方形网格中,A 、B 在格点上,在网格的其它格点上任取一点C ,能使△ABC 为等腰三角形的概率是_____.15.如图,在ABC 中,点D 是边AC 上的任意一点,点M ,N 分别是ABD 和BCD 的重心,如果AC =6,那么线段MN 的长为 ___.16.如图,已知二次函数3(1)(4)4y x x =-+-的图象与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点,C P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PK AK的最大值为__________.三、解答题17.计算题:(1)计算:(2012213-⎛⎫--- ⎪⎝⎭(2)解方程:()21250x +-=18.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,0),B (﹣4,1),C (﹣2,2).(1)直接写出点B 关于原点对称的点B′的坐标: ;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.19.有4张看上去无差别的卡片,上面分别写着1、2、3、4.(1)随机摸取1张后,放回并混在一起,再随机抽取1张,请直接写出“第二次取出的数字小于第一次取出的数字”的概率:;(2)一次性随机抽取2张卡片,用列表法或画树状图的方法求出“两张卡片上的数都是偶数”的概率.20.如图,二次函数y2=ax2+bx+3的图象与x轴相交于点A(−3,0)、B(1,0),交y轴于点C,C、D 是二次函数图象上的一对对称点,一次函数y1=mx+n的图象经过B.D两点.(1)求a、b的值及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.21.如图,已知CD是Rt△ABC斜边AB上的中线,过点D作//DE AC,过点C作CE△CD,两线相交于点E.(1)求证:ABC DEC△△;∽(2)若AC=8,BC=6,求DE的长.22.如图,AB=AC,AB为△O的直径,AC、BC分别交△O于点E、D,连接ED、BE.(1)试判断DE与DC是否相等,并说明理由;(2)如果BD =,AE =2,求△O 的直径.23.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x (元/件)(x≥24),每天销售利润为y (元).(1)直接写出y 与x 的函数关系式为: ;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.24.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数;(2)如图2,当5AB =,且10AF FD ⋅=时,求BC 的长;(3)如图3,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,求AB BC 出的值.参考答案1.A【解析】【分析】二次函数为形如2y ax bx c =++(0)a ≠的形式;对比四个选项,进而得到结果.【详解】解:A 符合二次函数的形式,故符合题意;B 中等式的右边不是整式,故不是二次函数,故不符合题意;C 中等式的右边分母中含有x ,但是分式,不是整式,故不是二次函数,故不符合题意;D 中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A .【点睛】本题考察了二次函数的概念.解题的关键与难点在于理清二次函数的概念.2.D【解析】【分析】A 中掷一枚质地均匀的骰子,出现点数为123456、、、、、的结果相等,故可得出掷得的点数为3的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设400人中前365个人生日均不相同,而剩余的35个人的生日会有与365个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为3的概率是16,此选项错误,不符合题意;B一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是14,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是12,此选项错误,不符合题意;D在同一年出生的400个同学中至少会有2个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.3.B【解析】【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【详解】解:△将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,△△A′OA=45°,△AOB=△A′OB′=15°,△△AOB′=△A′OA−△A′OB′=45°−15°=30°,故选:B.【点睛】此题主要考查了旋转的性质,根据旋转的性质得出△A′OA=45°,△AOB=△A′OB′=15°是解题关键.4.A【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y=-x 2+2x -3=-(x 2-2x+1)+1-3=-(x -1)2-2,故选:A .【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x -h )2+k ;(3)交点式(与x 轴):y=a (x -x 1)(x -x 2).5.A【解析】【分析】先由圆周角定理得到△DAB=△BCD=36°,然后根据AB 是O 的直径确定△ADB=90°,最后根据直角三角形两锐角互余即可解答.【详解】解:△CD 是弦,若36,BCD ∠=△△DAB=△BCD=36°△AB 是O 的直径△△ADB=90°△△ABD=90°-△DAB=54°.故选:A .【点睛】本题考查了圆周角定理和直角三角形的性质,灵活利用圆周角定理是解答本题的关键. 6.A【解析】【详解】△圆心角△AOC 与圆周角△B 所对的弧都为 AC ,且△B=60°,△△AOC=2△B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC ,△△OAC=△OCA=30°(等边对等角和三角形内角和定理).△OP△AC ,△△AOP=90°(垂直定义).在Rt△AOP 中,,△OAC=30°,30度角所对的边是斜边的一半).△△O的半径故选A.7.A【解析】【分析】求出抛物线经过两个特殊点时的a的值,再根据△a△越大,抛物线的开口越小即可解决问题.【详解】解:当抛物线经过(1,3)时,由3=a×12得:a=3,当抛物线经过(3,1)时,由1=a×32得:a=19,观察图象可知:139a≤≤,故选:A.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C【解析】【分析】由S△BDE:S△CDE=1:4,得到BE:CE=1:4,于是得到BE:BC=1:5,根据DE△AC,推出△BDE△△BAC,根据相似三角形的性质即可得到结论.【详解】解:△S△BDE:S△CDE=1:4,△BE:CE=1:4,△BE:BC=1:5,△DE△AC,△△BDE△△BAC,△S△BDE:S△BAC=(15)2=125.△S△BDE:S△ADC=1:(25-1-4)=1:20.故选:C.9.D 【解析】由菱形的性质得出AB=BC=CD=DA,OA=12AC=3,OB=12BD=4,AC△BD,分两种情况:△当BM≤4时,先证明△P′BP△△CBA,得出比例式,求出PP′,得出△DPP′的面积y是关于x的二次函数,即可得出图象的情形;△当BM≥4时,y与x之间的函数图象的形状与△中的相同;即可得出结论.【详解】解:△四边形ABCD是菱形,△AB=BC=CD=DA,OA=12AC=3,OB=12BD=4,AC△BD,△当BM≤4时,△点P′与点P关于BD对称,△P′P△BD,△P′P△AC,△△P′BP△△CBA,△PP BMAC OB'=,即64PP x'=,△PP′=32x,△DM=8-x,△△DPP′的面积y=12PP′•DM=12×32x(8-x)=-34x2+6x;△y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,12);△当BM≥4时,如图:同理△P′DP△△CDA,△PP DMAC OD'=,即864PP x'-=,△PP′=3(8)2x-,△△DPP′的面积y=12PP′•DM=12×32(8-x)2=34(8-x)2;△y与x之间的函数图象是抛物线,开口向上,过(4,12)和(8,0);综上所述:y与x之间的函数图象大致为:故选:D.【点睛】本题考查了动点问题的函数图象、菱形的性质、相似三角形的判定与性质、三角形面积的计算以及二次函数的运用;熟练掌握菱形的性质,根据题意得出二次函数解析式是解决问题的关键.10.D【解析】【分析】由垂径定理可得OB△AC,AB BC=,则△ADM=△BDC,易证△OMD△△AND,则△AOD=90°,且DM:DN=OD:AD=1.【详解】解:△OB平分△AOC,△△AOB=△COB,△AB BC=,△△ADB=△BDC,△AM=AN,△△ANM=△AMN,又△△AMN=△OMD,△△ANM=△OMD,△△OMD△△AND,△DM ODDN AD=,△MOD=△NAD,△CD 是直径, △△NAD=90°, △△MOD=90°, △OA=OD , △△OAD=45°,,△2DM OD DN AD ==. 故选:D . 【点睛】本题主要考查圆周角定理,相似三角形的性质与判定,熟记圆内相关定理是解题基础. 11.y =﹣3(x+2)2﹣3 【解析】 【分析】根据抛物线平移的规律“左加右减,上加下减”即可求得答案. 【详解】解:把抛物线y =﹣3x 2向左平移2个单位,得到的抛物线为y =﹣3(x+2)2, 再将抛物线为y =﹣3(x+2)2向下平移3个单位,得到抛物线为y =﹣3(x+2)2﹣3, 故答案为:y =﹣3(x+2)2﹣3. 【点睛】本题考查二次函数图象与几何变换、解题的关键是熟练掌握抛物线平移的规律“左加右减,上加下减”. 12.12y y < 【解析】 【分析】根据抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,由A (-3,y 1),B (-1,y 2)在对称轴左侧,y 随x 的增大而增大,可得最终结果. 【详解】抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,313-<-<,12y y ∴<,故答案为:12y y <. 【点睛】本题主要考查二次函数的性质,属于基础题,熟练掌握二次函数的增减性是解题关键. 13.4或5##5或4 【解析】 【分析】解方程27120x x -+=得到x =3或4,本题应分两种情况进行讨论,当4是直角边时,根据勾股定理得到斜边是5,这个直角三角形外接圆的直径是5,当4是斜边时,直角三角形外接圆直径是4. 【详解】解:27120x x -+=, 解得x =3或4;△当4是直角边时,斜边长 ,所以直角三角形外接圆直径是5; △当4是斜边时,这个直角三角形外接圆的直径是4. 故答案为:4或5. 【点睛】此题主要考查直角三角形外切圆半径,涉及到一元二次方程的解法以及勾股定理的综合应用,难度不大. 14.514【解析】 【分析】分三种情况:△点A 为顶点;△点B 为顶点;△点C 为顶点;得到能使△ABC 为等腰三角形的点C 的个数,再根据概率公式计算即可求解. 【详解】如图,△AB =△△若AB =AC ,符合要求的有3个点; △若AB =BC ,符合要求的有2个点; △若AC =BC ,不存在这样格点.△这样的C 点有5个.△能使△ABC 为等腰三角形的概率是514. 故答案为:514.【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn. 15.2 【解析】 【分析】连接BM 并延长交AC 于E ,连接BN 并延长交AC 于F ,根据三角形的重心是中线的交点可得ED =12AD ,DF =12CD ,然后求出EF 的长,再根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得BM =2ME ,BN =2NF ,再根据相似三角形对应边成比例列出求解即可. 【详解】解:连接BM 并延长交AC 于E ,连接BN 并延长交AC 于F , △点M 、N 分别是△ABD 和△ACD 的重心, △ED =12AD ,DF =12CD ,BM =2ME ,BN =2NF ,△BC =6,△EF =DE+DF =12(AD+CD )=12BC =12×6=3, △BM BE=BN BF =23,△EBF =△MBN ,△△BEF△△BMN , △MN EF =23, 即3MN =23,△MN =2. 故答案为:2.【点睛】本题考查了三角形重心,解题关键是明确三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍. 16.45【解析】 【分析】由抛物线的解析式易求出点A 、B 、C 的坐标,然后利用待定系数法求出直线BC 的解析式,过点P 作PQ△x 轴交直线BC 于点Q ,则△PQK△△ABK ,可得PK PQAK AB=,而AB 易求,这样将求PKAK的最大值转化为求PQ 的最大值,可设点P 的横坐标为m ,注意到P 、Q 的纵坐标相等,则可用含m 的代数式表示出点Q 的横坐标,于是PQ 可用含m 的代数式表示,然后利用二次函数的性质即可求解. 【详解】解:对二次函数2339(1)(4)3444y x x x x =-+-=-++,令x=0,则y=3,令y=0,则3(1)(4)04x x -+-=,解得:121,4x x =-=,△C(0,3),A(-1,0),B(4,0), 设直线BC 的解析式为:y kx b =+,把B 、C 两点代入得:340b k b =⎧⎨+=⎩,解得:343k b ⎧=-⎪⎨⎪=⎩, △直线BC 的解析式为:334y x =-+, 过点P 作PQ△x 轴交直线BC 于点Q ,如图, 则△PQK△△ABK , △PK PQ AK AB=, 设P (m ,239344m m -++),△P 、Q 的纵坐标相等,△当239344y m m =-++时,233933444x m m -+=-++,解得:23x m m =-,△()2234PQ m m m m m =--=-+,又△AB=5,△()224142555PK m m m AK -+==--+. △当m=2时,PK AK 的最大值为45.故答案为:45.【点睛】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求PKAK的最大值转化为求PQ 的最大值、熟练掌握二次函数的性质. 17.(1)12-;(2)14x =或26x =-. 【解析】【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂的意义计算,第三项利用负整数指数幂法则计算,最后进行加减运算即可得到答案; (2)方程变形后,利用平方根定义开方即可求解. 【详解】解:()(2112213-⎛⎫---- ⎪⎝⎭219--12=-;()()221250x +-=()2125x +=15x +=或15x +=-14x =或26x =-. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解答此题的关键. 18.(1)(4,﹣1);(2)见解析;(3)见解析. 【解析】 【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可; (3)将三个点分别绕原点O 逆时针旋转90°后得到对应点,再首尾顺次连接即可. 【详解】(1)点B 关于原点对称的点B′的坐标为(4,﹣1), 故答案为:(4,﹣1);(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.19.(1)38(2)16【解析】【分析】(1)列表展示所有16种等可能的结果数,再找出第二次取出的数字小于第一次取出的数字的结果数,然后根据概率公式求解;(2)列表展示所有12种等可能的结果数,再找出两张卡片上的数都是偶数的结果数,然后根据概率公式求解.【详解】解:(1)列表如下:由表知,共有16种等可能的结果数,其中第二次取出的数字小于第一次取出的数字的有6种结果,所以第二次取出的数字小于第一次取出的数字的概率为63=168;(2)列表如下:由表知,共有12种等可能的结果数,其中两张卡片上的数都是偶数的有2种结果,所以两张卡片上的数都是偶数的概率为21=126.【点睛】此题考查的是用列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验,用到的知识点为:概率=所求情况数与总情况数之比.20.(1)a=-1,b=-2,D(-2,3);(2)−2<x<0【解析】【分析】(1)由于已知抛物线与x轴的交点坐标,则设交点式y=a(x+3)(x-1)=223ax ax a+-,则-3a=3,解得a=-1,所以b=-2,抛物线的对称轴为直线x=-1,再求出C点坐标为(0,3),然后根据对称的性质确定D点坐标为(-2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n的上方,即y2>y1.【详解】(1)设抛物线解析式为y=a(x+3)(x−1)= 223ax ax a+-,则−3a=3,解得a=−1,所以抛物线解析式为y=223x x---;所以b=−2,抛物线的对称轴为直线x=−1,当x=0时, 223y ax bx=++,则C点坐标为(0,3),由于C. D 是二次函数图象上的一对对称点,△D 点坐标为(−2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n 的上方,即y 2>y 1.当−2<x<0时, 21y y >.【点睛】此题考查待定系数法求二次函数解析式、二次函数的图象,解题关键在于结合二次函数图象解决问题.21.(1)见解析;(2)254【解析】【分析】(1)先证出△DCE =△ACB ,△CDE =△ACD ,再利用CD 是Rt ABC 斜边AB 中线,可得CD=AD ,证得△A=△ACD ,从而△CDE =△CAD ,进而可以证明ABC DEC ∽△△;(2)先利用勾股定理求得AB =10,再利用直角三角形斜边上的中线等于斜边的一半,求得CD =5,再利用相似三角形的对应边成比例得AB△DE =AC△CD ,即可求得答案.【详解】解(1)由题意:△CE△CD ,△90DCE ACB ∠∠︒==,又△//DE AC ,△△CDE =△ACD ,△在Rt ABC 中,CD 是AB 边上的中线,△CD =AD ,△△ACD =△CAD ,△△CDE =△CAD ,△ABC DEC ∽△△.(2)△AC =8,BC =6,△利用勾股定理得:AB△在Rt ABC 中,CD 是AB 边上的中线,△CD =5,△ABC DEC ∽△△△AB△DE =AC△CD ,即10△DE =8△5,△DE =254. 【点睛】本题主要考查了相似三角形的判定和性质,以及直角三角形斜边上的中线特征,找准对应边和对应角是解题的关键.22.(1)DE DC =,证明见详解;(2)△O 的直径为8.【解析】【分析】(1)连接AD ,根据直径所对圆周角可得AD BC ⊥,根据等腰三角形三线合一的性质可得到ED BD =,即可得解;(2)根据已知条件求出BC ,再根据勾股定理建构方程求解即可得解;【详解】解:(1)DE BD =,证明:连接AD ,△AB 为△O 的直径,△△ADB=90°,即AD BC ⊥,在△ABC 中,AB=AC ,AD BC ⊥,CAD BAD ∴∠=∠, BD=DC ,(等腰三角形三线合一),∴ED BD =,DE BD ∴=;△DE=DC ;(2)△12BD BC ==2AE =△BC =设AB AC x ==,2EC AC AE x =-=-,△AB 为△O 的直径,△△AEB=90°,在Rt△AEB 中,,在Rt△CEB 中,BE即(()22242x x -=-- 整理得22480x x --=因式分解得()()860x x -+=解得86x x ==-,(舍去),△△O 的直径为8.【点睛】本题主要考查了圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,掌握圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,是解题的关键.23.(1)2106408800y x x =-+-;(2)此时的销售单价为30元或34元;(3)该商场每天销售此商品的最大利润为1440元.【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)及题意可得21064088001400x x -+-=,进而求解方程即可;(3)由2106408800y x x =-+-可得该二次函数的图象开口向下,对称轴为直线32x =,进而根据二次函数的性质可求解.【详解】解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由2106408800y x x =-+-可得100-<,△该二次函数的图象开口向下,对称轴为直线32x =,△每件小商品的售价不超过36元,△当32x =时,该商场每天销售此商品的利润为最大,最大值为1440;答:该商场每天销售此商品的最大利润为1440元.24.(1)15°;(2)(3)35【解析】(1)根据矩形的性质和直角三角形的性质,先得到30AFB ∠=︒,再由折叠的性质可得到15CBE ∠=︒;(2)由三等角证得FAB EDF ∆∆∽,从而得2DE =,3EF CE ==,再由勾股定理求出DE ,则BC AD ==(3)过点N 作NG BF ⊥于点G ,可证得NFG BFA ∆∆∽.再根据相似三角形的性质得出对应边成比例及角平分线的性质即可得解.【详解】(1)△矩形ABCD ,△90A ∠=︒,//AD BC由折叠的性质可知BF=BC=2AB ,12CBE CBF ∠=∠, △30AFB ∠=︒,△30FBC AFB ∠=∠=°,△15CBE ∠=︒(2)由题意可得90A D ∠=∠=︒,90AFB DFE ∠+∠=︒,90FED DFE ∠+∠=︒△AFB DEF ∠=∠△FAB EDF ∆∆∽ △AF AB DE DF=, △1025AF DF DE AB === △3EF CE ==,由勾股定理得DF==△AF==△BC AD AF FD==+=(3)过点N作NG BF⊥于点G.△90NGF A∠=∠=°又△BFA NFG∠=∠△NFG BFA∆∆∽.△NG FG NFAB FA BF==.△NF AN FD=+,即111222NF AD BC BF===△12NG FG NFAB FA BF===,又△BM平分ABF∠,90NG BF A⊥∠=︒,,△NG=AN,△12NG AN AB==,△111222FG BF BG BC ABFA AN NF AB BC--===++整理得:35ABBC=.。
上海市杨浦区复旦大学附属中学2024-2025学年九年级上学期9月月考数学试题(含答案)

2024~2025学年上海市复旦大学第二附属中学九年级上学期9月月考数学试卷(考试时间100分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。
与考试无关的所有物品放置在考场外。
3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。
4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。
若因填涂模糊导致无法识别的后果自负。
一、选择题(共6题,每题4分,满分24分)1.是同类二次根式,那么a 的值为()A.2 B.3 C.4 D.52.方程的根的情况是( )A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法确定3.下列说法中错误的是()A.一个负数的绝对值是它的相反数B.数轴上离原点越远的点所表示的数越大C.任何有理数都有相反数D.正数都大于零4.某商场有一个可以自由转动的转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品.经过多次试行,发现转动n 次转盘时,其中指针有m 次落在“铅笔”区域,则估计“饮料”区域所在扇形的圆心角度数是( )A. B. C. D.5.已知一次函数的图象如图所示,则点所在的象限为()2220x x --=1360n m ⎛⎫-︒ ⎪⎝⎭1360m n ⎛⎫-︒ ⎪⎝⎭360m n ︒360n m︒()33y m x n =-++(),2P m n n -A.第一象限B.第二象限C.第三象限D.第四象限6.如图,一块矩形木板斜靠在墙边,,点A ,B ,C ,D ,O 在同一平面内,,,,则点A 到OC 的距离为( )A. B.C. D.二、填空题(共12题,每题4分,满分48分)7.在不等式中,m ,n 是常数且,当时,不等式的解集为_____8.已知关于x 的方程有实数根,则整数a 的最大值是_____9.在比例尺为1:3000的地图上,甲、乙两地的距离为5cm ,则甲、乙两地的实际距离为________米.10.已知:点与点关于原点成中心对称,则________11.一个三位正整数(其中a 、b 都是正整数,,),满足各数位上的数字互不相同.将n 的任意两个数位上的数字对调后得到三个不同的新三位数,把这三个新三位数的和记为.若,则_______12.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是_______13.小明希望测量出电线杆的高度,于是在阳光明媚的一天,他在电线杆旁的点处立一标杆.使标杆的影子与电线杆的影子部分重叠(即点E ,C ,A 在一直线上),量得,,,则电线杆的长为______m.14.如图,正方形的边长为a ,E ,F 分别是对角线上的两点,过点E ,F 分别作,的平行线,则图中阴影部分的面积之和为________.ABCD OC OB ⊥1AB =4AD =BCO α∠=tan 4sin αα+tan 4cos αα+sin 4cos αα+cos 4sin αα+0mx n +>0m ≠0m <()21230a x x +-+=()2025,1A -(),B a b O a b +=100103n a b =++19a ≤≤19b ≤≤()M n ()999M n =a b +=AB D CD DE BE 2m ED =6m DB =1.3m CD =AB ABCD BD AD AB15.如图,中,G 是重心,,,那么________16.在中,点,分别为,的中点,与交于点O ,已知四边形DFOE 的周长为4,的周长为_______.17.对于二次函数(a 是常数),下列结论:①将这个函数的图像向下平移3个单位长度后得到的图像经过原点;②当时,这个函数的图像在函数图像的上方;③若,则当时,函数值y 随自变量x 增大而增大;④这个函数的最小值不大于3.其中正确的是________(填写序号)18.如图,中,,,,将线段绕点B 逆时针旋转90°得到线段,取的中点E ,连接,用含m ,n 的式子表示的长是________.三、解答题(满分78分)19.计算:20.解不等式组:.21.如图是一种躺椅及其结构示意图,扶手与底座都平行于地面,前支架与后支架分ABC △GD BC ⊥AH BC ⊥GD AH=ABCD □E F AD AB AC BD ABCD □223y x ax =-+1a =-y x =-1a ≥1x >ABC △135BAC ∠=︒AB m =AC n =BC BD AD BE 212tan 602-⎛⎫︒+ ⎪⎝⎭()3121223x x x x ⎧->+⎪⎨+>-⎪⎩AB CD EF OE OF别与交于点和点,与交于点,.(1)求证:;(2)若平分,,求:扶手与靠背的夹角的度数.22.2024年春晚吉祥物“龙辰辰”,以十二生肖龙的专属汉字“辰”为名.某厂家生产大小两种型号的“龙辰辰”,大号“龙辰辰”单价比小号“龙辰辰”单价贵15元,且用2400元购进小号“龙辰辰”的数量是用2200元购进大号“龙辰辰”数量的1.5倍,(1)求:大号“龙辰辰”的单价(2)某网店在该厂家购进了两种型号的“龙辰辰”共60个,且大号“龙辰辰”的个数不超过小号“龙辰辰”个数的一半,小号“龙辰辰”售价为60元,大号“龙辰辰”的售价比小号“龙辰辰”的售价多30%.若两种型号的“龙辰辰”全部售出,求:该网店所获的最大利润23.如图,在中,,过点C 的直线,D 为边上一点,过点D 作,垂足为F ,交直线于E ,连接,.(1)求证:;(2)当D 为AB 中点时,当满足什么条件时,四边形BECD 是正方形?24.已知:如图1,二次函数的图像交x 轴于A ,B 两点(A 在B 的左侧),过点A 的直线交该二次函数的图像于另一点,交y 轴于M .CD G D AB DM N AOE BNM ∠=∠OE DM ∥OE AOF ∠30ODC ∠=︒AB DM AND ∠Rt ABC △90ACB ∠=︒MN AB ∥AB DE BC ⊥MN CD BE CE AD =ABC △2344y ax ax =++134y kx k k ⎛⎫=+> ⎪⎝⎭()11,C x y(1)直接写出A 点坐标,并求该二次函数的解析式;(2)过点B 作交于D ,若且点Q 是线段上的一个动点,求出当与相似时点Q 的坐标:(3)设,图2中连接交二次函数的图像于另一点,连接交y 轴于N ,请你探究的值的变化情况,若变化,求其变化范围;若不变,求其值25.如图,在中,AD 平分交BC 边于点D ,在CA 边上取点E ,使得,连接DE .(1)如图1,当时,求:的正切值(2)如图2,过点C 作于点F ,当时,请:的值(3)如图3,在(2)问的条件下,连接BE ,当时,若四边形ABDE 内部的点Q 到四边形ABDE 四条边的距离相等,求:的值BD AC ⊥AC (M DC DBQ △AOM △()1,2P --CP ()22,E x y AE OM ON ⋅ABC △CAB ∠CE CD =120ABC ∠=︒ADE ∠CF ED ⊥AB BC =AD CFBE AD ⊥sin QEB ∠参考答案及部分评分标准选择题(1~6题)CABBDD填空题(7~18题)7. 8.-1 9.150 10.2024 11.6 12.13.5.2 14. 15. 16.8 17.①②④解答题(19~25题)19.原式=720.21.(1)证内错角相等即可(2)85°22.(1)55(2)126023.(1)证:平行四边形ADEC(2)当时24.(1)(2)或(3)值不变,25.(1(2)2(3n x m <-1515112x x -=+22a 1334x <<45A ∠=︒()3,0A -21344x y x ++=(1,Q -(2Q -92。
山东省济宁市微山县2023-2024学年九年级上学期期中数学试题(含答案)

2023—2024学年度第一学期期中考试九年级数学试题注意事项:1.本试卷共6页,满分100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答选择题时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答非选择题时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.在回收、绿色包装、节水、低碳四个标志图案中,属于中心对称图形的是()A .B .C .D .2.下列方程是一元二次方程的是( )A .B .C .D .3.一元二次方程的根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法确定4.将抛物线向右平移2个单位长度,再向下平移3个单位长度,所得抛物线解析式为,则代数式的值为( )A .B .2C .4D .65.2021年某市GDP 约为115亿元,如果以后每年按相同的增长率增长,2023年该市GDP 约达135亿元.若设每年增长率为x ,则所列方程为( )A .B .C .D .6.如图,在中,,,将此三角形绕点B 沿逆时针方向旋转后得到,若点恰好落在线段AC 上,AB ,交于点D ,则等于()2x x=20ax bx c ++=1xy =11x x+=2321x x x -=+2y x bx c =++221y x x =-+b c -2-()1151151135x ++=()1151135x +=()21151135x +=()()211511151135x x +++=ABC △90ABC ∠=︒50C ∠=︒A BC ''△C 'A C ''A BD '∠A .B .C .D .7.一次函数和二次函数(k 是常数,且)在同一平面直角坐标系中的图象可能是()A .B .C .D .8.已知抛物线,,,是抛物线上三点,则,,的大小关系是( )A .B .C .D .9.如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .C .D .210.如图所示是抛物线的部分图象,其顶点坐标为,且与x 轴的一个交点在点和之间,则下列结论:①;②;③;④一元二次方程有实数根.65︒70︒75︒80︒y kx k =+244y kx x =-++0k ≠()2230y ax ax a =-+>()11,A y -()22,B y ()34,C y 1y 2y 3y 123y y y <<213y y y <<312y y y <<231y y y <<Rt AOB △()6,4-Rt COD △90COD ∠=︒OD =30D ∠=︒Rt COD △4-2-()20y ax bx c a =++≠()1,n ()3,0()4,00a b c -+<30a c +>()24b a c n =-21ax bx c n ++=+其中正确的结论个数是( )A .①②B .①③C .②③D .②④二、填空题:本大题共5小题,每小题3分,共15分.11.已知函数为二次函数,则m 的值为________.12.已知a 是方程的一个根,则代数式的值是________.13.若点关于原点的对称点,那么________.14.如图,已知抛物线与x 轴交于A ,B 两点,顶点M 的纵坐标为,现将抛物线向右平移3个单位长度得到抛物线,则阴影部分的面积是________.15.如图,在直角坐标系中,线段是将绕着点逆时针旋转一定角度后得到的的一部分,则点A 的对应点的坐标是________.()1321m y m xx -=-+-2310110x x --=2261a a -+(),1P m ()2,Q n -m n +=2y mx nx c =++2-2111y m x n x c =++11B C ABC △()3,2D -111A B C △1A三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程.16.(本小题3分)用公式法解方程:.17.(本小题3分)用适当的方法解方程.18.(本小题4分)已知函数.(1)若这个函数是关于x 的一次函数,求m 的值.(2)若这个函数是关于x 的二次函数,求m 的取值范围.19.(本小题6分)已知如图1,图形A 是一个正方形,图形B 由三个图形A 构成,请用图形A 与B 拼接出符合要求的图形(每次拼接图形A 与B 只能使用一次),并分别画在指定的网格中.图1(1)在网格甲中画出:拼得图形是中心对称图形但不是轴对称图形;(2)在网格乙中画出:拼得图形是轴对称图形但不是中心对称图形;(3)在网格丙中画出:拼得图形既是轴对称图形又是中心对称图形.20.(本小题6分)已知二次函数的图象与x 轴两交点为、.(1)填空:________;(2)求代数式的值.21.(本小题6分)已知关于x 的一元二次方程,其中a ,b ,c 分别为三220x x --=()24520x x +=+()()2111y m x m x m =-+---233y x x =+-()1,0x ()2,0x 12x x +=1221x x x x +()()220b c x ax b c +-+-=ABC △边的长.(1)已知是方程的根,求证:是等腰三角形;(2)如果是直角三角形,其中,请你判断方程的根的情况,并说明理由.22.(本小题8分)某商家销售一种进价为10元/件的玩具.经调查发现,该玩具每天的销售量y (件)与销售单价x (元)满足下表:x 101112131415y400390380370360350设销售这种玩具每天的利润为w (元).(1)求w 与x 之间的函数关系式;(2)若销售单价不低于30元,且每天至少销售60件时,求此时w 的最大值.23.(本小题8分)阅读与理解图1是边长分别为m 和的两个正方形纸片ABCD 和EFCG 叠放在一起的图形(点F ,G 分别在BC ,CD 上).操作与证明(1)将图1中的正方形ABCD 固定,将正方形EFCG 绕点C 按顺时针方向旋转,连接BF ,DG ,如图2所示.猜想:线段BF 与DG 之间的大小关系,并证明你的猜想;(2)若将图1中的正方形EFCG 绕点C 按顺时针方向任意旋转一个角度,连接BF ,DG ,如图3所示.那么(1)中的结论还是否成立吗?请说明理由.操作与发现根据上面的操作过程发现,当为________度时,线段BF 的最大值是________;当为________度时,线段BF 的最小值是________?图1图2图324.(本小题11分)如图,抛物线交x 轴于A ,B 两点,交y 轴于点C ,直线经过点B ,C 两点.1x =ABC △ABC △90B ∠=︒()n m n >45︒()0360αα︒≤≤︒αα243y ax x =+-3y x =-备用图(1)求抛物线的解析式;(2)D 是直线BC 上方抛物线的一动点,当面积取最大值时,求点D 的坐标;(3)连接AC ,将绕点A 旋转一周,在旋转的过程中,点C ,B 的对应点分别为,,直线分别与直线BC 交于点E ,交y 轴于点F .那么在的整个旋转过程中,是否存在恰当的位置,使是以CE 为腰的等腰三角形?若存在,请求出所有符合条件的点E 的坐标;若不存在,请说明理由.2023—2024学年度第一学期期中考试九年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分1-5:DABAC6-10:DABDC二、填空题:本题共5小题,每题3分,共15分11.; 12.2023; 13.1; 14.6; 15..三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.解:(1),,,,,所以,;3分17.解:,DBC △ABC △C 'B 'AC 'ABC △CEF △1-()2,32220x x --=1a =2b =-2c =-()()22412120∆=--⨯⨯-=>1x ===11x =+21x =()()2454x x +=+,,或,所以,.3分18.解:(1)由题意得:且,解得:且,∴,∴当时,这个函数是关于x 的一次函数;2分(2)由题意得:,解得:,∴当,这个函数是关于x 的二次函数.4分19.(答案不唯一,每正确画出一个符合条件的图形得2分,满分6分)6分20.(1);2分(2)由题意知,,是一元二次方程的两个根,∴,.∴6分21.(1)证明:∵是一元二次方程的根,∴.∴.∴是等腰三角形;3分(2)解:方程有两个相等的实数根,理由如下:∵是直角三角形,其中,∴.∴,∴方程有两个相等的实数根6分()()24540x x +-+=()()4450x x ++-=40x +=450x +-=14x =-21x =10m -=10m -≠1m =±1m ≠1m =-1m =-10m -≠1m ≠±1m ≠±3-1x 2x 2330x x +-=123x x +=-123x x =-()()()222212121212211212232353x x x x x x x x x x x x x x +---⨯-++====--1x =()()220b c x ax b c +-+-=()()20b c a b c +-+-=a b =ABC △ABC △90B ∠=︒222b a c =+()()()2222244440a b c b c a b c ∆=--+-=-+=22.解:(1)根据题意,有:,化简,得:,根据,解得:,即函数关系为:;4分(2)根据题意有:,解得:,将化为顶点式为:,∵,,∴当时,函数值最大,最大为:.答:此时W 的最大值为4000元.8分23.解:操作与证明:(1).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.3分(2).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.6分猜想与发现:当为时,线段AD 的长度最大,等于;当为(或)时,线段AD 的长度最小,等于8分24.解:(1)∵直线经过点B ,C 两点,当时,,∴,当时,,∴.把点代入,得:,解得,∴;3分10500y x =-+()()()101050010W y x x x =⨯-=-+⨯-2106005000W x x =-+-1050000y x x =-+≥⎧⎨>⎩050x <≤()2106005000050W x x x =-+-<≤105006030y x x =-+≥⎧⎨≥⎩3044x ≤≤2106005000W x x =-+-()210304000W x =--+100-<3044x ≤≤30x =4000W =BF DG =45︒45BCF DCG ∠=∠=︒CB CD =CF CG =BCF DCG △≌△BF DG =BF DG =αBCF DCG α∠=∠=CB CD =CF CG =BCF DCG △≌△BF DG =α180︒m n +α0︒360︒m n -3y x =-0x =3y =-()0,3C -0y =3x =()3,0B ()3,0B 243y ax x =-+09123a =-+1a =-243y x x =-+-(2)设点D 的坐标为,过点D 作轴,交BC 于点E ,则点E 的坐标为,∴,∴.∴当时,的面积取最大值.此时.∴7分(3)设直线AC 的解析式为,则,联立直线BC 和直线AC ,得:,解得:,∴,由勾股定理得:,,,()()2,4303m m m m -+-<<DE y ∥(),3m m -()224333DE m m m m m =-+---=-+()()221332732228DBCB C S m m x x m ⎛⎫=-+-=--+⎪⎝⎭△32m =DBC S △233343224y ⎛⎫=-+⨯-= ⎪⎝⎭33,24D ⎛⎫⎪⎝⎭()1y k x =-()0,F k -()13y k x y x ⎧=-⎨=-⎩3121k x k k y k -⎧=⎪⎪-⎨⎪=-⎪-⎩32,11k k E k k -⎛⎫-⎪--⎝⎭22232311k k EC k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭2223211k k EF k k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭()223FC k =-+若,即,解得或当时,,当,若,即,解得或,当时,,当时,此时,不合题意,故舍去,综上,M 的坐标为或或或.11分FC EC =()222323311k k k k k -⎛⎫⎛⎫-+=+-+ ⎪ ⎪--⎝⎭⎝⎭1k =1k =-1k =+(12E --1k =(12E +-EC EF =2222323231111k k k k k k k k k --⎛⎫⎛⎫⎛⎫⎛⎫+-+=+-+ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭1k =-3k =1k =-()2,1E -3k =()0,3E -0EC EF ==()3,0()2,1-(12--(12-。
安徽省安庆市大观区安庆市第四中学2024-2025学年九年级上学期11月期中数学试题

安庆四中2024-2025学年第一学期九年级数学期中考试试卷一.选择题(本大题共10小题,每小题4分,满分40分)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x22.如果,那么的值是()A.B.C.D.3.下列各组中的四条线段成比例的是()A.1,1,2,3B.3,6,4,7C.5,6,7,8D.2,3,6,9 4.对于抛物线y=(x﹣1)2﹣1,下列说法正确的是()A.抛物线的开口向下B.有最大值,最大值是﹣1C.抛物线的顶点坐标是(1,1)D.当x>3时,y随x的增大而增大5.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:那么方程x2+3x﹣5=0的一个近似根是()A.1.4B.1.1C.1.2D.1.36.观察下列每组三角形,不能判定相似的是()7.在反比例函数的图象上有三个点(﹣2,y1),(﹣1,y2),,则y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y3<y2C.y1<y2<y3D.y3<y2<y18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=﹣2,记m=a+b,n=a﹣b,则下列选项中一定成立的是()A.m=n B.m<n C.m>n D.n﹣m<39.如图,在△ABC中,AD是BC边上中线,F是AD上一点,且AF:FD=1:5,连接CF并延长交AB 于E,则AE:EB等于()A.1:6B.1:8C.1:9D.1:1010.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或B.﹣3<n<﹣1或C.n≤﹣1或D.﹣3<n<﹣1或n≥1二.填空题(本大题共4小题,每小题5分,满分20分)11.若点C是线段AB的一个黄金分割点,AB=2,AC>BC,则AC的长为12.已知一条抛物线的形状与抛物线y=2x2+3形状相同,与另一条抛物线y=﹣(x+1)2﹣2的顶点坐标相同,这条抛物线的表达式为.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点为(1,0),则关于x的不等式ax2+bx+c>0的解集为.14.如图,矩形OABC顶点A、C分别在x、y轴上,双曲线分别交BC、AB于点D、E,连接DE并延长交x轴于点F,连接AC.下列结论:①DE∥CA;②S四边形ACDF=k;③若BD=2CD,则AE=2BE;④若点E为DF的中点,且S△AEF=3,则k=12;其中正确的有.(填写所有正确结论的序号)三.解答题(本大题共9小题,满分90分)15.(本题8分)已知线段a、b满足a:b=3:2,且a+2b=42.(1)求线段a、b的长;(2)若线段c是线段a、b的比例中项,求线段c的长.16.(本题8分)如图,在△ABC中,D、E、F分别是AB、BC上的点,且DE∥AC,AE∥DF,,BF=9cm,求EF和FC的长.17.(本题8分)综合与实践:【问题情景】某生物小组探究“酒精对人体的影响”,资料显示,一般饮用低度白酒100毫升后,血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似的用如图所示的图象表示.国家规定,人体血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.【实践探究】(1)求部分双曲线BC的函数表达式;【问题解决】(2)参照上述数学模型,假设某人晚上20:00喝完100毫升低度白酒,则此人第二天早上9:00能否驾车出行?请说明理由.18.(本题8分)如图,等腰直角△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点E是CA 延长线上一点,点F是AB上一点,且∠EDF=45°.(1)求证:△BFD∽△CDE;(2)若BF=3,CE=8,求AB的长.19.(本题10分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,=;(填两数字之比)(2)如图②,在线段AB上找一点P,使=(利用网格和无刻度的直尺作图,保留痕迹,不写作法);(3)如图③,大小4×4的正方形方格中,△ABC的顶点A,B,C都在小正方形的格点上,请在图中画出与△ABC相似且面积不相等的一个三角形.20.(本题10分)已知二次函数y=x2﹣2ax+3﹣2a.(1)当抛物线过点(2,1),①求该抛物线的表达式.②当﹣1<x<4时,求y的范围.(2)若函数图象上有两个不同的点A(x1,y1),B(x2,y2),且x1+x2=﹣2,求证:y1+y2>8.21.(本题12分)综合与实践:利用正方形硬纸板设计制作带盖长方体盒子四边形ABCD是边长均为30cm的正方形硬纸片,“睿智小组”设计出不同方式的带盖长方体包装盒,并画出了示意图(图①,图③)及折合成的带盖长方体盒子(图②、图④),其中,实线表示剪切线,虚线表示折痕(设计、折合及计算过程中,纸板厚度及剪切接缝处损耗忽略不计),请你观察、操作、验证并思考完成该小组提出的问题.设计方案一:如图①,将正方形硬纸片ABCD的四个角分别剪去大小相同的两个正方形和两个长方形(阴影部分所示),再沿虚线折合得到一个底面为长方形MNQP的包装盒(如图②所示).(1)若底面积MNQP为162cm2,求MG的长.设计方案二:如图③,将正方形硬纸板ABCD切去四个全等的等腰直角三角形(阴影部分所示),其中点E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图④所示),形成有一个底面为正方形GHMN的包装盒,设GF=x cm.(2)请直接写出线段BF的长(用含x的代数式表示);(3)求长方体盒子的侧面积为S(cm2)与x的函数关系式.22.(本题12分)如图(1),点P是菱形ABCD对角线BD上的一点,连接AP,以AP为腰在AP的右侧作等腰三角形APE,且使∠APE=∠ABC,AP=PE.(1)当点E在菱形ABCD内,=1时,=;(2)如图(2),当点E在菱形ABCD内,=k(k≠1),其他条件不变时,求值;(3)如图(3),当点E在菱形ABCD外,=,BP=6,菱形ABCD的面积为8,其他条件不变,请直接写出△DCE的面积.23.(本题14分)如图,抛物线y=ax2+bx÷4经过点A(﹣2,0),点B(4,0),与y轴交于点C,过点C作直线CD∥x轴,与抛物线交于点D,作直线BC,连接AC.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD+∠CAO=90°的点E的坐标;(3)点M在y轴上,且位于点C的上方,点N在直线BC上,点P为直线BC上方抛物线上一点,是否存在点N使四边形CMPN为菱形,如果存在,请直接写出点N的坐标.如果不存在,请说明理由.。
浙教版九年级(上)期中考试数学试卷(Word版 含解析)

浙教版九年级(上)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.已知3x=7y(y≠0),则下列比例式成立的是()A.B.C.D.2.如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是()A.B.C.D.3.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是()A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数4.抛物线y=2x2﹣1的图象经过点A(﹣3,y1),B(1,y2),C(4,y3),则y1,y2,y3大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y15.在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=﹣1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<﹣1时,点B在圆A外D.当﹣1<a<3时,点B在圆A内6.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°7.如图,⊙O的半径为5,AB为弦,若∠ABC=30°,则的长为()A.5B.πC.D.π8.一条抛物线y=ax2+bx+c的顶点为(2,m),m<0,且与x轴有两个交点,其中一个交点是(5,0),则对a、b、c描述正确的是()A.a>0、b<0、c>0B.a>0、b<0、c<0C.a<0、b>0、c>0D.a<0、b>0、c<09.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连接BM交AC于点E,AD平分∠CAB交BM于点D,且D为BM的中点,则BC的长为()A.B.C.D.10.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s﹣t,(s 为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)11.当x=0时,函数y=2x2+4的值为.12.如图,直线l1∥l2∥l3,直线AC依次交l1、l2、l3于A、B、C三点,直线DF依次交l1、l2、l3于D、E、F三点,若,DE=2,则EF=.12题14题15题13.已知线段AB=2,如果点P是线段AB的黄金分割点,且AP>BP,那么AP的值为.14.如图,在5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与BD交于E,则图中阴影部分的面积为.(结果保留π)15.如图,将平行四边形ABCD绕点A顺时针旋转,其中B,C,D分别落在点E,F,G 处,且点B,E,D,F在一直线上,BC=2,若点E是BD的中点,则AB的长度为.16.已知二次函数y=ax2+bx+1(a≠0)的图象的顶点在第二象限,且过点(1,0).当a﹣b为整数时,ab=.三、解答题:(本大题共7小题,共66分)17.已知x:y=2:3,求:(1)的值;(2)若x+y=15,求x,y的值.18.已知二次函数y=x2+bx+c过(1,0),(0,﹣3).(1)求该二次函数的解析式;(2)若﹣1≤x≤1,求y的取值范围.19.一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球;①判断摸到什么颜色的球可能性最大?②求摸到黄颜色的球的概率;(2)如果把白球拿出来,将剩下的5个球摇匀,从中任意摸出2个球,求摸到2个都是黄颜色球的概率.20.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短直角边长n,且n=m﹣2,大正方形的面积为S.(1)求S关于m的函数关系式;(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.21.如图,BC是⊙O的直径,点A、D在⊙O上,AH⊥BC于H.(1)若,求证:CH=HO;(2)若BC=10,AC=6;①求AH的长;②若DB∥OA,求DB的长.22.在平面直角坐标系中,设二次函数y1=x2+bx+c,y2=﹣x2+bx﹣c(b,c是实数).(1)若函数y1的图象经过点(r,g),求证函数y2的图象经过点(﹣r,﹣g).(2)设函数y1和函数y2的最值分别为m和n;①若函数y1的图象先向右平移2个单位,再向下平移2个单位得到函数y3,若函数y3的最值为k,若k=n,求b,c的值.②若m=n且函数y1的图象经过点(p,q)和(p+6,q)两点,求q的值.23.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一点,AG,DC的延长线交于点F,连接AD,GD,GC.(1)求证:∠CGF=∠AGD.(2)已知∠DGF=120°,AB=4.①求CD的长.②若,求△CDG与△ADG的面积之比.浙教版九年级(上)期中数学试卷参考答案与试题解析一.选择题1.B.2.C.3.D.4.C.5.B.6.D.7.D.8.解:由题意得:,解得,由c﹣4a<0得,﹣5a﹣4a<0,故a>0,则b<0,c<0,故选:B.9.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连接BM交AC于点E,AD平分∠CAB交BM于点D,且D为BM的中点,则BC的长为()∵AB是直径,∴∠AMB=90°,∠ACB=90°,∴∠CAB+∠CBA=90°,∵=,∴∠CBM=∠ABM,∵∠CAD=∠BAD,∴∠DAB+∠DBA=(∠CAB+∠CBA)=45°,∴∠ADB=180°﹣(∠DAB+∠DBA)=135°,∵∠ADM=180°﹣∠ADB=45°,∴MA=MD,∵DM=DB,∴BM=2AM,设AM=x,则BM=2x,∵AB=2,∴x2+4x2=20,∴x=2(负根已经舍弃),∴AM=2,BM=4,∵•AM•BM=•AB•MH,∴MH=,∴OH=,∵,∴OM⊥AC,∴AF=FC,∵OA=OB,∴BC=2OF,∵∠OHM=∠OF A=90°,∠AOF=∠MOH,OA=OM,∴△OAF≌△OMH(AAS),∴OF=OH=,∴BC=2OF=.故选:C.10.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s﹣t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关解:∵二次函数y=x2+px+q=(x+)2+,∴该抛物线的对称轴为x=﹣,且a=1>0,当x=﹣<0,∴当x=1时,二次函数有最大值为:1+p+q=8,即p+q=7,∴当x=0时,二次函数有最小值为:q=t,即t=7﹣p,当x=﹣>1,∴当x=0时,二次函数有最大值为:q=8,∴当x=1时,二次函数有最小值为:1+p+q=t,即t=9+p,当0≤﹣<此时当x=1时,函数有最大值1+p+q=8,当x=﹣时,函数有最小值q﹣=t,即t=7﹣p﹣,<﹣≤1,当x=0时,函数有最大值q=8,当x=﹣时,函数有最小值q﹣=t,即t=8﹣,x=﹣=,当x=0或1时.函数有最大值q=8,当x=﹣时,函数有最小值q﹣=t,即t=8﹣∵w=s﹣t,∴w的值与p有关,但与q无关,故选:D.二.填空题(共6小题)11.4.12.EF= 1.5.13.﹣1.14.π﹣.(结果保留π)解:连接AD,AE,∵AD=AB==,BD==,∴AD2+AB2=BD2,∴∠BAD=90°,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴AB是圆的直径,∴∠AEB=90°,∴BE⊥AE,∴∠ABE=∠BAE=45°,∴弧BE所对的圆心角为90°,∴图中阴影部分的面积=﹣×=﹣.15.AB的长度为.【分析】过点A作AH⊥BE于H,由平行四边形的性质和旋转的性质可证BD=BC=2,由等腰三角形的性质可得EH=BH=,由勾股定理可求AH的长,即可求解.解:如图,过点A作AH⊥BE于H,∴AH===,∴AB===,∴△ABE∽△BDC,∴,∴AB2=1×2,∴AB=16.已知二次函数y=ax2+bx+1(a≠0)的图象的顶点在第二象限,且过点(1,0).当a ﹣b为整数时,ab=.解:依题意知a<0,,故b<0,且b=﹣a﹣1,a﹣b=a﹣(﹣a﹣1)=2a+1,于是﹣1<a<0,又∵a﹣b为整数,∴2a+1=0,解得,a=﹣,∴b=﹣a﹣1=﹣(﹣)﹣1=﹣,∴ab=(﹣)×(﹣)=,故答案为:.三.解答题17.(1)==﹣2;(2)∴x=6,y=9.18.(1)则二次函数解析式为y=x2+2x ﹣3;(2)故当﹣1≤x≤1时,y的取值范围为﹣4≤y≤0.19.解:(1)①∴摸到红球的可能性最大;②摸到黄颜色的球的概率是=;(2)∴摸到2个都是黄颜色球的概率为=.20.解:(1)∴S关于m的函数关系式为S=5m2﹣12m+8(m>2);(2)由(1)知,S=5m2﹣12m+8=5(m﹣1.2)2+0.8,∴当大正方形面积最大时,m=3.21.【解答】(1)证明:∵,∴∠AOB=2∠AOC,∴∠AOC=×180°=60°,∵AO=CO,∴△AOC是等边三角形,∵AH⊥BC于H,∴CH=HO;(2)解:①∵BC是⊙O的直径,∴∠CAB=90°,∴AB===8,∵BC•AH=AB•AC,∴AH===4.8;②连接CD交OA于E,则∠BDC=90°=∠AHO,∵DB∥OA,∴∠CBD=∠AOC,∴△AHO∽△CDB,∴,∴,∴CD =9.6,根据勾股定理得,DB===2.8.22.在平面直角坐标系中,设二次函数y1=x2+bx+c,y2=﹣x2+bx﹣c(b,c是实数).(1)若函数y1的图象经过点(r,g),求证函数y2的图象经过点(﹣r,﹣g).(2)设函数y1和函数y2的最值分别为m和n;①若函数y1的图象先向右平移2个单位,再向下平移2个单位得到函数y3,若函数y3的最值为k,若k=n,求b,c的值.②若m=n且函数y1的图象经过点(p,q)和(p+6,q)两点,求q的值.解:(1)∵函数y1的图象经过点(r,g),∴g=r2+br+c,∴﹣g=﹣r2﹣br﹣c,把x=﹣r代入y2=﹣x2+bx﹣c得,y2=﹣r2﹣br﹣c=﹣g,∴函数y2的图象经过点(﹣r,﹣g);(2)函数y1的图象先向右平移2个单位,再向下平移2个单位得到函数y3=(x﹣2)2+b (x﹣2)+c﹣2,即y3=x2+(b﹣2)x+2﹣2b+c,∵函数y3的最值为k,且k=n,∴=,整理得4﹣4b=0,解得b=1,∴y3=x2﹣x+c,y2=﹣x2+x﹣c,∴函数y2的图象与函数y3的图象关于x轴对称,∴k=n=0,∴=0,∴4c=b2=1,∴c=;(3)∵函数y1和函数y2的最值分别为m和n,∴m=,n=,∵m=n,∴=,∴8c=2b2,即c=,∴y1=x2+bx+=(x+)2,∵函数y1的图象经过点(p,q)和(p+6,q)两点,∴﹣==p+3,∴y1=(x﹣p﹣3)2,∴q=(p﹣p﹣3)2=9.23.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一点,AG,DC的延长线交于点F,连接AD,GD,GC.(1)求证:∠CGF=∠AGD.(2)已知∠DGF=120°,AB=4.①求CD的长.②若,求△CDG与△ADG的面积之比.【解答】(1)证明:连接AC,∵AB是⊙O的直径,弦CD⊥AB于点E,∴DE=CE,∴AD=AC,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠CGF=∠ADC,∵∠AGD=∠ACD,∴∠CGF=∠AGD;(2)解:①连接BD,∵∠∠DGF=120°,∴∠AGD=180°﹣120°=60°,∴∠ACD=∠ABD=∠AGD=60°,∴△ACD是等边三角形,∵AB是直径,∴∠ADB =90°,∴sin∠ABD==,∵AB=4,∴CD=AD=2;②∵∠DAG=∠F AD,∠AGD=∠ADC,∴△ADG∽△AFD,∴,∵,AD=CD=2,∴=,∴DF=3,AF•AG=AD2=12,∴CF=DF﹣CD=,∵∠GCF=∠DAF,∠F=∠F,∴△FCG∽△F AD,∴=,∴FG•F A=FC•FD==9,∴=,即=,∴,∵=,∴,∴=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册半期数学试题
时间:120分钟总分:120分
一、选择题(每小题有且只有一个准确答案,每题3分,共30分)
1、下列二次根式中,与3是同类二次根式的是()。
A、24
B、32
C、96
D、12
2、方程x
x4
2=的解是()。
A、4
=
x B、2
,2
2
1
-
=
=x
x C、0
=
x D、4
,0
2
1
=
=x
x
3、若关于x的一元二次方程2210
kx x
--=有两个不相等的实数根,则k的
A、1
k>-B、1
k>-且0
k≠C、1
k<D、1
k<且0
k≠
4、下列各式计算准确的是()。
A、()222
-=B、()2525
-=-C、()266
-=D、2x x
=
5、已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y轴对称,那么点A的对应点A'的坐标为()。
A、(-4,2)
B、(-4,-2)
C、(4,-2)
D、(4,2)
6、如图1 ,AB是斜靠在墙上的长梯,梯脚B距墙脚1.6m,梯上点D距墙
1.4m,BD长0.55m,则梯子的长为( )。
A、3.85m
B、4.00m
C、4.40m
D、4.50m
图1
7、三角形两边的长是3和4,第三边的长是方程212350
x x
-+=的根,则该角形的周长为()。
A、14
B、12
C、12或14
D、以上都不对
8、某商店的老板销售一种商品,他要以不低于进价120%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价(),商店老板才能出售。
A、80元
B、100元
C、120元
D、160元
9、如图2,在梯形ABCD中A B∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18,NM=8,则AB长为( )。
A、10
B、13
C、20
D、26
图2 图3
10、如图3,在梯形ABCD中,AD//BC,AC、BD交于点O,如果
2:1
:=
∆
∆DOC
AOD
S
S,那么
COB
AOD
S
S
∆
∆
:=()。
A B
C
D
E
M
F
N
A 、 1 :2
B 、 1 :3
C 、 1 :4
D 、 1 :9
二、填空题(每小题4分,共24分)
11、关于x 的方程052=-+m x x 的一个根是2,则m= 。
12、已知345
x y z
==,且221x y z +-=,则3x y z ++= 。
13、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为 。
14、已知:在△ABC 中,P 是AB 上一点,连结 CP ,当满足条件:∠ACP= 或∠APC= 或 AC 2= 时,△ACP∽△ABC。
15、当m = 时,方程032)1(1
2
=++-+mx x m m
是关于x 的一元
二次方程。
16、如图:已知ABC △中,AB AC =,90BAC =∠,
直角EPF ∠的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:
①AE CF =②APE CPF =∠∠③EPF △是等腰直角三角形④EF AP =⑤12
ABC AEPF S S =△四边形.当EPF ∠在ABC △内绕顶点P 旋转时(点E 不与A ,B 重合)
,上述结论中始终准确的序号有______________.
三、解答题:(共66分)
17、计算(10分)
(1)a a a 8322
50-+ (2)0)13(271
32
--+-
18、解下列方程(10分)
(1)2x 2―3x ―5=0 (2)(x+1)(x+8)=-12
19、(8分)如图所示,以△OAB 的顶点O 为坐
标原点建立平面直角坐标系,A 、B 的坐标分别为A
A
C F E
第16题图
(-2,-3)、B (2,-1),在网格图中将△OAB 作下列变换,画出相对应的图.......形.
,并写出三个对应顶点的坐标: (1)将△OAB 向上平移5个单位,得△O 1A 1B 1;
(2)以点O 为位似中心,在x 轴的下方将△OAB 放大为原来的2倍,得△OA 2B 2.
20、(8分)如图,在梯形ABCD 中,AD ∥BC ,∠B=∠ACD ,若AC=6,BC=9,
(1)试说明△ABC 和△ACD 相似;(4分)
(2)试求梯形ABCD 的中位线的长度。
(4分)
21、(8分)如图,△ABC 是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,现在要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,问;这个正方形的边长是多少?
22、(10分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个。
设每个定价增加x 元。
(1)写出售出一个可获得的利润是多少元?(用含x 的代数式表示)(1分) (2)商店若准备获得利润6000元,并且使进货量较少..,则每个定价为多少元? 应进货多少个?(5分)
(3)商店若要获得最大利润,则每个定价多少元?获得的最大利润是多少?(4分)
D
A B C (第20题)
23、(12分)如图,在△ABC中,∠B=900,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别从A、B同时出发,问:
(1)几秒后,△PBQ的面积等于8平方厘米?(3分)(2)几秒后,PQ的长为35厘米?(3分)
(3)几秒后,△ABC与△BPQ相似?(6分)
C
B
P
A
Q。