三角函数图象的平移和伸缩
三角函数的平移与伸缩变换_整理

函数)sin(A ϕω+=x y 的图像(1)物理意义:sin()y A x ωϕ=+(A >0,ω>0),x ∈[0,+ ∞)表示一个振动量时,A 称为振幅,T =ωπ2,1f T=称为频率,x ωϕ+称为相位,ϕ称为初相。
(2)函数sin()y A x k ωϕ=++的图像与sin y x =图像间的关系:① 函数sin y x =的图像纵坐标不变,横坐标向左(ϕ>0)或向右(ϕ<0)平移||ϕ个单位得()sin y x ϕ=+的图像;② 函数()sin y x ϕ=+图像的纵坐标不变,横坐标变为原来的1ω,得到函数()sin y x ωϕ=+的图像;③ 函数()sin y x ωϕ=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ωϕ=+的图像;④ 函数sin()y A x ωϕ=+图像的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ωϕ=++的图像。
要特别注意,若由()sin y x ω=得到()sin y x ωϕ=+的图像,则向左或向右平移应平移||ϕω个单位。
ϕ对)sin(ϕ+=x y 图像的影响一般地,函数)sin(ϕ+=x y 的图像可以看做是把正弦函数曲线上所有的点向____(当ϕ〉0时)或向______(当ϕ〈0时)平移ϕ个单位长度得到的 注意:左右平移时可以简述成“______________”ω对x y ωsin =图像的影响函数x y ωsin =)10(≠>∈ωω且R x ,的图像可以看成是把正弦函数上所有的点的横坐标______)1(>ω或_______)10(<<ω到原来的ω1倍(纵坐标不变)。
A 对x y sin A =的影响函数x y sin A =,)1A 0A (≠>∈且R x 的图像可以看成是把正弦函数上所有的点的纵坐标_______)1A (>或_______)1A 0(<<到原来的A 倍得到的由x y sin =到)sin(A ϕω+=x y 的图像变换 先平移后伸缩:先伸缩后平移:【典型例题】例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.练习:将x y cos =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.例2、把)342cos(3π+=x y 作如下变换: (1)向右平移2π个单位长度; (2)纵坐标不变,横坐标变为原来的31;(3)横坐标不变,纵坐标变为原来的43;(4)向上平移1。
三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换三角函数是数学中的重要概念之一,通过平移和伸缩变换可以对三角函数图像进行调整和变化。
本文将探讨三角函数中的平移与伸缩变换,并说明它们对函数图像的影响。
一、平移变换平移变换是指将函数图像沿着坐标轴平行移动的过程。
在三角函数中,平移变换会改变函数的水平位置。
具体而言,对于三角函数y = f(x),平移变换可以表示为y = f(x ± b),其中b为平移量。
1. 正弦函数的平移变换正弦函数y = sin(x)在平移变换下,可以写作y = sin(x ± b)。
当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
2. 余弦函数的平移变换余弦函数y = cos(x)的平移变换形式为y = cos(x ± b)。
与正弦函数类似,当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
3. 正切函数的平移变换正切函数y = tan(x)在平移变换下,可以写作y = tan(x ± b)。
与正弦函数和余弦函数不同,正切函数的平移变换会导致图像的水平拉伸与压缩。
当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
二、伸缩变换伸缩变换是指将函数图像在x轴或y轴上进行拉伸或压缩的过程。
在三角函数中,伸缩变换会改变函数图像的形状和振幅。
具体而言,对于三角函数y = f(x),伸缩变换可以表示为y = af(bx),其中a为纵向伸缩因子,b为横向伸缩因子。
1. 正弦函数的伸缩变换正弦函数y = sin(x)在伸缩变换下,可以写作y = a sin(bx)。
纵向伸缩因子a决定了函数图像的振幅,a越大,则振幅越大;a越小,则振幅越小。
横向伸缩因子b决定了函数图像的周期,b越大,则周期越短;b越小,则周期越长。
2. 余弦函数的伸缩变换余弦函数y = cos(x)的伸缩变换形式为y = a cos(bx)。
三角函数图象的平移和伸缩

3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。
三角函数图像的变换与特征

三角函数图像的变换与特征三角函数图像的变换是数学中一个重要的概念,它描述了三角函数图像相对于原始函数图像的位置、形状和特征的变化。
在本文中,我们将探讨三角函数的变换和它们的特征。
一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动的操作。
对于三角函数而言,平移的规律如下:1. 正弦函数(Sine Function)的平移:a. 沿横轴平移:f(x) = sin(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + sin(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
2. 余弦函数(Cosine Function)的平移:a. 沿横轴平移:f(x) = cos(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + cos(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
二、伸缩变换伸缩是指对函数图像进行拉伸或压缩的操作。
对于三角函数而言,伸缩的规律如下:1. 正弦函数的伸缩:a. 沿横轴伸缩:f(x) = sin(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * sin(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
2. 余弦函数的伸缩:a. 沿横轴伸缩:f(x) = cos(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * cos(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
三角函数的变换与性质

三角函数的变换与性质三角函数是数学中常见的一类函数,它们在数学和物理等领域有着重要的应用。
本文将介绍三角函数的变换与性质,以帮助读者更好地理解和应用这些函数。
一、正弦函数的变换与性质正弦函数可以表示为f(x) = sin(x),其图像是一个周期性的波形。
正弦函数的变换包括平移、伸缩和翻转等操作。
1. 平移:当正弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = sin(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当正弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当正弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = sin(-x)的图像将关于y轴对称。
正弦函数的性质有:1. 周期性:正弦函数的图像以x轴为对称轴,其周期为2π。
即sin(x + 2π) = sin(x)。
2. 奇偶性:正弦函数是一个奇函数,即f(-x) = - f(x)。
这意味着正弦函数的图像关于原点对称。
二、余弦函数的变换与性质余弦函数可以表示为f(x) = cos(x),它与正弦函数是相互关联的。
余弦函数的变换与正弦函数类似,也包括平移、伸缩和翻转等操作。
1. 平移:当余弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = cos(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当余弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当余弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = cos(-x)的图像将关于y轴对称。
余弦函数的性质有:1. 周期性:余弦函数的图像以x轴为对称轴,其周期为2π。
即cos(x + 2π) = cos(x)。
三角函数的伸缩变换与平移变换

三角函数的伸缩变换与平移变换1. 引言嘿,大家好!今天我们来聊聊一个有趣的话题,那就是三角函数的伸缩变换和平移变换。
听起来是不是有点晦涩,但别担心,咱们慢慢来,轻松讲解。
想象一下,三角函数就像是一个调皮的小孩,它总是喜欢玩各种变形游戏,不信你看看,正弦、余弦、正切,它们都能搞出不少花样来。
咱们先来看看这些变换都是什么吧,别着急,咱们一步一步来。
2. 伸缩变换2.1 什么是伸缩变换首先,咱们得了解什么是伸缩变换。
简单来说,就是把图像放大或缩小。
这就像你在照镜子时,调节镜子的位置,让自己变得更高或更矮。
比如说,如果你有一个正弦函数 ( y = sin(x) ),如果把它的幅度加大,比如变成 ( y = 2sin(x) ),那么它的波峰就高了,波谷也低了,整个图像就像是喝了兴奋剂一样,蹭蹭往上蹿,变得活泼多了。
2.2 伸缩的感觉再说个例子,如果把它的幅度缩小,比如变成 ( y = 0.5sin(x) ),那么图像就像是被压扁了一样,波峰和波谷都不那么明显,感觉像是被子弹压得没有了气息。
不过,虽然看起来不那么张扬,但其实它的性格依然在,只是低调了很多。
所以啊,伸缩变换就像是给三角函数穿上了不同风格的衣服,让它在不同场合下都能发挥自己的魅力。
3. 平移变换3.1 平移的魔法接下来,我们再来说说平移变换。
这一招就像是把图像往左或往右移动,简直是个魔法师!比如,把正弦函数 ( y = sin(x) ) 往右移动 ( frac{pi{2 ) 的话,就变成了 ( y =sin(x frac{pi{2) ),这时候它就变成了余弦函数 ( y = cos(x) )。
是不是很神奇?就像是给小孩换了个地方玩耍,结果发现他变得更开心了。
3.2 左右平移的感受而且,平移不仅可以往右移动,也可以往左移动。
比如,往左移动 ( frac{pi{2 ),那么就是 ( y = sin(x + frac{pi{2) ),这又是一番风味。
三角函数的平移与伸缩

三角函数的平移与伸缩三角函数在数学中占据着重要的地位,其在几何、物理、工程等各个领域都有广泛的应用。
而三角函数的平移与伸缩是对原本的函数图像进行操作,使其在坐标系中发生移动和变形。
本文将探讨三角函数的平移与伸缩,以及其对函数图像的影响。
1. 平移变换平移是指将函数图像沿着坐标系的横轴或纵轴方向进行移动。
对于正弦函数y = sin(x)和余弦函数y = cos(x),平移操作可以通过改变自变量x发生。
如果横轴上的平移量为a,那么正弦函数的平移变换可以表示为y = sin(x - a),余弦函数的平移变换可以表示为y = cos(x - a)。
这样,原本位于x轴上的函数图像将平移至新的位置。
2. 伸缩变换伸缩是指通过改变函数图像在坐标系中的大小和形状来实现。
伸缩操作可以通过改变函数的自变量或因变量进行。
对于正弦函数和余弦函数,分别称为sine函数和cosine函数,它们的伸缩变换形式可以表示为y = A*sin(Bx)和y = A*cos(Bx)。
其中,A和B分别代表着振幅和周期。
振幅A决定了函数图像在纵向上的幅度,而周期B则决定了函数图像在横向上的重复性。
当A增大时,函数图像的“峰”和“谷”之间的距离增大,振幅变大;反之,当A 减小时,振幅变小。
当B增大时,函数图像在横轴方向上的周期变长,每个周期内包含更多的“峰”和“谷”;反之,当B减小时,周期变短,每个周期内的“峰”和“谷”减少。
综合平移和伸缩,我们可以得到更加复杂的三角函数的变换。
例如对于正弦函数y = sin(x)进行平移和伸缩的组合操作,可以表示为y =A*sin(B(x - C)) + D。
其中C为平移量,A为伸缩因子,D为上下方向的平移量。
同样地,对于余弦函数也可以进行类似的操作。
三角函数的平移与伸缩在实际应用中起到了重要的作用。
它们能够改变函数图像在坐标系中的位置和形状,进而影响到相关问题的解决。
例如在物理学中,正弦函数和余弦函数可以用来描述周期性现象,如电磁波的传播及机械振动等。
三角函数的平移伸缩变换

三角函数的平移伸缩变换
三角函数可以通过平移、伸缩来进行变换。
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。
伸缩指的是将函数图像沿着横轴或纵轴方向拉伸或缩小。
以正弦函数为例,设其图像为y=sin(x),则有以下几种变换:
1. 平移
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。
这种变换可以用一个参数来表示,记为h和k。
其中h表示横向平移的距离,k表示纵向平移的距离。
平移后的函数为y=sin(x-h)+k。
2. 垂直伸缩
垂直伸缩指的是将函数图像沿着纵轴方向拉伸或缩小。
这种变换可以用一个参数来表示,记为a。
垂直伸缩后的函数为y=a*sin(x)。
当a>1时,函数图像沿着纵轴方向被拉伸,函数的振幅增大;当0<a<1时,函
数图像沿着纵轴方向被缩小,函数的振幅减小。
3. 水平伸缩
水平伸缩指的是将函数图像沿着横轴方向拉伸或缩小。
这种变换可以用一个参数来表示,记为b。
水平伸缩后的函数为y=sin(b*x)。
当b>1时,函数图像沿着横轴方向被缩短,函数的周期变小;当0<b<1时,函数图像沿着横轴方向被拉长,函数的周期变大。
4. 综合变换
完整的三角函数平移伸缩变换包含了垂直伸缩、水平伸缩、横向平移、纵向平移四种变换。
对于正弦函数而言,其综合变换的表达式为:
y=a*sin(b*(x-h))+k
其中,a表示垂直伸缩的参数,b表示水平伸缩的参数,h和k表示横向和纵向平移的参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数图象的平移和
伸缩
-CAL-FENGHAI.-(YICAI)-Company One1
三角函数图象的平移和伸缩
函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由
ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换
称上下平移变换,它们都是平移变换.
既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度
得sin()y x ϕ=+的图象()
ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ϕ=++的图象.
x
y sin =)
3sin(π
+=x y )
3
2sin(π
+=x y )
3
2sin(3π
+=x y 纵坐标不变 横坐标向左平移π/3 个单位
纵坐标不变 横坐标缩短为原来的1/2 横坐标不变 纵坐标伸长为原来的3倍
先伸缩后平移
sin y x =的图象(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得sin y A x =的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象
(0)(0)
ϕϕϕω
><−−−−−−−→向左或向右平移
个单位
得sin ()y A x x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ωϕ=++的图象.
例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫
=++ ⎪⎝
⎭
的图象.
解:(方法一)①把sin y x =的图象沿x 轴向左平移π
4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝
⎭
的图
象;②将所得图象的横坐标缩小到原来的1
2,得πsin 24y x ⎛⎫=+ ⎪⎝
⎭
的图象;③将所得图象的纵坐标
伸长到原来的2倍,得π2sin 24y x ⎛⎫
=+ ⎪⎝
⎭
的图象;④最后把所得图象沿y 轴向上平移1个单位长
度得到π2sin 214y x ⎛⎫=++ ⎪⎝
⎭
的图象.
)
3
2sin(3π
+=x y x
y sin =x
y 2sin =)
3
2sin(π
+=x y 纵坐标不变 横坐标缩短为原来的1/2 纵坐标不变 横坐标向左平移π/6 个单位
横坐标不变 纵坐标伸长为原来的3倍
(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的1
2,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8
个单位
长度得π2sin 28y x ⎛⎫
=+ ⎪⎝
⎭
的图象;④最后把图象沿y 轴向上平移1个单位长度得到
π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π
8
个单位长度得
到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝
⎭
而不是πsin 28y x ⎛⎫=+ ⎪⎝
⎭
,把πsin 4y x ⎛
⎫=+ ⎪⎝
⎭
的图象的横坐标
缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝
⎭
而不是πsin 24y x ⎛⎫=+ ⎪⎝
⎭
.
对于复杂的变换,可引进参数求解.
例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫
=- ⎪⎝
⎭
的图象.
分析:应先通过诱导公式化为同名三角函数.
解:ππsin 2cos 2cos 22
2y x x x ⎛⎫⎛
⎫==-=- ⎪ ⎪⎝⎭
⎝
⎭
,
在πcos 22y x ⎛⎫=- ⎪⎝
⎭
中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥
⎣
⎦
⎝
⎭
. 根据题意,有π
π22224x a x --=-,得π8
a =-.
所以将sin 2y x =的图象向左平移π
8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝
⎭
的图象.。