显微镜的发展综述
显微镜的发明与发展

机器部分
转换器、粗细准焦螺 旋
显微镜
载物台
目镜、物镜
光学部分 遮光器
反射镜
显微镜
转换器 物镜 压片夹 通光孔 载物台 反光镜
目镜 镜筒
粗准焦螺旋 细准焦螺旋
镜臂
镜座
目镜与物镜的比较
放大倍数
透镜
放大倍数 10x 12.5x
镜头长度 长 短
透镜大小 大 小
目镜与物镜的比较
放大倍数
镜筒长度
电子显微镜
使用显微镜观察到的物体
血细胞
草履虫
HIV病毒
白蚁的头部
打结的头发
大头针和针眼
房间里的灰尘
海盐晶体
蝴蝶的翅膀
流行感冒病毒
硫磺晶体
螺旋类芽孢杆菌
丝绸纤维
香烟过滤嘴纤维表面的烟雾粒子
蝴蝶的头部
血液凝块构造(红色为红血球,蓝色为血小 板,黄色为纤维蛋白)
一、显微镜的结构
让镜筒向前,镜臂向自己,然后安放好目镜和物 镜。
不要用手触摸镜头
对光
转动转换器,使低倍镜对准通光孔 转动载物台下的遮光器,选一较大的光圈对准
光孔 左眼注视目镜, (右眼也要睁开),转动反光镜,使
光线通过通光孔反射到镜筒内,通过目镜,可看 到白亮的视野 当光线强时,让平面镜对着光源,光线弱的时候, 用凹面镜对着光源。
记录观察结果
用文字或玻片 用擦镜纸揩净目镜和物镜,用清洁纱布揩净镜
体 再转动转换器,把两个物镜偏到两旁,并将镜
筒下降,然后将显微镜平稳地放入镜箱内保存
放镜透
镜 大头镜
口 率
倍长大 数度小
10x
盖
玻
短大
显微镜的发展史流程

显微镜的发展史流程一、早期简单显微镜显微镜的历史可以追溯到公元前一世纪,当时人们使用简单的放大镜来观察细小的物体。
这些早期的显微镜主要是使用单片或双片放大镜来放大物体的图像。
它们的功能非常有限,但为后来的显微镜技术奠定了基础。
二、光学显微镜诞生随着光学的发展,人们开始利用透镜组合来制造更复杂的光学显微镜。
1608年,荷兰眼镜制造商汉斯·利伯在两片透镜之间放置了一个可调节距离的管筒,从而发明了第一台实用的光学显微镜。
这种显微镜可以放大物体数十倍,使得科学家们能够观察到肉眼无法看到的微观世界。
三、显微镜技术革新17世纪和18世纪,显微镜技术得到了进一步的革新。
透镜的制作工艺不断改进,使得显微镜的放大倍数不断提高。
同时,科学家们开始利用染色技术来改善显微镜的观察效果,使得细胞等微观结构更加清晰可见。
四、电子显微镜发明20世纪初,电子显微镜的发明为显微镜技术带来了革命性的突破。
电子显微镜利用电子束代替光束来照射样品,从而实现了更高的放大倍数和更高的分辨率。
这使得科学家们能够观察到更加细微的结构和分子层面的现象。
五、超分辨率显微镜随着科学技术的进步,超分辨率显微镜技术的出现使得显微镜的分辨率进一步提高。
超分辨率显微镜利用特殊的光学原理和技术手段,突破了传统光学显微镜的分辨率极限,使得科学家们能够观察到更加精细的细胞结构和分子动态。
六、数字显微镜发展近年来,数字显微镜的快速发展为显微镜技术带来了新的变革。
数字显微镜将光学显微镜与计算机技术相结合,实现了图像的数字化处理和存储。
这使得科学家们能够更加方便地对观察结果进行分析和共享,同时也提高了显微镜的观测效率和精度。
七、纳米显微镜技术纳米显微镜技术是近年来兴起的一种新型显微镜技术,它利用特殊的纳米探针或纳米光源来观察纳米尺度的微观结构。
这种技术能够实现对单个分子或纳米颗粒的精确观测和操控,为纳米科学和纳米技术的发展提供了强有力的支持。
八、未来显微镜展望随着科学技术的不断进步,未来显微镜技术将继续迎来新的突破和发展。
显微镜的发展历史

引言:显微镜是一种重要的科学仪器,它以放大的方式使我们能够观察微小物体的细节。
随着时间的推移,显微镜经历了多个阶段的发展,从最早的简单光学设备到现代高级显微镜,为科学研究提供了巨大的帮助。
本文将详细介绍显微镜的发展历史,并重点分析其中的五个重要阶段。
概述:1.早期显微镜:早在17世纪,人们就开始使用简单的光学显微镜,如单透镜显微镜和复合透镜显微镜。
这些显微镜之所以简单,是因为它们只有一个透镜,无法提供高放大倍数。
2.高分辨率显微镜:19世纪末至20世纪初,学者们开始尝试使用高分辨率显微镜。
这些显微镜采用了更复杂的光学系统,可以提供更高的放大倍数和更高的分辨率。
其中包括波长更短的紫外显微镜和超分辨显微镜等。
3.电子显微镜:20世纪20年代,电子显微镜的发明引起了科学界的巨大轰动。
电子显微镜能够以更高的分辨率观察物体,并且可以观察非常小的微粒,如分子和原子。
4.共焦显微镜:20世纪60年代,共焦显微镜的问世彻底改变了生物学研究的面貌。
共焦显微镜利用激光扫描物体表面,可以获得物体的三维图像,并且对活体观察非常有效。
5.原子力显微镜:20世纪80年代,原子力显微镜的出现引起了巨大的轰动。
原子力显微镜可以以原子尺度观察物体的表面,对于材料科学和纳米技术的发展有重要意义。
正文:1.早期显微镜1.1单透镜显微镜的原理和结构1.2复合透镜显微镜的优缺点1.3显微镜在生物学研究中的应用1.4早期显微镜的局限性2.高分辨率显微镜2.1紫外显微镜的原理与使用2.2超分辨显微镜的工作原理2.3高分辨率显微镜在医学研究中的应用2.4高分辨率显微镜的挑战与发展3.电子显微镜3.1电子显微镜的工作原理与种类3.2电子显微镜在物理学研究中的应用3.3电子显微镜在材料科学中的应用3.4电子显微镜的局限性与改进4.共焦显微镜4.1共焦显微镜的原理和构造4.2共焦显微镜在细胞生物学研究中的应用4.3共焦显微镜在神经科学研究中的应用4.4共焦显微镜的发展和未来趋势5.原子力显微镜5.1原子力显微镜的原理和工作方式5.2原子力显微镜在纳米技术研究中的应用5.3原子力显微镜在材料科学中的应用5.4原子力显微镜的挑战和发展方向总结:显微镜的发展历史可以追溯到早期的简单光学显微镜,经过高分辨率显微镜、电子显微镜、共焦显微镜和原子力显微镜等多个阶段的发展,科学家们得以以更高的分辨率观察微小物体的细节。
简述显微镜的发展史

1.简述显微镜的发展史
答:
14世纪:眼镜首先在意大利诞生
1590:荷兰眼镜制造商和父亲和儿子的团队,汉斯和撒迦利亚扬森,创建了第一个显微镜。
1667:罗伯特胡克的著名的“Micrograph”出版,其中概述了虎克使用显微镜的各种研究。
1675:输入安东列文虎克,用一个镜头显微镜观察昆虫和其它标本。
列文虎克是第一个观察细菌。
18世纪:随着技术的改进,显微镜成为科学家之间更受欢迎。
这部分是因为发现两种类型的玻璃相结合,减少了色差的效果。
1830:约瑟夫杰克逊制表人发现,在不同距离的弱镜头一起使用,提供了清晰的放大倍率。
1878年:一个数学理论,光的波长将决议恩斯特阿贝发明。
1903年:理查德Zsigmondy发明了超显微镜,允许的光的波长下观察标本。
1932年:透明的生物材料研究弗里茨Xernike相衬显微镜的发明第一次使用时间。
1938年:相衬显微镜发明后短短六年来在电子显微镜下,由恩斯特鲁斯卡,他们意识到,使用电子显微镜增强分辨率开发。
1981年:标本图像的3 – D可能由Gerd Binnig和Rohrer海因里希的扫描隧道显微镜的发明。
2.介绍显微镜发展史上重要的几位人物及其事迹
答:。
显微镜发展史发展阶段

显微镜发展史发展阶段
显微镜的早期发展
显微镜的早期发展可以追溯到17世纪。
1590年,荷兰眼镜商亚斯·詹森和汉斯·利珀希分别发明了简易的显微镜,但这些早期的显微镜放大倍数较低,主要用于观察昆虫等小物体。
1665年,英国物理学家罗伯特·胡克制作了第一台复式显微镜,并首次描述了植物细胞的构造,为细胞这一概念命名。
同时,荷兰科学家安东尼·列文虎克发明了单式显微镜,并发现了微生物和细菌。
显微镜的重要发明和改进
18世纪,随着光学和机械技术的发展,显微镜的质量和分辨率有了显著提升。
1830年,约瑟夫·杰克逊·利斯特通过透镜组合减小了球面像差,进一步改进了显微镜。
19世纪,德国物理学家恩斯特·阿比对透镜设计进行了重要改进,提高了显微镜的分辨率。
20世纪,随着电子显微镜的发明,科学家能够观察到更小的物体,推动了生物学和材料科学的发展。
现代显微镜的发展和应用
现代显微镜与摄像系统、显示器或电脑相结合,实现了对被测物体的实时观察和记录。
随着数码技术和计算机技术的发展,显微镜的功能更加智能化和人性化。
在医学领域,手术显微镜的应用提高了手术的精确度,特别是在眼科和耳鼻喉科手术中发挥了重要作用。
此外,荧光显微镜等高级显微技术在基础研究和临床应用中也越来越普及。
显微镜的发展史

显微镜的发展史显微镜(microscope)是一种借助物理方法产生物体放大影象的仪器. 最早发明于16世纪晚期.至今(2001年)已有406年的历史. 现在,它已经成为了一种极为重要的科学仪器, 广泛地用于生物,化学,物理,冶金,酿造等各种科研活动,对人类的发展做出了巨大而卓越的贡献. 根据显微镜是否含有物镜,目镜. 显微镜分为单式显微镜(只有一个透镜)和复式显微镜(有物镜和目镜)两类. 本文集将向您详细介绍显微科学的发展史.==============================================十六世纪的显微科学单式显微镜的出现:在3000多年以前,欧洲腓尼基人在地中海沿岸的贝鲁斯河边第一次制成了人造玻璃.大约在4世纪,罗马人开始把玻璃应用在门窗上. 到1291年, 意大利的玻璃制造技术已经非常发达.而玻璃是制造显微镜的基本材料.早在公元前,我国人民就发展出了透镜制造技术.当时的材料是水晶. 13世纪,著名的马可.波罗将中国的眼镜传入欧洲.欧洲人学会了磨制眼镜的技术. 当时,玻璃制造业已经很发达, 欧洲人用廉价的玻璃来磨制眼镜,是眼镜成为了一种相对廉价的商品. 眼镜制造业兴盛起来.那时戴眼镜的人大都是富翁, 他们的年纪多半很大,所以他们需要老花镜,也就是凸透镜.人们很快发现,凸透镜可以产生物体的放大影象. 于是,一些人开始使用凸透镜来观察细小的物体,凸透镜在科学研究中开始发挥它巨大的作用.凸透镜因其具有放大功能而被叫做放大镜,多透镜的复式显微镜发明后又称单式显微镜,意思是只有一个透镜的显微镜.第一个复式显微镜:单式显微镜有一个致命的缺点,那就是它的焦距与透镜直径成正比,而焦距又与放大倍数成反比.也就是说,焦距越短,放大倍数越大,而透镜直径又越小.如果放大倍数是100倍,透镜的焦距为0.25毫米,透镜直径大约为0.33毫米! 这个比大头针头还小的透镜在当时根本制造不出来.因为这个缘故,当时的放大镜的放大倍数最多不过25倍.众所周知,体积较大的一些纤毛虫的长度也不过0.1毫米,放大25倍后也才2.5毫米大.而它内部的细微结构就根本看不清了.因此,为了观察更多的细微物体,人们迫切需要一种更好的放大工具.1595年,荷兰的著名磨镜师詹森(Janssen)发明了第一个简陋的复式显微镜(如图,其真品已经遗失).这个显微镜是由三个镜筒连接而成.其中中间的镜筒较粗,是手握的地方.另外两个镜筒分别插入它的两端,可以自由伸缩,从而达到聚焦的目的.镜头两个,都是凸透镜,分别固定在镜筒的两端.物镜是一个只有一个凸面的单凸透镜.目镜是一个有两个凸面的双凸透镜. 当这个显微镜的两个活动镜筒完全收拢时,它的放大倍数是3倍;当两个活动镜筒完全伸出时,它的放大倍数是10倍(其实这也是最早的变焦镜头).*关于复式显微镜的发明过程,一说是Janssen在他父亲Hans的帮助下完成的;另一种说法较为有趣:詹森有两个淘气的儿子.一天,他们溜进了爸爸的作坊里摸摸动动.哥哥顺手拿起了两个镜片放到铜管的两端,发现通过这个铜管看书时书上的字大得显吓人.詹森知道后很高兴.让他们帮助他制成了世界上的第一架复式显微镜.复式显微镜在性能上明显优于单式显微镜.一是它的放大率可以做得很高,可以把几个放大倍数较小的凸透镜组合起来获得很高的放大率.二是制造工艺较简单,不必磨制一个个极小的透镜...复式显微镜的发明,是科学史上的里程碑,人类从此开始认识微观世界.不过,由于技术条件不成熟,16世纪的显微镜放大倍数都不高,因此在16世纪人类在探索微观世界方面并没有什么激动人心的发现十七世纪单显微镜的发展十七世纪的单显微镜与其说是科学仪器,不如说是艺术品似乎那时的显微镜制造者所追求的并不是高的性能,而是视觉上的享受.比如下面的这个显微镜.它制造于十七世纪晚期.很明显,它的作用已不再是单纯的放大物体以方便研究,更重要的是它那光亮美丽的黄铜色,精美的装饰还给人以一种高贵典雅的美感.结构:这个单式显微镜的镜头镶在一个圆盘形金属眼罩的中部.两个金属手柄一长一短,长的那个手柄是手握的地方.在其末端还设置了几个突起,方便使用者握住.在这两个手柄的中间,夹着一个有六个圆孔可以转动的圆盘,那是它的载物台.使用:在使用前,把样品切成薄片放到载物台的圆孔上.然后拿起显微镜将圆孔对准光源,同时把金属眼罩放在眼窝上以挡住周围的光.用大拇指按压较短的那个手柄(那相当于一个杠杆),以此调节镜头与标本的距离使成像最为清晰.如果切片较多,可以依次放到每个圆孔上.在观察时转动载物台即可观察到每个切片.从这个显微镜镜头的大小来看,它的放大率应该比较大.---------------在十七世纪中叶,出现了一种滑杆显微镜.它们的基本结构大致相同:灯塔形的镜身,顶端是一个凸透镜.在镜身中部穿过一根长长的可以水平滑动的横杆.在横杆前端固定着一根顶端削尖,与横杆垂直的长"针"----奇特的载物台.使用时,先将针尖刺入标本,使标本固定在针尖上.然后前后移动滑杆,调节标本与透镜的距离而使成像最清晰后,即可进行观察.从这个显微镜的透镜大小可以看出,该显微镜的放大率不大.缺点:标本放在针形的载物台上实在不稳定,因此观察时的实际操作很麻烦.因此,后来的显微镜就没有采用这种针形载物台.单式显微镜的顶峰----列文虎克的显微镜真正观察活细胞的是胡克同时代的荷兰科学家列文·虎克(Avon Leeuwenhoek,1632-1723),他在1677年用自制的高倍放大镜观察池塘水中的原生动物,蛙肠内的原生动物,人类和哺乳类动物的精子;后又在鲑鱼的血液中看到红细胞的核.1683年,他又在牙垢中看到了细菌.他把观察的现象报告给英国皇家学会,得到英国皇家学会的肯定.列文·虎克出身于布商,他最初磨制透镜的目的是为了检验布的质量,但他在掌握了高水平的磨制透镜技术后,进而利用透镜组装成显微镜,并利用自制的显微镜发现了前人未曾见到过的一些活细胞,这些成就是十分难能可贵的.他一生亲自磨制了550个透镜,装配了247架显微镜,为人类创造了一批宝贵的财富,至今保留下来的有9架,现存于荷兰尤特莱克特大学博物馆(University Museum of Utrecht)中的一架的放大倍数为270倍.分辨力为1.4μm.在当时,这个水平是很高的,直到19世纪初所制的显微镜还未超过这一水平.因此,我们不能忽视他对细胞生物学的发展所做贡献的重要性.列文虎克一生制造了数百个显微镜,它们都非常小,设计和功能也相似.他的显微镜的尺寸几乎是一个常数:长2英寸,宽1英寸.镜身大多是用黄铜制造(左图:经历了三百多年,镜身已锈蚀).结构:一个典型列文虎克显微镜是由两个螺钉,(其中较长的一个是手柄.其长度可以调节;通过调节较短的那个螺钉可以改变标本与透镜的距离.)几个铆钉,一个镜头,一个宽大的镜身,一个针形载物台(连接在手柄上,通过调节手柄长度可以调节标本的高度).镜身的结构较为精巧:首先在两块同样形状的黄铜薄板上对称地凿两个孔,然后把镜头放在其中一个孔上,再把另一块黄铜板放在上面,对齐这两块黄铜板,使这两个孔刚好把中间的透镜镶住.最后用铆钉固定住铜板即可.使用:同样先将标本固定在针尖上.然后拿起显微镜对着光源,同时调节那两个螺钉使标本的位置,影象最佳后即可进行观察.----------------------------十七世纪复式显微镜的初步发展在十六世纪晚期,第一个复式显微镜由荷兰人詹森(Janssen)发明.此后复式显微镜开始被人们使用.但是,一直到十七世纪末,复式显微镜都使用得没有单式显微镜广泛.因为当时的复式显微镜有一个极大的缺点:由于当时的透镜制造技术不高,因此制造出的复式显微镜的像差和色差都很大,这使人们大都不喜欢使用复式显微镜.尽管如此,还是有些人制造,使用了一些复式显微镜.比如意大利人伽利略(Galileo)和英国人胡克(Hooke).--------------------功能强大的电子显微镜1933年,德国人鲁斯卡(Ruska)设计制造了第一台电子显微镜.其性能远远超过了光学显微镜.后来经过人们的努力,电子显微镜的分辨率由最初的500纳米(百万分之五米)提高到现在的1埃(十亿分之一米);放大率已达到几十万倍以上.从50年代开始,研究者们应用电子显微镜相继取得了很多重要成就.可以说,电子显微镜的出现大大推动了人类的科学研究.:虽然显微摄影术在十九世纪中叶就已经出现,但由于当时照相技术本身的不成熟,十九世纪的显微摄影术并没有被广泛地使用.直到二十世纪初,由于在胶片和相机的制造技术上取得了突破,显微摄影才开始被广泛地使用起来,逐步成为了记录显微图象的主要方式之一.新兴的数码成像技术更是把显微摄影技术推向了一个新高峰,使显微科学与数字技术的发展牢固地结合起来,为人类的科学发展做出贡献.====================================== ===总观显微科学四百多年的历史,我们可以看到,任何一个学科的发展都离不开其它学科的支持.各种学科的互相穿插,交融在今天的科学研究中已显得越来越重要.这是社会发展的必然结果,是不可阻挡的潮流.更多的新型显微镜层出不穷,在此就不一一列举了,随着科学技术的发展也将产生更多更好的显微成像系统。
显微镜技术发展历史的过程

显微镜技术发展历史的过程1. 显微镜的起源显微镜,顾名思义,就是一个让我们看见微小世界的工具。
想象一下,十七世纪的某个小镇,两个好奇的小家伙,像小侦探一样,发现了这个神奇的东西。
他们一开始只是用几片玻璃,拼拼凑凑,没想到一放在一起,竟然能把微小的物体放大好几倍。
这真是神奇得让人目瞪口呆。
说到这里,有人可能会问,最早的显微镜到底是啥模样?其实那时候的显微镜就像个小箱子,里面装着镜子和透镜,放在一个木架子上,真是土得掉渣,不过,谁能想到这玩意儿竟然成了后来科学进步的奠基石呢!1.1. 第一个显微镜的神秘据说,最早的显微镜是由一位荷兰人,叫做莱文虎克(Leeuwenhoek)发明的。
他可不是一个普通的商人,而是个热爱科学的好奇者。
莱文虎克通过自己的改良,把显微镜的放大倍率提高到了300倍,这样一来,连水里的微生物都能一览无余。
想想看,那时候的人们竟然能看到“看不见的世界”,简直就像打开了新大陆的大门,大家都兴奋得像喝了蜜糖水。
也难怪,莱文虎克后来被称为“微生物学之父”。
1.2. 随着科技的进步到了十八世纪,显微镜又经历了一番改造,出现了复合显微镜。
这种显微镜有多个透镜,能更清晰地观察样品。
说实话,这时候的科学家们就像一群小孩,拿着新玩具,简直玩得不亦乐乎。
他们发现了细胞,提出了细胞理论,这下子,生物学、医学等学科可谓是“柳暗花明又一村”。
这一波科技的进步,就像是在科学界投了一颗重磅炸弹,所有人都在忙着研究新发现,生怕落后于人。
2. 显微镜的种类繁多显微镜的种类可真不少,从光学显微镜到电子显微镜,每种都有它独特的魅力。
光学显微镜就像个家常便饭,大家都很熟悉,但一提到电子显微镜,哇,那简直是高端大气上档次。
电子显微镜利用电子束来照射样品,能把物体放大到十万倍,简直让我们看到了微观世界的细节,像是打开了一扇通往另一个维度的窗户。
2.1. 电子显微镜的崛起说到电子显微镜,不得不提的就是它的发明者——赫尔曼·沃尔特(Ernst Ruska)。
显微镜发展历程

显微镜发展历程显微镜是一种广泛应用于科学和医学研究的重要工具,它能够以高分辨率观察微小尺寸对象。
随着时间的推移,显微镜经历了多次革新与发展。
以下是显微镜发展的主要里程碑:1. 17世纪中期,荷兰人安东·凡·李渊发明了第一台复合显微镜。
这是一种使用两个凸透镜来放大图像的仪器,它大大改善了人们对微观世界的观测能力。
2. 19世纪早期,德国物理学家欧仁·冯·诺依曼(Eugen von Nussbaum)改进了显微镜的设计,他增加了一对望远镜,使目镜与客镜的位置可以调节。
这种改进使得显微图像更加清晰,并提供了更大的观测灵活性。
3. 1830年代,德国光学工程师卡尔·人斯(Carl Zeiss)与冯·诺依曼合作,开创了现代显微镜制造的先河。
他们使用优质光学玻璃和精密加工技术,制造出高品质的物镜和目镜,使得显微镜的分辨率大幅提高。
4. 1873年,英国生物学家约翰·马修斯·伯克(John Matthew Burgess)改进了显微镜的照明系统,他使用了凹面镜来聚焦光线,从而实现了更好的照明效果和更高的图像对比度。
5. 1931年,德国物理学家恩斯特·阿贝尔(Ernst Abbe)提出了一种数学模型,即“阿贝原理”,用于描述物镜与目镜的设计关系。
这一原理对于提高显微镜的分辨率起到了重要作用,为后续的显微镜设计提供了理论基础。
6. 1951年,美国物理学家哈里·尤茨(Harry R. Yutz)发明了一种倒置显微镜。
这种显微镜的设计结构将物镜放置在样品的下方,目镜放置在顶部。
倒置显微镜在生物医学领域的细胞培养和组织观察中得到广泛应用。
7. 1980年代至今,显微镜的发展进入了数字时代。
高速、高灵敏度的电子图像传感器取代了传统的目镜,并与计算机技术结合,实现了数字显微镜的出现。
数字显微镜能够实时获取高质量的显微图像,并具有图像处理和分析的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显微镜的发展综述摘要:本文综述显微镜的历史发展过程。
通过列出每个时期显微镜的形态、功能与应用领域,可总结出显微镜的工作原理和了解社会发展的不同时期的需要。
从而可推测出未来的社会需要和显微镜的发展方向。
关键词:显微镜、发展综述、显微镜的发展、单式显微镜、复式显微镜The development of microscopeAbstract This paper reviewed the development history of the microscope process. By listing every period microscope, the shape of the function and application field, We can be concluded the working principle of the microscope and understand the social development in different periods of need .We thus can guess the future of the social needs and the development direction of the microscope.Keywords Microscope, the review of development, the development of microscope,Characteristic menu type microscope, Double entry microscope显微镜是一种借助物理方法产生物体放大影像的仪器。
最早发明于16 世纪晚期,至今已有四百多年的历史。
现在,它已经成为了一种极为重要的科学仪器,广泛地用于生物、化学、物理、冶金、酿造、医学等各种科研活动,对人类的发展做出了巨大而卓越的贡献。
随着现代光电子技术和计算机的高速发展,显微测量技术在工业、国防、科技均得到了广泛应用[1]。
通过了解显微镜的发展历程,今后能更好地改良显微镜,使其更造福于我们的社会。
1 十六世纪的显微镜1.1 单式显微镜的出现:在3000多年以前,欧洲腓尼基人在地中海沿岸的贝鲁斯河边第一次制成了人造玻璃. 大约在4世纪,罗马人开始把玻璃应用在门窗上. 到1291年, 意大利的玻璃制造技术已经非常发达.而玻璃是制造显微镜的基本材料. 早在公元前,我国人民就发展出了透镜制造技术.当时的材料是水晶. 13世纪,著名的马可.波罗将中国的眼镜传入欧洲.欧洲人学会了磨制眼镜的技术. 眼镜制造业兴盛起来. 人们很快发现,凸透镜可以产生物体的放大影象. 于是,一些人开始使用凸透镜来观察细小的物体,凸透镜在科学研究中开始发挥它巨大的作用.凸透镜因其具有放大功能而被叫做放大镜,多透镜的复式显微镜发明后又称单式显微镜,意思是只有一个透镜的显微镜[2、3]。
1.2第一个复式显微镜:1595年,荷兰的著名磨镜师詹森(Janssen)发明了第一个简陋的复式显微镜。
这个显微镜是由三个镜筒连接而成.其中中间的镜筒较粗,是手握的地方.另外两个镜筒分别插入它的两端,可以自由伸缩,从而达到聚焦的目的.镜头两个,都是凸透镜,分别固定在镜筒的两端.物镜是一个只有一个凸面的单凸透镜.目镜是一个有两个凸面的双凸透镜. 当这个显微镜的两个活动镜筒完全收拢时,它的放大倍数是3倍;当两个活动镜筒完全伸出时,它的放大倍数是10倍[2]。
复式显微镜的发明,是科学史上的里程碑,人类从此开始认识微观世界.不过,由于技术条件不成熟,16世纪的显微镜放大倍数都不高,因此在16世纪人类在探索微观世界方面并没有什么激动人心的发现。
2 十七世纪的显微镜2.1 十七世纪单显微镜的发展十七世纪的单显微镜与其说是科学仪器,不如说是艺术品.似乎那时的显微镜制造者所追求的并不是高的性能,而是视觉上的享受. 这个单式显微镜的镜头镶在一个圆盘形金属眼罩的中部.两个金属手柄一长一短,长的那个手柄是手握的地方.在其末端还设置了几个突起,方便使用者握住.在这两个手柄的中间,夹着一个有六个圆孔可以转动的圆盘,那是它的载物台。
2.2 滑杆显微镜在十七世纪中叶,出现了一种滑杆显微镜.它们的基本结构大致相同:灯塔形的镜身,顶端是一个凸透镜.在镜身中部穿过一根长长的可以水平滑动的横杆.在横杆前端固定着一根顶端削尖,与横杆垂直的长"针"----奇特的载物台. 使用时,先将针尖刺入标本,使标本固定在针尖上.然后前后移动滑杆,调节标本与透镜的距离而使成像最清晰后,即可进行观察[4]。
2.3 单式显微镜的顶峰----列文虎克的显微镜一个典型列文虎克显微镜是由两个螺钉,几个铆钉,一个镜头,一个宽大的镜身,一个针形载物台。
镜身的结构较为精巧:首先在两块同样形状的黄铜薄板上对称地凿两个孔,然后把镜头放在其中一个孔上,再把另一块黄铜板放在上面,对齐这两块黄铜板,使这两个孔刚好把中间的透镜镶住.最后用铆钉固定住铜板即可[5]。
列文虎克的显微镜的透镜制作十分精巧, 它们的厚度仅为一毫米,曲率半径为0.75毫米.它们有很高的放大率和分辨率.在Utrecht博物馆收藏的一个列文虎克显微镜其放大率为275倍,分辨率接近1微米.这在当时是世界一流的,而它们全出自一个业余制造者之手,这真是个奇迹。
2.4 十七世纪复式显微镜的初步发展①伽利略的显微镜(制造于17世纪晚期)继承了詹森显微镜的特点:同样是两个可以伸缩的套筒,通过改变套筒的长度来调焦.但伽利略作了一点改进:在套筒外壁上刻上了很多螺纹,通过旋转套筒即可使套筒上下伸缩,完成调焦.这样显微镜使用起来就较为平稳.这个显微镜制作十分精美:黄铜制作的镜身,四个支架被精心雕刻成弯曲状,这充分表现了当时人们的审美观[6]。
②胡克的显微镜光源系统:光源系统的设计在当时是一个创造.它由一个木制支架,一个油灯,一个盛水的大玻璃球,一个小的光阑组成.光由油灯产生,通过玻璃球会聚,由光阑调节光通量[6]。
显微系统:显微系统的设计在当时也是较为复杂,先进的.它由载物台,物镜,调焦螺旋,镜筒,目镜组成[1、5]。
这个显微镜最初完工的时候,存在着很大的球面像差和色差,这使得成像的质量很糟.胡克为此而在光源系统上安装了那个光阑.很不幸,改造后的显微镜成的像十分暗淡,还有光的衍射现象,成像的质量还是很差.但是,就是用这个显微镜,人类第一次看见了典型的细胞。
3 十八世纪的显微镜3.1 十八世纪中使用最广泛的显微镜:卡夫(Cuff)显微镜英国显微镜设计师John Cuff 在17世纪中叶设计了一种新型的显微镜,称为Cuff 显微镜. Cuff 显微镜的聚光方法有两种:在显微镜黄铜载物台下方有一个凹面镜.它的作用是为显微镜观察透明样品时提供透射光线.当遇到不透明的样品时,就使用载物台上方的聚光镜把光线聚焦在样品表面以达到足够的亮度,完成观察.光学性能:尽管Cuff 显微镜的功能在当时是最多的,但它的光学性能还是很糟糕.它的放大倍数不大:最低放大倍数为45倍,最高为100倍.它有很严重的色差和球面像差.它的分辨率极低,只有10微米.尽管如此,Cuff 显微镜仍是当时最好的复式显微镜[7]。
3.2 英王George III 的银显微镜1761年英国人George Adams 为英王George III 制造了一台精美的银显微镜.由于他在这个金属显微镜的表面镀上了大量的银,所以这个显微镜的造价实在高得惊人,也只有英国王室才能负担得起,他们用它来向外国使臣炫耀英国的富有.该显微镜既可以当作单显微镜来使用,也可以当成复式显微镜来使用(复式显微镜的镜身在显微镜顶端的那两个人像后面,其物镜有八个,都镶在顶部人像脚下的那个圆盘上,通过旋转该圆盘可以选择合适的物镜).可以说,它的功能在当时还是较多的[8]。
3.3 植物标本解剖镜这个显微镜大约制造于1750年,是解剖镜的先驱.它的特点是用一个很大的平面镜采光.它的放大倍数不大,但有很多功能.它既可以当作解剖镜使用,又可以观察小昆虫及小型水生生物如水蚤,水螅等[10].4 十九世纪的显微镜4.1 Ladd 的学生显微镜这个显微镜由英国人William Ladd 在1864年制造.它采用了当时最先进的齿轮调焦装置,这一装置在今天仍然被大多数光学显微镜所使用. 这个显微镜的镜臂上多出了一个在前几个世纪的显微镜上都看不到的东西----聚光镜.聚光镜的出现对显微科学的发展起到了重要的作用.因为聚光镜是后来的一些新型显微镜的重要结构之一.4.2 历史上最精美的显微镜----Wenham 的显微镜它由英国伦敦人Francis Wenham 在1882年制造.它有着当时最为精巧先进的齿轮传动系统和齿轮调焦系统,聚光系统还有成像系统.它的物镜和目镜的质量在当时都是最高的.这个显微镜的最突出的特点是它的齿轮传动装置.这个显微镜的镜座,镜臂,载物台都可以旋转.其中,镜座和载物台的旋转幅度较大,为360度.旋转镜座可以改变显微镜的朝向,旋转镜臂可以调节显微镜的倾斜度,旋转载物台可以使样品发生转动。
总之,它是十九世纪中性能最好的显微镜,也是历史上最精美的显微镜[9]。
5 二十世纪的显微镜5.1 James Swift 与Son 的双目解剖显微镜在二十世纪初出现了双目显微镜.这种显微镜比起传统的单目显微镜来明显的好处就是观察者可以有更广阔的视野而且也更加附和人的视觉习惯,使眼部疲劳减轻.在这种显微镜的镜身内装有一个精巧的玻璃棱镜,它使从物镜来的光束分为两道并且改变方向(使光束与地面成一定的角度,而不是原来的与地面垂直的方向.),分别进入人的两只眼睛.这种结构被后来的高级显微镜广为采用[10]。
5.2功能强大的电子显微镜1933年,德国人鲁斯卡(Ruska)设计制造了第一台电子显微镜.其性能远远超过了光学显微镜.后来经过人们的努力,电子显微镜的分辨率由最初的500纳米(百万分之五米)提高到现在的1埃(十亿分之一米);放大率已达到几十万倍以上.从50年代开始,研究者们应用电子显微镜相继取得了很多重要成就.可以说,电子显微镜的出现大大推动了人类的科学研究[11]。
6结论总观显微科学四百多年的历史,我们可以看到,任何一个学科的发展都离不开其它学科的支持。
各种学科的互相穿插,交融在今天的科学研究中已显得越来越重要。
这是社会发展的必然结果,是不可阻挡的潮流。
通过了解显微镜的发展历程,今后能更好地改良显微镜,使其更造福于我们的社会。
参考文献:[1]章晓中.《电子显微分析》.清华大学出版社,2006.12[2]张景强.《生物电子显微技术》.中山大学出版社,1987.12[3]Lamaze M.Microscopic analysis of the influence of multiple thermal cycles on simulated has toughness in p91 steel. ARCHIVES OF METALLURGY AND MATERIALS, 2008(53):1025-1034.[4]Hayashida, Misa .Measurement of precision for developing automatic transmission electron microscope. SURFACE AND INTERFACE ANALYSIS, 2008[5]Wang TT. A study on the dissymmetrical microporous layer structure of a direct methanol fuel cell. ELECTROCHIMICA ACTA , 2008(54): 781-785.[6]苏显渝.《信息光学》.科学出版社,2005.[7]Kawasaki, Tadahiro.Aberration analysis of Cs -corrector system with twin hexapoles and transfer lens doublet in scanning transmission electron microscope by simple ray tracing based on geometrical optics. SURFACE AND INTERFACEANALYSIS, 2008(40): 1732-1735.(40) 1777-1780.[8]Ueda, Kouta .First observation of dynamic shape changes of a gold nanoparticle catalyst under reaction gas environment by transmission electron microscopy. SURFACE AND INTERFACE ANALYSIS ,2008(40):1725-1727.[9]宋菲君.《近代光学信息处理》.北京大学出版社,1998.[10]杨勇骥.《实用生物医学电子显微镜技术》.上海第二军医大学出版社,2003. [11]陈力.《生物电子显微术教程》.北京师范大学出版社,1998.6(注:可编辑下载,若有不当之处,请指正,谢谢!)。