七年级数学(上)期末水平测试(五)
2025届福建省厦门市湖里实验中学数学七年级第一学期期末学业水平测试模拟试题含解析

2025届福建省厦门市湖里实验中学数学七年级第一学期期末学业水平测试模拟试题 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列方程组中,属于二元一次方程组的是( )A .B .C .D .2.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A .6cmB .7cmC .10cmD .11cm3.如图,某校学生要去博物馆参观,从学校A 处到博物馆B 处的路径有以下几种. 为了节约时间,尽快从A 处赶到B 处,若每条线路行走的速度相同,则应选取的线路为( )A .A→F→E→BB .A→C→E→BC .A→C→G→E→BD .A→D→G→E→B 4.下列判断正确的是( )A .35<47-B .是有理数,它的倒数是C .若a b =,则a b =D .若a a =-,则0a <5.在0,1,﹣3,|﹣3|这四个数中,最小的数是( )A .0B .1C .﹣3D .|﹣3|6.计算:6a 2-5a +3与5a 2+2a -1的差,结果正确的是( )A .a 2-3a+4;B .a 2-7a+4;C .a 2-3a+2;D .a 2-7a+27.北京某天的最高气温是10℃,最低气温是﹣2℃,则这天的温差是( )A .12℃B .﹣10℃C .6℃D .﹣6℃8.在全区“文明城市”创建过程中,小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是( )A .全B .城C .市D .明9.如图,正方体的展开图中对面数字之和相等,则﹣x y =( )A .9B .﹣9C .﹣6D .﹣810.过度包装既浪费资源又污染环境。
2025届南安市七年级数学第一学期期末学业水平测试试题含解析

2025届南安市七年级数学第一学期期末学业水平测试试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.如果代数式55+x 与2x 的值互为相反数,则x 的值为( )A .75B .75-C .57D .57- 2.按照如图所示的操作步骤,若输入的值为1,则输出的值为( )A .5B .8C .10D .163.下列各式中结果为负数的是( )A .()3--B .3-C .()23-D .23-4.若2(13)40x m ++-=,则3x m +的值为( ).A .1B .2C .3D .4 5.16-的相反数是( ). A .﹣6 B .6 C .16-- D .166.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为( )A .-6B .0C .6D .267.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( )A .亏损8元B .赚了12元C .亏损了12元D .不亏不损8.若单项式–2335a bc 的系数、次数分别是m 、n ,则( ) A .m=−35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 9.下列说法中正确的是( )A .2是单项式B .3πr 2的系数是3C .12abc -的次数是1 D .a 比-a 大 10.已知线段10AB cm =,点C 在直线AB 上,8BC cm =,点M 、N 分别是AB 、BC 的中点,则MN 的长度为( )A .18cmB .2cmC .9cm 或1cmD .18cm 或2cm二、填空题(本大题共有6小题,每小题3分,共18分)11.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项. 12.已知线段AB 10cm =,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC 2= cm ,则线段DC =______.13.已知多项式23m x +与多项式3221ab a b ++-的次数相同,则m 的值是_______14.父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的17,则女儿现在的年龄是_________.15.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为__.16.6的绝对值是___.三、解下列各题(本大题共8小题,共72分)17.(8分)(1)2253215m m m m -+--+,其中m=-1 (2)()2222523433x xy y x xy y ⎛⎫-+--+ ⎪⎝⎭,其中23x y =-=, 18.(8分)某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个). (1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?19.(8分)2020年的天猫双十一比以往来的更早一些.如今的双十一也不再是当年那个仅此一天的双十一,今年的活动期已经拉长到了一个月左右.晓晨一家人打算在今年的双十一促销中,争取花最少的钱,买到物美价廉的产品.晓晨想买一些学习用品,妈妈想买一台智能扫地机器人,爸爸想买一台空气净化器,经过反复的筛选,一家人决定从以下两个品牌当中挑选扫地机器人和空气净化器,它们的单价、双十一电子商品促销方案如下:书包 60扫地机器人单价(元/台) 空气净化器单价(元/台) 甲品牌2600 2500 乙品牌 3000 24001.所有电子商品均享受每满300减40元;2.在满减的基础上还可享受购买同一品牌商品一件9折、两件8折的优惠;3.扫地机器人预售定金翻倍:提前支付50元定金抵200元(在10月21日-11月10日期间支付50元定金,可在11月11日结算时抵扣200元)(1)晓晨购买a 个笔记本,b 支碳素笔,1个书包一共要支付 元.(用含有字母a 、b 的代数式来表示) (2)晓晨购买笔记本的数量比购买碳素笔的数量少3个,还购买了一个书包,总金额请见表1,请问晓晨购买了几支碳素笔?(3)请你帮忙计算选择哪种品牌的扫地机器人和空气净化器能够花费最低,并直接写出总花费为 元.20.(8分)解方程: (1)3-2(x -3)=2-3(2x -1) ; (2)31253243y y +-=-. 21.(8分)计算:(1)12411123523⎛⎫⎛⎫⎛⎫+--+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)()2431113422⎛⎫-⨯---÷-- ⎪⎝⎭ . 22.(10分)已知,数轴上两点A ,B 对应的数分别为20-,1.(1)如图,如果点P 沿线段AB 自点A 向点B 以每秒2个单位长度的速度运动,同时点Q 沿线段BA 自点B 向点A 以每秒3个单位长度的速度运动.运动时间为t 秒.①A ,B 两点间的距离为__________;②运动t 秒时P ,Q 两点对应的数分别为__________,__________;(用含t 的代数式表示)③当P ,Q 两点相遇时,点P 在数轴上对应的数是__________;(2)如图,若点D 在数轴上,且3AD PD DC ===,60PDC ∠=︒,现点P 绕着点D 以每秒转20︒的速度顺时针旋转(一周后停止),同时点Q 沿直线BA 自点B 向点A 运动,P ,Q 两点能否相遇?若能相遇,求出点Q 的运动速度,若不能相遇,请说明理由.23.(10分)某公司要把240吨白砂糖运往某市的A 、B 两地,用大小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种大小货车的载重分别是15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆.(1)求大小两种货车各多少辆.(2)如果安排10辆货车前往A 地,其中调往A 地的大货车有a 辆,其余货车前往B 地,填写下表:前往A 地 前往B 地 大货车/辆a 小货车/辆(3)按照上表的分配方案,若设总费用为W ,求W 与a 的关系式(用含a 的代数式表示W)24.(12分)(1)已知3x y +=,1xy =-,求代数式(523)(35)x xy xy y -+--.(2)先化简,再求值:222211()(1)24a b ab ab a b ----,其中3a =-,2b =-.参考答案一、选择题(每小题3分,共30分)1、D【分析】利用互为相反数之和为0列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意,得5520x x ++=,解得:57x =-, 故选D .【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把系数化为1,即可求出解.2、D【解析】把x=1代入题中的运算程序中计算即可得出输出结果.【详解】解:把x=1代入运算程序得:(1+3)2=1.故选:D.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3、D【分析】逐项化简后,根据负数的定义解答即可.【详解】解:A.()3--=3,是正数; B.3-=3,是正数;C.()23-=9,是正数;D.23-=-9,是负数;故选:D .【点睛】本题考查的是负数概念,掌握在正数前面加负号“-”,叫做负数是解题的关键.4、C【分析】根据乘方和绝对值的非负性求出x 和m 的值,再代入3x m +中即可. 【详解】解:∵2(13)40x m ++-=, ∴1+3x=0,4-m=0,解得:x=13-,m=4,代入, 3x m +=3.故选C.【点睛】本题考查了非负数的性质,以及代数式求值,注意计算不要出错.5、D 【解析】试题分析:用相反数数的意义直接确定即可.16-的相反数是16. 故选D .考点:相反数;绝对值.6、C【分析】根据互为相反数的偶次方相等即可得出答案.【详解】∵代数式中关于x 的指数是偶数,∴当x =-2时的值与当x =2时的值相等,∴2x =-时42+x mx n -的值为6.故选C.【点睛】本题考查了乘方的意义和求代数式的值,熟练掌握互为相反数的偶次方相等是解答本题的关键.7、C【解析】试题分析:设第一件衣服的进价为x 元,依题意得:x (1+25%)=90,解得:x =72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏. 8、A【分析】根据单项式的系数是指单项式的数字因数,系数是单项式中所有字母的指数的和即可求得答案.【详解】单项式–2335a bc 中的系数是−35、次数是2+1+3=6, 所以m=−35,n=6, 故选A.【点睛】本题考查了单项式的系数与次数,熟练掌握相关概念以及求解方法是解题的关键.9、A【分析】根据单项式的次数、系数以及正数和负数的相关知识解答即可.【详解】解:A. 2是单项式,正确;B. 3πr 2的系数是3π,故B 选项错误;C. 12abc -的次数是3,故C 选项错误; D.当a 为负数时, a 比-a 小,故D 选项错误.故答案为A .【点睛】本题主要考查了单项式的定义、次数、系数以及正数和负数的相关知识,灵活应用相关知识成为解答本题的关键. 10、C【分析】根据中点的性质得出BM 、BN ,然后分类讨论,可得出线段MN 的长度.【详解】解:分两种情况讨论:如图①所示,∵AB=10cm ,BC=8cm ,M 、N 分别是AB 、BC 的中点,∴BM= 12AB=5cm ,BN= 12BC=4cm , 则MN=MB+BN=9cm ;如图②所示,∵AB=10cm ,BC=8cm ,M 、N 分别是AB 、BC 的中点,∴BM= 12AB=5cm ,BN= 12BC=4cm , 则MN=MB-BN=1cm ;综上可得线段MN 的长度为9cm 或1cm .故选:C .【点睛】本题考查了两点间的距离,属于基础题,解答本题的关键是分类讨论,注意不要漏解.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-1=0,解得:k=1.故答案为:1.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.12、7cm 或3cm【分析】分C 在线段AB 延长线上,C 在线段AB 上两种情况作图.再根据正确画出的图形解题.【详解】解:∵点D 是线段AB 的中点,∴BD=0.5AB=0.5×10=5cm ,(1)C 在线段AB 延长线上,如图.DC=DB+BC=5+2=7cm ;(2)C 在线段AB 上,如图.DC=DB-BC=5-2=3cm .则线段DC=7cm 或3cm .13、1【分析】根据题意依据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:多项式3221ab a b ++-的次数为1;由题意可得多项式23m x +的次数也为1;所以m 的值是1.故答案为:1.【点睛】本题考查多项式的次数,熟练掌握多项式中次数最高的项的次数叫做多项式的次数是解题的关键.14、1【分析】设女儿现在年龄是x 岁,则父亲现在的年龄是(54-x )岁,根据父女的年龄差不变,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设女儿现在年龄是x 岁,则父亲现在的年龄是(54-x )岁,根据题意得:54-x-x=3x-17(54-x ), 解得:x=1.答:女儿现在的年龄是1岁.故答案为:1.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15、3.12×106 【解析】试题分析:用科学计数法应表示成a×10n 的形式,其中a 是整数位数只有一位的数,n 是原数的整数位数减1.考点:用科学计数法计数.16、1.【分析】根据绝对值的意义解答即可.【详解】解:1是正数,绝对值是它本身1.故答案为:1.【点睛】本题考查了绝对值的意义,属于应知应会题型,熟知绝对值的定义是解题关键.三、解下列各题(本大题共8小题,共72分)17、(1)-m+2,3;(2)22x y --,-13【分析】(1)原式合并同类项后,代入求值即可;(2)去括号、合并同类项后,代入求值即可.【详解】(1)原式()2255(2)(31)m m m m =-++-+-2m =-+.当1m =-时,原式123=+=.(2)原式2222234335x xy y x xy y =-+-+- 22x y =--.当2,3x y =-=时,原式4913=--=-.【点睛】本题考查了整式的化简求值,解答本题的关键是去括号和合并同类项.18、(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.19、(1)(5260)a b ++;(2)5支;(3)1.【分析】(1)计算笔记本的总价与碳素笔的总价的和即可;(2)根据总金额为80元,列方程,解方程即可解题;(3)分四种情况讨论,分别计算买①甲牌扫地机器人与甲牌空气净化器②甲牌扫地机器人与乙牌空气净化器③乙牌扫地机器人与甲牌空气净化器④乙牌扫地机器人与乙牌空气净化器的总价格,再比较解题即可.【详解】解:(1)笔记本的总价:5a ,碳素笔的总价2b ,书包总价:60,故答案为:5260a b ++;(2)设晓晨购买了x 支碳素笔 ,购买笔记本的数量为(3)x -支,根据题意列方程,得25(3)6080x x +-+=解得:5x =答:晓晨购买了5支碳素笔.(3)①甲牌扫地机器人与甲牌空气净化器:2600+2500=5100,5100-1740=4420⨯,44200.8=3536⨯,3536-150=1(元);②甲牌扫地机器人与乙牌空气净化器:2600+2400=5000,5000-1640=4360⨯,44200.9150=3770⨯-(元);③乙牌扫地机器人与甲牌空气净化器:2500+3000=5500,5500-1840=4780⨯,47800.9150=4170⨯-(元);④乙牌扫地机器人与乙牌空气净化器:3000+2400=5400,5400-1840=4680⨯,46800.8150=3594⨯-(元);3386359437704170<<<∴买甲牌扫地机器人与甲牌空气净化器花费最少,为1元,故答案为:1.【点睛】本题考查一元一次方程的实际应用等知识,是重要考点,难度较易,掌握相关知识是解题关键.20、 (1)x=-1;(2)y =1.【解析】(1)方程去括号、移项、合并同类项、化系数为1即可;(2)方程去分母、去括号、移项、合并同类项、化系数为1即可.【详解】(1)去括号得:3-2x +6=2-6x +3移项得:-2x +6x =2+3-6-3合并同类项得:4x =-4解得:x =-1;(2)去分母得:3(3y +12)=24-4(5y -3)去括号得:9y +36=24-21y +12移项得:9y +21y =24+12-36合并同类项得:29y =1解得:y =1.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤.21、(1)45-;(2)-72 【分析】(1)根据有理数的加减运算进行求解即可;(2)利用含乘方的有理数混合运算直接进行求解即可.【详解】解:(1)原式=4401155--+=-;(2)原式=19+16486472-⨯-=--=-.【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.22、(1)①30,②202t -+,103t -,③-8;(2)能,点Q 的速度每秒8个单位长度或每秒52个单位长度 【分析】(1)①根据数轴上两点间的距离等于两数差的绝对值求解即可;②根据右加左减的规律解答即可;③根据两点运动的路程之和等于A ,B 两点间的距离列方程求出相遇时间,即可求解;(2)分在点C 处相遇和在点A 处相遇两种情况求解即可;【详解】解:(1)①2010--=30;②依题意:P 点表示的数为202t -+,Q 点表示的数为103t -;③设t 秒后点P 与Q 点相遇:202103t t -+=-,解得6t =;所以P 点表示的数为202202620128t -+=-+⨯=-+=-.(2)答:能.由题意知,点P ,Q 只能在直线AB 上相遇.①点P 旋转到直线上的点C 时,160320t ==秒, 设点Q 的速度为每秒x 个单位长度,依题意得()3101424x =--=,解得8x =.②点P 旋转到直线上的点A 时,2180601220t +==秒, 设点Q 的速度为每秒y 个单位长度,依题意得()12102030y =--=,解得52y =. 答:点Q 的速度为每秒8个单位长度或每秒52个单位长度. 【点睛】本题考查了数轴上的动点问题,两点间的距离,以及一元一次方程的应用,分类讨论是解(2)的关键.23、 (1)大货车8辆,小货车12辆;(2)见解析;(3)1011300W a =+.【分析】(1)设大货车x 辆,则小货车有(20-x )辆,依据大小货车共运240吨白砂糖列方程求解即可;(2)已知安排10辆货车前往A 地,其中调往A 地的大车有a 辆,则小车有(10-a )辆;继而可表示出调往B 的大小货车数量;(3)依据(1)的运算结果,得出前往B 地的大、小车辆的辆数,分别乘以各自的运费,即为总运费.【详解】(1)设大货车x 辆,则小货车(20-x)辆,()1510202408x x x +-==,解得,20-x=12(辆),答:大货车8辆,小货车12辆(2)(3)()()()63042010750855021011300W a a a a a =+-+-++=+.【点睛】本题考查一元一次方程的应用及列函数关系式,将现实生活中的事件与数学思想联系起来,读懂题意,找出题目中的数量关系,列出相关的式子是解题的关键,难度一般.24、(1)23;(2)2233124a b ab --,19-. 【分析】(1)先去括号、合并同类项,再把已知式子的值整体代入化简后的式子计算即可;(2)先去括号、合并同类项,再把a 、b 的值代入化简后的式子计算即可【详解】解:(1)()()523355553x xy xy y x y xy -+--=+-+, ∵3x y +=,1xy =-,∴5515x y +=,55xy =-,∴原式15(5)323=--+=.(2)原式222211124a b ab ab a b =--++2233124a b ab =--, 当3,2a b =-=-时,原式()()()()22333232124=⨯-⨯--⨯-⨯--279119=-+-=-. 【点睛】本题考查的是整式的加减运算以及代数式求值,属于基础题型,熟练掌握整式的加减运算法则是解题的关键.。
2022-2023年冀教版初中数学七年级上册期末考试检测试卷及答案(五套)

2022-2023年冀教版数学七年级上册期末考试测试卷及答案(一)一、选择题1.下列式子中,不能成立的是()A.﹣(﹣2)=2B.﹣|﹣2|=﹣2C.23=6D.(﹣2)2=42.已知∠AOC=2∠BOC,若∠BOC=30°,∠AOB等于()A.90°B.30°C.90°或30°D.120°或30°3.以下3个说法中:①在同一直线上的4点A、B、C、D可以表示5条不同的线段;②大于90°的角叫做钝角;③同一个角的补角一定大于它的余角.错误说法的个数有()A.0个B.1个C.2个D.3个4.已知A、B、C、D、E五个点在同一直线上,且满足AC=,BD=AB,AE=CD,则CE 为AB长的()A.B.C.D.5.的相反数是()A.2B.﹣2C.D.﹣6.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1B.2b+3C.2a﹣3D.﹣17.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a8.化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n9.已知有一整式与(2x2+5x﹣2)的和为(2x2+5x+4),则此整式为()A.2B.6C.10x+6D.4x2+10x+2 10.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为()A.21元B.19.8元C.22.4元D.25.2元11.一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于()A.0.6元B.0.5元C.0.45元D.0.3元12.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元二、填空题13.过两点最多可以画1条直线;过三点最多可以画3条直线;过四点最多可以画条直线;…;过同一平面上的n个点最多可以画条直线.14.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则BC=.15.已知∠A=30°,那么∠A的余角=°,∠A的补角=°.16.定义a※b=a2﹣b,则(1※2)※3=.17.当x=1时,代数式x2﹣2x+a的值为3,则当x=﹣1时,代数式x2﹣2x+a=.18.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.19.如果2(x+3)的值与3(1﹣x)的值互为相反数,那么x等于.20.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.已知某队踢了14场足球,负5场,共得19分,那么这个队胜了场.三、解答题21.已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012的值.22.如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=18cm,求线段MN的长.23.已知一个角的补角比这个角的4倍大15°,求这个角的余角.24.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.25.化简关于x的代数式(2x2+x)﹣[kx2﹣(3x2﹣x+1)],当k为何值时,代数式的值是常数?26.如图,用同样大小的黑色棋子按规律摆放:(1)第4图形有多少枚黑色棋子?(2)第几个图形有2013枚黑色棋子?请说明理由.27.①设A=2a3+3a2﹣a﹣3,A+B=1+2a2﹣a3,求B的值.②已知A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求:A﹣2B+3C.28.已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.29.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数。
2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题含解析

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列四个选项的代数式表示中,其中错误的是( )A .m 与n 的2倍的和是2m n +B .m 与n 的和的2倍是()2m n +C .a 与b 的2倍的和是()2a b +D .若a 的平方比甲数小2,则甲数是22+a2.一个多项式与2x 2+2x -1的和是x +2,则这个多项式为( )A .x 2-5x +3B .-x 2+x -1C .-2x 2-x +3D .x 2-5x -133.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°4.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比 ∠EBF 大15°,则∠EBC 的度数是()A .15度B .20度C .25度D .30度5.已知3x =是关于x 的方程()5132x a --=-的解,则a 的值是A .-4B .4C .6D .-66.观察如图所示的几何体,从左面看到的图形是( )A .B .C .D .7.下列各对数中,数值相等的是 ( )A .23和32B .(﹣2)2和﹣22C .2和|﹣2|D .和8.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,-2的差倒数是111(2)3=--.如果14a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…以此类推,则123461a a a a a ++++⋯+的值是( )A .-55B .55C .-65D .659.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5,经过下面5步运算可得1,即:如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有( )A .6个B .5个C .4个D .3个 10.如图,∠AOC =∠BOD =80°,如果∠AOD =138°,那么∠BOC 等于( )A .22°B .32°C .42°D .52°二、填空题(本大题共有6小题,每小题3分,共18分)11.已知关于x 的一元一次方程mx =5x ﹣2的解为x =2,则m 值为_____.12.实数16 800 000用科学计数法表示为______________________.13.计算:70°39′=______°;比较大小:52°52′_____52.52°.(选填“>”、“<”或“=”)14.若单项式253x y 与1312m n x y ---是同类项,则n m =________.15.在时刻8:30时,时钟上时针和分针的夹角为 度. 16.计算:22°16′÷4=___________.(结果用度、分、秒表示)三、解下列各题(本大题共8小题,共72分)17.(8分)星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车. ()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?18.(8分)解方程: 641152x x +--= 19.(8分)计算:(﹣1)2018÷2×(﹣12)3×16﹣|﹣2| 20.(8分)某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%,问这种商品的进价为多少元?21.(8分)(1)已知22231A x xy y B x xy =++-=-,,若()2230x y ++-=,求2A B -的值; (2)已知多项式2212x my +-与 多项式236nx y -+的差中不含有2,x y ,求m n mn ++的值. 22.(10分)已知212()02x y ++-=,先化简再求32322212x 2x x 3x y 5xy 7-5xy 33y -++++的值. 23.(10分)解关于x 的分式方程:223242kx x x x +=--+ 24.(12分)综合题如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30D ∠=︒)的直角顶点放在点O 处,一边OE 在射线OA 上,另一边OD 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5︒的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OD 恰好平分BOC ∠.①此时t 的值为______;(直接填空)②此时OE 是否平分AOC ∠?请说明理由.(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒8︒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分DOE ∠?请说明理由;(3)在(2)问的基础上,经过多长时间OC 平分DOB ∠?参考答案一、选择题(每小题3分,共30分)1、C【分析】逐一对选项进行分析即可.【题目详解】A . m 与n 的2倍的和是2m n +,故该选项正确;B . m 与n 的和的2倍是()2m n +,故该选项正确;C . a 与b 的2倍的和是2+a b ,故该选项正确;D . 若a 的平方比甲数小2,则甲数是22+a ,故该选项正确;故选:C .【题目点拨】本题主要考查列代数式,掌握列代数式的方法及代数式的书写形式是解题的关键.【分析】直接利用整式的加减运算法则计算,设这个多项式是A ,则A+(2x 2+2x-1)= x +2,求出A 的表达式即可得出答案.【题目详解】解:设这个多项式是A ,∵这个多项式与2x 2+2x -1的和是x +2,∴A+(2x 2+2x-1)= x +2,即A=(x+2)-(2x 2+2x-1)=﹣2x 2-x+3,故选:C .【题目点拨】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.3、A【分析】根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【题目详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【题目点拨】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.4、C【分析】根据折叠角相等和正方形各内角为直角的性质即可求得∠EBF 的度数.【题目详解】解:∵∠FBE 是∠CBE 折叠形成,∴∠FBE=∠CBE ,∵∠ABF-∠EBF=15°,∠ABF+∠EBF+∠CBE=90°,∴∠EBF=∠EBC= 25°,故选C .【题目点拨】本题考查了折叠的性质,考查了正方形各内角为直角的性质,本题中求得∠FBE=∠CBE 是解题的关键.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【题目详解】把x=3代入方程5(x-1)-3a=-2得:10-3a=-2,解得:a=4,故选B .【题目点拨】本题考查了一元一次方程的解,解一元一次方程等知识点,解题的关键是能得出关于a 的一元一次方程. 6、C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【题目详解】解:观察几何体,从左面看到的图形是故选:C .【题目点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、C【解题分析】选项A ,,数值不相等;选项B ,(﹣2)2=4,﹣22=﹣4,数值不相等;选项C ,|﹣2|=2,数值相等;选项D , , ,数值不相等,故选C. 点睛:解决此类题目的关键是熟记有理数的乘方法则.负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数.8、A【分析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【题目详解】∵a 1=-4a 2=111111(4)5a ==---, a 3=211511415a ==--, a 4=31145114a ==---, …数列以-4,15,三个数依次不断循环,∴45658512360619115514,45420a a a a a a a =.a a a a ..++=+++=+=-++=-==- ∴12346112351()20(4)20(4)5520a a a a a a a a =⨯+-++++⋯+++=-⨯+-=- 故选:A.【题目点拨】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.9、C【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m 的值为多少即可.【题目详解】定义新运算故答案为C【题目点拨】本题考查逆推法,熟练掌握计算法则是解题关键.10、A【分析】根据题意先计算出∠COD 的度数,然后进一步利用∠BOD −∠COD 加以计算求解即可.【题目详解】∵∠AOC =∠BOD =80°,∠AOD =138°,∴∠COD=∠AOD −∠AOC=58°,∴∠BOC=∠BOD −∠COD=80°−58°=22°,【题目点拨】本题主要考查了角度的计算,熟练掌握相关方法是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【分析】直接把x 的值代入进而得出答案.【题目详解】解:∵关于x 的一元一次方程mx =5x ﹣2的解为x =2,∴2m =10﹣2,解得:m =1.故答案为:1.【题目点拨】本题主要考查了一元一次方程的解得知识点,准确计算是解题的关键.12、1.68×1 【解题分析】分析:用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 详解:16800000=1.68×1. 故答案为1.68×1. 点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.13、70.65°> 【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论.【题目详解】70°39′=70°+39′÷60=70°+0.65°=70.65°,∵0.52×60=31.2,0.2×60=12, ∴52.52°=52°31′12″, 52°52′>52°31′12″,故答案为:70.65°;>.【题目点拨】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较. 14、1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m 、n 的值. 【题目详解】解:单项式253x y 与1312m n x y ---是同类项,12m ∴-=,315n -=,解得:1m =-,2n =,故()211n m =-=,故答案为:1.【题目点拨】本题考查了同类项的定义,关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15、1.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【题目详解】解:8:30时,时钟上时针和分针相距2+1522=份, 8:30时,时钟上时针和分针的夹角为30×52=1°.故答案为1.考点:钟面角.16、5°34′【解题分析】22°16′÷4=(20÷4)°(136÷4)′=5°34′, 故答案是:5°34′.三、解下列各题(本大题共8小题,共72分)17、(1)12时;(2)60km . 【分析】(1)设小颖追上队伍用了x 小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【题目详解】(1)设小颖追上队伍用了x 小时.依题意得1060()8060x x += 解得12x = 答:小颖追上队伍用了12小时 (2)小颖追上队伍时.距离雷锋纪念馆: 100-80×12=60(km )【题目点拨】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.3【分析】去分母、去括号、移项、合并同类项、系数化1即可.【题目详解】解: 641152x x +--= 去分母,得()()2645110x x +--=.去括号,得1285510x x +-+=.移项、合并同类项,得73x =-.系数化1,得37x =-【题目点拨】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.19、-1【分析】先进行指数幂运算,再进行乘除运算,最后进行加法运算.【题目详解】解:原式=1÷2×(-18)×16-2 =-1-2=-1.【题目点拨】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解题的关键.20、700【分析】首先设进价为每件x 元,根据题意得选题关系:(1+利润率)×进价=原售价×打折-让利,代入相应数值列出方程,解方程即可.【题目详解】设进价为每件x 元,由题意得(1+10%)x=900×90%-40 解得:x=700,答:这种商品的进价为700元21、(1)10-;(2)7-【分析】(1)根据题意求得x 和y 的值,然后将2A B -化简,化简后代入x 、y 的值运算即可;(2)先求出两个多项式的差,不含有2x ,y 代表含有2x ,y 项的系数为0,求出m 和n 的值代入原式即可求解.【题目详解】(1)∵()2230x y ++-=∴2x =-,3y =2A B -=()222312x xy y x xy ++---=2223122x xy y x xy ++--+=331xy y当2x =-,3y =时,原式=()323331⨯-⨯+⨯-=10-(2)()2221236x my nx y +---+=()()22318n x m y -++- ∵两多项式的差中不含有2x ,y∴20n -=,30m +=∴2n =,3m =-当2n =,3m =-时,原式=()3232-++-⨯=7-故答案为(1)10-;(2)7-.【题目点拨】本题考查了整数的加减混合运算,绝对值的非负性,偶次方的非负性,整式的意义,多项式中不含有某项,令该项的系数为0即可.22、327x x y ++,1【分析】先根据两个非负数的和等于0,得到20x +=,102y -=,可求出x 、y 的值,再化简代数式,把x 、y 的值代入化简后的代数式计算即可. 【题目详解】解:∵21202x y ⎛⎫++-= ⎪⎝⎭,∴2x =-,12y =, 323222122357533x x y x x y xy xy -++++- 327x x y =++()()3212272=-+-⨯+ 827=-++67=-+1=【题目点拨】本题考查了整式的化简求值、非负数的性质.熟练掌握整式的运算法则是解题的关键.23、当k=1或k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,x=101k --是原方程的解. 【分析】根据解分式方程的步骤解得即可,分情况讨论,检验【题目详解】解:两边同时乘以(x+2)(x-2)得:2(x+2)+kx=3 (x-2)移项合并得:(k-1)x=−10,当k-1=0时,即k=1时,方程无解,当k-1≠0时,即k ≠1时, x= 101k -- 检验:当x=101k --=±2时,即k=-4或k=6时,则(x+2)(x-2)=0, ∴当k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,则(x+2)(x-2)≠0,∴当k ≠-4或k ≠6时,x=101k --是原方程的解. 【题目点拨】此题主要考查了解分式方程,正确地分情况讨论是解决问题的关键.24、(1)①3;②是,理由见解析;(2)经过5秒或69秒时,OC 平分DOE ∠;(3)经过21011秒时,OC 平分DOB ∠. 【分析】(1)①先求出0t =时的DOC ∠的度数,再求出当OD 恰好平分BOC ∠时DOC ∠,最后根据旋转的角度等于前后两次所求DOC ∠度数的差列出方程即得.②在①中求出的t 的条件下,求出此时的COE ∠的度数即可.(2)先根据OC 平分DOE ∠可将OC 旋转度数与三角板旋转度数之差分为15︒、375︒和345︒三种情况,然后以OC 平分DOE ∠为等量关系列出方程即得.(3)先根据OC 旋转速度与三角板旋转速度判断OC 平分DOB ∠应该在两者旋转过OB 之后,然后用t 分别表示出COB ∠与DOB ∠的度数,最后依据OC 平分DOB ∠为等量关系列出方程即可.【题目详解】(1)①当0t =时∵30AOC ∠=︒,90AOD ∠=︒∴60∠=∠-∠=︒DOC AOD AOC当直角三角板绕O 点旋转t 秒后∴60+5∠=︒DOC t∵30AOC ∠=︒,+180∠∠=︒BOC AOC∴150BOC ∠=︒∵OD 恰好平分BOC ∠∴12∠=∠DOC BOC ∴60+575︒=︒t∴3t =.②是,理由如下:∵转动3秒,∴15AOE ∠=︒,∴15COE AOC AOE ∠=∠-∠=︒,∴COE AOE ∠=∠,即OE 平分AOC ∠.(2)直角三角板绕O 点旋转一周所需的时间为360725=(秒),射线OC 绕O 点旋转一周所需的时间为 360458=(秒), 设经过x 秒时,OC 平分DOE ∠,由题意:①854530x x -=-,解得:5x =,②853603045x x -=-+,解得:12572x =>,不合题意,③∵射线OC 绕O 点旋转一周所需的时间为360458=(秒),45秒后停止运动, ∴OE 旋转345︒时,OC 平分DOE ∠, ∴345695x ==(秒), 综上所述,5x =秒或69秒时,OC 平分DOE ∠.(3)由题意可知,OD 旋转到与OB 重合时,需要90518÷=(秒),OC 旋转到与OB 重合时,需要3(18030)8184-÷=(秒), 所以OD 比OC 早与OB 重合,设经过x 秒时,OC 平分DOB ∠. 由题意:18(18030)(590)2x x --=-, 解得:21011x =, 所以经过21011秒时,OC 平分DOB ∠. 【题目点拨】本题考查角的和与差的综合问题中的动态问题,弄清运动情况,将动态问题静态化是解题关键,根据等量关系确定所有满足条件的状态是难点也是容易遗漏点,在解题过程中一定要检验每一种情况是否符合题目条件,做到不重不漏的分类讨论.。
人教版七年级数学上册期末综合素质水平测试卷【含答案】

人教版七年级数学上册期末综合素质水平测试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )A .-3℃B .8℃C .-8℃D .11℃2.有理数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >03.下列方程是一元一次方程的是( )A .x -y =6B .x -2=xC .x 2+3x =1D .1+x =34.截至2月底,我国口罩日产量已超过7 000万只.7 000万用科学记数法表示为( )A .7×106B .0.7×108C .7×108D .7×1075.下列运算正确的是( )A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +ba =0146.如图是一个正方体的平面展开图,则原正方体中与“你”字所在对的字是( )A .遇B .见C .未D .来7.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元8.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )A .∠1=∠3B .∠1=180°-∠3C .∠1=90°+∠3D .以上都不对9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =∠AOB ,则射线OC 是∠AOB 的平分线;12④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(本题共6小题,每小题4分,共24分)11.-的相反数是________,-的倒数的绝对值是________.1512.若-xy 3与2x m -2y n +5是同类项,则n m =________.1313.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__________.15.已知点O 在直线AB 上,且线段OA 的长为4 cm ,线段OB 的长为6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为______________.16.观察如图摆放的三角形,则第四个图中的三角形有________个,第n 个图中的三角形有__________个.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:-3×(-4)+(-2)3÷(-2)2-(-1)2 022.18.(8分)解方程:-1=-.x -22x +13x +8619.(8分)先化简,再求值:(2x 2-2y 2)-3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =-1,y =2.20.(8分)如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ;(2)连接BC ,并延长CB 至D ,使得BD =BC ;(3)在直线l 上确定点E ,使得AE +CE 最小.21.(8分)如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.22.(10分)如图,直线AB,CD相交于O点,OM平分∠AOB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.23.(10分)阅读下面材料:数学课上,老师给出了如下问题:如图①,∠AOB=80°,OC平分∠AOB.若∠BOD=20°,请你补全图形,并求出∠COD的度数.以下是小红的解答过程:解:如图②,因为OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =__________°.12因为∠BOD =20°,所以∠COD =∠__________+∠__________=________°.小李说:“我觉得这个题有两种情况,小红考虑的是OD 在∠AOB 外部的情况,事实上,OD 还可能在∠AOB 的内部”.请完成以下问题:(1)请你将小红的解答过程补充完整;(2)根据小李的想法,请你在图③中画出另一种情况对应的图形,并求出此时∠COD 的度数.(要求写出解答过程)24.(12分)在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如下表所示的数据:功率使用寿命价格普通白炽灯100瓦(即0.1千瓦) 2 000小时3元/盏优质节能灯20瓦(即0.02千瓦) 4 000小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1 000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的式子分别表示用一盏白炽灯的费用和用一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4 000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.(14分)如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数;(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于电子蚂蚁P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变.请判断哪个结论正确,并求出正确结论的值.答案1.D1.D2.B3.D4.D 5.D 6.D 7.C 8.C 9.C 10.C二、11.;5 2312.-8 13.-5 14.北偏东70° 15.1 cm 或5 cm16.14;(3n +2)三、17.解:原式=12+(-8)÷4-1=12-2-1=9.18.解:去分母,得3(x -2)-6=2(x +1)-(x +8).去括号,得3x -6-6=2x +2-x -8.移项、合并同类项,得2x =6.系数化为1,得x =3.19.解:原式=2x 2-2y 2-3x 2y 2-3x 2+3x 2y 2+3y 2=-x 2+y 2.当x =-1,y =2时,原式=-(-1)2+22=3.20.解:(1)如图,射线AB 即为所求作的射线.(2)如图,BD =BC .(3)连接AC ,交直线l 于点E ,根据两点之间,线段最短,可得此时AE +CE 最小.21.解:如图所示.22.解:(1)因为OM 平分∠AOB ,所以∠1+∠AOC =90°.因为∠1=∠2,所以∠2+∠AOC =90°,所以∠NOD =180°-90°=90°.(2)因为∠BOC =4∠1,所以90°+∠1=4∠1,所以∠1=30°,所以∠AOC =90°-30°=60°,∠MOD =180°-30°=150°.23.解:(1)40;BOC ;BOD ;60(2)如图即为另一种情况对应的图形.因为 OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =40°.12因为∠BOD =20°,所以∠COD =∠BOC -∠BOD =40°-20°=20°.24.解:(1)根据题意得1 000×0.1×0.5+3=53(元),则选用一盏普通白炽灯照明1 000小时,它的费用是53元.(2)用一盏白炽灯的费用为0.1x ×0.5+3=0.05x +3(元),用一盏节能灯的费用为0.02x ×0.5+35=0.01x +35(元).(3)根据题意得0.05x +3=0.01x +35,解得x =800.则照明800小时时,使用这两种灯的费用相等.(4)用节能灯更省钱,理由:当x =4 000时,用白炽灯的费用为2 000×0.1×0.5×2+3×2=206(元);用节能灯的费用为4 000×0.02×0.5+35=75(元),因为75<206,所以用节能灯更省钱.25.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25;若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50.故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130,解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)②正确,即ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =PO =50+4m ,12所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50.故ON -AQ 的值不变,这个值为50.。
浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)

2023学年第一学期期末学业水平测试七年级数学试题卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2024B .C.D .2.2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为( )A .B .C .D .3.下列各数,,,中,负数有()A .1个B .2个C .3个D .4个4.在下列四个数中,最大的数是()A .B .0C .2D .5的值在( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且于点B ,,则下列结论中正确的是()①线段BP 的长度是点P 到直线l 的距离;②线段AP 的长度是A 点到直线PC 的距离;2024-1202412024-60.21610⨯421.610⨯62.1610⨯52.1610⨯|2|-2(2)-23-3(2)-1-5-3+PB l ⊥90APC ∠=︒③在PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长度是点P 到直线l 的距离.A .①②③B .③④C .①③D .①②③④7.将一副三角板按如图所示位置摆放,其中与一定相等的是()A .B .C .D .8.古代名著《算学启蒙》中有一题:良马日行二百三十里,缀马日行一百三十里,驾马先行一十一日,问良马几何追及之?意思是:跑得快的马每天走230里,跑得慢的马每天走130里,慢马先走11天,快马几天可追上慢马?若设快马x 天可追上慢马,则可列方程为( )A .B .C .D .9.下列说法正确的是()A .若,则B .若,则C .若,则D .若,则10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差a 为2,则图甲和图乙中阴影部分周长之差为()A .4B .3C .2D .1二、填空题:本大题有6个小题,每小题3分,共18分.11.单项式的系数是__________.12.若,则的补角的度数是__________.13.如果,那么的值是__________.α∠β∠230(11)13013011x x -=+⨯230(11)130130x x -=+23013011130x x =-⨯23013011130x x =+⨯a b =a c b c +=-ax ay =33ax ay -=+a b =22ac bc =22ac bc =a b=732a b c -7330α∠=︒'α∠5m n -=337m n --14.如图,直线AE 与CD 相交于点B ,,,则的度数是__________.第14题图15.若单项式与单项式的和仍是一个单项式,则的值是__________.16.设代数式,代数式为常数.观察当x 取不同值时,对应A 的值并列表如下(部分):X …123…A…567…若,则__________.三、解答题:本大题有8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1);(2).18.(本题满分6分)(1);(2).19.(本题满分8分)如图,已知平面上有三点A ,B ,C .用无刻度直尺和圆规作图(请保留作图痕迹);(1)画线段AB ,直线BC ,射线CA ;(2)在线段BC 上找一点E ,使得.20.(本题满分8分)设,,(1)化简:;(2)若x 是8的立方根,求的值.60DBE ∠=︒BF AE ⊥CBF ∠15m xy +61n x y --n m 13x a A +=+33ax A a -=A B =x =(3)(7)--+33232-+÷317x x -=+3141136x x --=-CE BC AB =-223A x x =--22B x x =+-23A B -23A B -21.(本题满分10分)一根竹竿插入一水池底部的淤泥中(如图),竹竿的入泥部分占全长的,淤泥以上的入水部分比入泥部分长米,露出水面部分为米,竹竿有多长?水有多深?22.(本题满分10分)如图,点C 为线段AB 上一点,AC 与CB 的长度之比为3:4,D 为线段AC 的中点.(1)若,求BD 的长;(2)若E 是线段BD 的中点,若,求AB 的长(用含a 的代数式表示).23.(本题满分12分)综合与实践问题情境:“综合与实践”课上,老师提出如下问题:将一直角三角板的直角顶点O 放在直线AB 上,OC ,OD 是三角板的两条直角边,三角板可绕点O 任意旋转,射线OE 平分.当三角板绕点O 旋转到图1的位置时,,试求的度数;数学思考:(1)请你解答老师提出的问题.数学探究:(2)老师提出,当三角板绕点O 旋转到图2的位置时,射线OE 平分,请同学们猜想与之间有怎样的数量关系?并说明理由;深入探究:(3)老师提出,当三角板绕点O 旋转到图3的位置时,射线OE 平分,请同学们猜想与∠BOD 之间有怎样的数量关系?并说明理由.24.(本题满分12分)1512131021AB =CE a =AOD ∠35COE ∠=︒BOD ∠AOD ∠COE ∠BOD ∠AOD ∠COE ∠如图,在数轴上点A 表示数-3,点B 表示数,点C 表示数5,点A 到点B 的距离记为AB .我们规定:AB 的大小可以用位于右边的点表示的数减去左边的点表示的数来表示.例如:.(1)求线段AC 的长;(2)以数轴上某点D 为折点,将此数轴向右对折,若点A 在点C 的右边,且,求点D 表示的数;(3)若点A 以每秒1个单位长度的速度向左运动,点C 以每秒4个单位长度的速度向左运动,两点同时出发,经过t 秒时,,求出t的值.1-(1)(3)2AB =---=4AC =2AC AB =2023学年第一学期期末质量检测七年级数学参考答案一、选择题;(每小题3分,共30分)题号12345678910答案BDBCCABDCA二、填空题:(每小题3分,共18分)11.12.13.814.15.2516.三、解答题:17.解;(1)(2)18.解:(1)(2)19.解:(1)画絨后AB 直线BC 射线CA(2)在线段BC 上找一点E ,使得.20.解:(1)化简:.(2)是8的立方根,,.21.解;没竹竿有x 米,则竹竿入泥部分为米,则淤泥以上的入水部分为米,由题意可得:,解得,则,答:竹竿有3米,则水深为米.22.解:(1)由,设,,,,,解得,,,2-10630︒'()106.5︒150︒5210-7-4x =910x =CE BC AB =-()()222322332A B x x x x -=---+-2224263365x x x x x x =----+=-x 2x ∴=222352106A B x x ∴-=-=-=-15x 1152x ⎛⎫+ ⎪⎝⎭1111355210x x x +++=3x =11115210x +=1110:3:4AC BC =3AC x =4BC x =14AB = AC BC AB +=3421x x ∴+=3x =9AC ∴=12BC =为绕段AC 的中点,,.(2)如图所示.由,设,,,为线段AC 的中点,,,为BD 的中点,,,,,解得,.23.解:(1)由题可知:,,.又平分,..(2),理由如下:设,则.平分,.即.(3),理由如下:设,则,,,..24.解:(1).(2)对折后,点A 在点C 的右边,且,点A 表示的数是9,点D 表示的数是.(3)点A 以每秒1个单位长度的速度向左运动t 秒,点C 以每秒4个单位长度的速度向左运动t 秒,D 1922CD AC ∴==9331222BD CD BC ∴=+=+=:3:4AC BC =3AC m =4BC m =7AB m ∴=D 1322AD AC m ∴==311722BD AB AD a m m ∴=-=-=B 11124BE BD m ∴==115444CE BC BE m m m ∴=-=-=CE a = 54m a ∴=45m a =2875AB m a ∴==90DOC ∠=︒35COE ∠=︒ 903555DOE DOC COE ∴∠=∠-∠=︒-︒=︒OE AOD ∠2110AOD DOE ∴∠=∠=︒180********BOD AOD ∴∠=︒-∠=︒-︒=︒2BOD COE ∠=∠BOD x ∠=180AOD x ∠=︒-OE AOD ∠90DOC ∠=︒ 11909022COE DOC DOE x x ⎛⎫∴∠=∠-∠=︒-︒-= ⎪⎝⎭2BOD COE ∠=∠2360BOD COE ∠+∠=︒AOE x ∠=2AOD x ∠=902BOC x ∠=︒-1802BOD x ∴∠=︒-90COE x ∠=︒+()22901802360COE BOD x x ∴∠+∠=︒++︒-=︒5(3)8AC =--= 4AC =∴∴9(3)32+-=运动后表示的数是,运动后表示的数是.①当点C 在A 的右边时,,,,,.②当C 在A 的左边时,,,,,.(得一个答案给3分,两个答案都对给5分)A ∴3t --C ∴54t -2AB t ∴=+54(3)83AC t t t =----=-2AB AC = 2(2)83t t ∴+=-45t ∴=2AB t =+(3)(54)38AC t t t =--=-=-2AB AC = 2(2)38t t ∴+=-12t ∴=。
北师大版七年级上数学期末测试 (5)

北师大版七年级数学上册期末试卷5A 卷(共100分)第Ⅰ卷 (选择题,共30分)一、选择题:(四选一,每小题3分,共30分)1. 在天气预报图中,零上5度用5℃表示,那么零下5度表示为( ) A.5℃ B.+5℃ C.-5℃ D.-5℃2. 连续六个自然数,前三个数的和为2001,那么后三个数的和为( ) A .2001 B .2004 C .2007 D .20103. 设有理数a 、b 、c 满足a+b+c=0,abc=1,则a 、b 、c 中负数的个数是( ) A .3 B .2 C .1 D .04. 下列说法正确的是( )A .单项式与单项式的和是单项式B .多项式与多项式的和是多项式C .单项式与多项式的和是多项式D .整式与整式的和是整式 5. 下列事件中,是必然事件的是 ( )A.打开电视机,正在播放新闻B.父亲的年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着伞6. 某学校七年级三班有50名学生,现对学生最喜欢的球类运动进行了调查,根据调查的结果制作了扇形统计图,如图所示。
根据扇形统计图中提供的信息,给出以下结论: ①最喜欢足球的人数最多,达到了15人; ②最喜欢羽毛球的人数最少,只有5人; ③最喜欢排球的人数比最喜欢乒乓球的人数少3人;④最喜欢乒乓球的人数比最喜欢篮球的人数多6人。
其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个7. 若532-+x x 的值为7,则2932-+x x 的值为( ) A. 0 B. 24 C. 34 D. 448. 如下图所示,为正方体展开图形,将它折回正方体,则点A 会和下列哪两个面连接( ) A .1和3 B .1和4 C .1和6 D .4和69.如右上图所示,FA ⊥MN 于A ,HC ⊥MN 于C ,指出下列各判断错误的是( ) ) A .由∠CAB=∠NCD ,得AB ∥CD ; B .由∠FAB=∠HCD ,得AB ∥CDC .由∠BAE=∠DCG ,得AB ∥CD ; D .由∠MAE=∠ACG ,∠DCG=∠BAE 得AB ∥CD 10.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为 m 千克,再从中截出5米长的钢筋,称出它的质量为n 千克,那么这捆钢筋 的总长度为 ( )A.n m 米B.5mn米 C.n m 5 米 D.)55(-n m 米篮球 14% 羽毛球排球 20% 乒乓球26%足球 30% 10%二、填空题:(每小题4分,共16分)11. 一个多项式加5x 2+3x -2的2倍得1-3x 2+x ,则这个多项式是 。
2015年陕西省咸阳市七年级上数学期末水平测试卷(五)

七年级(上)期末水平测试(五)一、耐心填一填,一锤定音!(每小题4分,共32分)1.已知点A 在数轴上对应的有理数为a ,将点A 向左移动3个单位长度后,再向右移动1个单位长度得到点B ,其在数轴上对应的有理数为 4.5-,则有理数a =_______.2.一天早晨,某市气温为1-℃,中午上升了6℃,晚上又下降了10℃,则晚上气温为_______℃.3.有一列数,前五个数依次为12,23-,34,45-,56,则这列数的第20个数是_______. 4.晓玲在某月日历的一个竖列上圈了三个数,这三个数的和恰好是30,则这三个数是_______.5.某校准备为毕业班学生制作一批纪念册,甲公司提出:每册收材料费5元,另收设计费1500 元;乙公司提出:每册收材料费8元,不收设计费.张老师经过计算,发现两家公司收费一样,则该校今年毕业生有_______人.6.时钟的分针1分钟转_______度的角,时针每分钟转_______度的角.7.一个角的补角与它的余角的2倍的差是平角的三分之一,则这个角为_______.8.某班50名学生的年龄统计结果如下表所示,这个班年龄最大的是_______岁,年龄最小的是_______岁,年龄最集中的是_______岁.二、精心选一选,慧眼识金!(每小题3分,共24分)1.4556⎛⎫--⎪⎝⎭的绝对值是( ) A.4556-+ B.4556-- C.4556- D.4556+ 2.若a b ,互为相反数,且都不为零,则()11a a b b ⎛⎫+-+ ⎪⎝⎭的值为( ) A.0 B.1- C.1 D.2-3.某人存入5000 元参加三年期储蓄(免征利息税),到期后本息和共得5417 元,那么这种储蓄的年利率为( )A.2.58% B.2.68% C.2.78% D.2.88%4.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费.如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水?设这个月共用x 立方米的水,下列方程正确的是( )A.()1.220220 1.5x x ⨯+-=B.1.2202 1.5x x ⨯+= C.1.22 1.52x x +=D.2 1.220 1.5x x -⨯= 5.有一个正方体木块,它的六个面上分别标有数字1~6,图1是这个正方体从不同方向所观察到的数字情况,则数字1和5对面的数字是( )A.4,3 B.3,2 C.3,4 D.5,16.如图2,直线AB 与CD 相交于点O ,12=∠∠,若140AOE =∠,则AOC ∠的度数为( ) A.40 B.60 C.80 D.1007.已知点AB C ,,在同一直线上,若20cm AB =,30cm AC =,则BC 的长是( ) A.10cm B.50cm C.25cm D.10cm 或50cm8.为了解一批日光灯的合格率,从中抽取了100只日光灯进行检验,则下列说法正确的是( ) A.这100只日光灯的合格率是总体B.这一批日光灯的合格率是总体C.100只日光灯的合格率一定大于这一批日光灯的合格率D.这种收集数据的方法是全面调查法三、用心做一做,马到成功!(本大题共64分)1. (本题8分)(1)计算2342293⎛⎫-÷⨯- ⎪⎝⎭;(2)解方程3453248x x --=-.2.(本题10分)观察右面的图形(每个正方形的边长均为1)和左面相应的等式,探究其中的规律:(1)写出第五个等式,并在给出的五个正方形上面画出与之对应的图示;(2)猜想并写出与第n 个图形相对应的等式.3.(本题10分)如图3,AOB ∠为直角,AOC ∠为锐角,且OM 平分BOC ∠,ON 平分AOC ∠,求MON ∠的度数.4.(本题12分)利用平面图形、立体图形、字母、数字或实物等为奥运会设计徽标,然后用一段文字简明扼要地说明你表现的主体.5.(本题12分)某工厂生产某种产品,每件产品的出厂价为1万元,其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生,为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理,有两种方案可供选择.方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗为20万元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理1吨废渣需付0.1万元的处理费.当工厂每月生产多少件产品时,两种方案所获得的利润一样.(利润=总收入-总支出)6.(本题12分)社会的信息化程度越来越高,计算机网络已经进入普通百姓家.某市电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另付电话话费每小时1元2角;乙种方式是包月制,每月付信息费100元,同样加付电话话费每小时1元2角;丙种方式也是包月制,每月付信息费150元,但不必再另付电话话费.某用户为选择适合的付费方式,连续记录7天每天上网所花的时间(单位:分).根据上述情况,该用户选择哪种付费方式比较适合,请你帮助选择,并说明理由.(每个月以30天计).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)期末水平测试(五)
一、耐心填一填,一锤定音!(每小题4分,共32分)
1.已知点A 在数轴上对应的有理数为a ,将点A 向左移动3个单位长度后,再向右移动1个单位长度得到点B ,其在数轴上对应的有理数为 4.5-,则有理数a =_______.
2.一天早晨,某市气温为1-℃,中午上升了6℃,晚上又下降了10℃,则晚上气温为_______℃.
3.有一列数,前五个数依次为12,23-,34,45-,56
,则这列数的第20个数是_______. 4.晓玲在某月日历的一个竖列上圈了三个数,这三个数的和恰好是30,则这三个数是_______.
5.某校准备为毕业班学生制作一批纪念册,甲公司提出:每册收材料费5元,另收设计费1500 元;乙公司提出:每册收材料费8元,不收设计费.张老师经过计算,发现两家公司收费一样,则该校今年毕业生有_______人.
6.时钟的分针1分钟转_______度的角,时针每分钟转_______度的角.
7.一个角的补角与它的余角的2倍的差是平角的三分之一,则这个角为_______.
8.某班50名学生的年龄统计结果如下表所示,这个班年龄最大的是_______岁,年龄最小
二、精心选一选,慧眼识金!(每小题3分,共24分)
1.4556⎛⎫--
⎪⎝⎭的绝对值是( ) A.4556-+ B.4556-- C.4556- D.4556
+ 2.若a b ,互为相反数,且都不为零,则()11a a b b ⎛⎫+-+ ⎪⎝⎭
的值为( ) A.0 B.1- C.1 D.2-
3.某人存入5000 元参加三年期储蓄(免征利息税),到期后本息和共得5417 元,那么这种储蓄的年利率为( )
A.2.58% B.2.68% C.2.78% D.2.88%
4.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费.如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水?设这个月共用x 立方米的水,下列方程正确的是( )
A.()1.220220 1.5x x ⨯+-=
B.1.2202 1.5x x ⨯+= C.1.22 1.52x x +=
D.2 1.220 1.5x x -⨯= 5.有一个正方体木块,它的六个面上分别标有数字1~6,图1是这个正方体从不同方向所观察到的数字情况,则数字1和5对面的数字是( )
A.4,3 B.3,2 C.3,4 D.5,1
6.如图2,直线AB 与CD 相交于点O ,12=∠∠,若140AOE = ∠,则AOC ∠的度数
为( )
A.40 B.60 C.80 D.100
7.已知点A B C ,,在同一直线上,若20cm AB =,30cm AC =,则BC 的长是( )
A.10cm B.50cm C.25cm D.10cm 或50cm
8.为了解一批日光灯的合格率,从中抽取了100只日光灯进行检验,则下列说法正确的是( )
A.这100只日光灯的合格率是总体
B.这一批日光灯的合格率是总体
C.100只日光灯的合格率一定大于这一批日光灯的合格率
D.这种收集数据的方法是全面调查法
三、用心做一做,马到成功!(本大题共64分)
1. (本题8分)
(1)计算2
342293⎛⎫-÷⨯- ⎪⎝⎭;
(2)解方程
3453248
x x --=-.
2.(本题10分)观察右面的图形(每个正方形的边长均为1)和左面相应的等式,探究其中的规律:
(1)写出第五个等式,并在给出的五个正方形上面画出与之对应的图示;
(2)猜想并写出与第n 个图形相对应的等式.
3.(本题10分)如图3,AOB ∠为直角,AOC ∠为锐角,且OM 平分BOC ∠,ON 平
分AOC ∠,求MON ∠的度数.
4.(本题12分)利用平面图形、立体图形、字母、数字或实物等为奥运会设计徽标,然后用一段文字简明扼要地说明你表现的主体.
5.(本题12分)某工厂生产某种产品,每件产品的出厂价为1万元,其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生,为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理,有两种方案可供选择.
方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗为20万元.
方案二:工厂将废渣集中到废渣处理厂统一处理,每处理1吨废渣需付0.1万元的处理费. 当工厂每月生产多少件产品时,两种方案所获得的利润一样.(利润=总收入-总支出)
6.(本题12分)社会的信息化程度越来越高,计算机网络已经进入普通百姓家.某市电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另付电话话费每小时1元2角;乙种方式是包月制,每月付信息费100元,同样加付电话话费每小时1元2角;丙种方式也是包月制,每月付信息费150元,但不必再另付电话话费.某用户为选择适合的付费方式,连续记录7天每天上网所花的时间(单位:分).
根据上述情况,该用户选择哪种付费方式比较适合,请你帮助选择,并说明理由.(每个月以30天计).。