九年级数学二次根式的乘除1
《二次根式的乘除》二次根式PPT(第1课时)

6
6 7
___÷___=____;
7
6
.
10
4.9 .
课堂小结
本节课学习了哪些主要内容?
法
二次根
式乘法
则
拓展法则
⋅ = ( ≥ 0, ≥ 0൯
⋅ ⋅ ⋯⋅ = ⋅ ⋅⋯⋅
( ≥ 0, ≥ 0, ≥ 0)
⋅ = ( ≥ 0, ≥ 0൯
性
质
= ⋅ ( ≥ 0, ≥ 0൯
(2) 3 + 6 2 + 9 2 ≥ 0, ≥ 0
解:(1) 532 − 282 =
53 − 28)(53 + 28
= 53 − 28 × 53 + 28 = 25 × 81 = 45.
(2) 3 + 6 2 + 9 2 =
+ 3
2
= ( + 3) .
注意:a,b都必须是非负数.
被开方数
根指数
二次根式相乘,________不变,________相乘.
新课导入
问题引入
站在水平高度为 h m的地方看到可见的水平距离为d 米,
它们近似地符合公式为 = 8
ℎ
5
.
ℎ
5
问题1 某一登山者爬到海拔100m处,即 =
20 时,他看到的水平线的距离d1是多少?
当二次根号外有因数(式)时,可以类比单项式乘单
项式的法则计算,即根号外的因数(式)的积作为根
号外的因数(式),被开方数的积作为被开方数,即
m a n b mn ab a 0, b 0
知识讲解
例3
比较大小(一题多解):
二次根式的运算加减乘除

二次根式的运算加减乘除二次根式,是指具有根号的数学表达式,常见形式为√a或√(a + b),其中a和b为实数。
本文将围绕二次根式的运算进行讨论,包括加法、减法、乘法和除法。
一、二次根式的加法对于两个具有二次根式形式的数,如√a和√b,它们的和可以通过以下步骤进行计算:Step 1: 将两个二次根式化简为最简形式,即将根号内的数分解为互质的因数。
例如,√20可以化简为√(4 × 5),再进一步化简为2√5。
Step 2: 将化简后的二次根式进行合并,即将含有相同根号部分的项相加。
例如,对于√20 + √45,可以分别先将二次根式化简为2√5和3√5,然后相加得到5√5。
因此,二次根式的加法运算要先将根号内的数化简为互质的因数,然后合并相同根号部分。
二、二次根式的减法二次根式的减法与加法类似,也需要先将根号内的数化简为最简形式,然后合并相同根号部分。
以下是减法的步骤:Step 1: 将两个二次根式化简为最简形式。
Step 2: 将化简后的二次根式进行合并,即将含有相同根号部分的项相减。
例如,对于√20 - √45,可以先将二次根式化简为2√5和3√5,然后相减得到-√5。
需要注意的是,减法运算中可能会出现负数的结果,这也是合理的。
三、二次根式的乘法二次根式的乘法运算可以通过以下步骤进行:Step 1: 将两个二次根式进行分解,将根号内的数分别因式分解为互质的因数。
例如,对于√20 × √45,可以将20分解为2 × 2 × 5,45分解为3 × 3 × 5。
Step 2: 将每个二次根式的因数进行合并。
例如,√20 × √45可以化简为(2 × √5) × (3 × √5)。
Step 3: 将合并后的二次根式继续化简为最简形式。
对于(2 × √5) × (3 × √5),可以合并根号前的系数,得到6 × √(5 × 5),即6 × √25。
二次根式的乘除法 (1)

学习目标
• 1、理解解直角三角形的概念, 理解俯角、仰角的概念 • 2、能够解直角三角形
学习重难点
• 重点:锐角三角函数在解直角三 角形中的灵活运用 • 难点:将实际问题中的数量关系, 转化为直角三角形中元素之间的 关系,从而解决问题
导学流程
• A、情境导入 • 1、在直角三角形中共有几个元素? • 2、直角三角形ABC中,∠C=90°, a、b、c、∠A、∠B这五个元素间 有哪些等量关系呢?
仰角、俯角
ห้องสมุดไป่ตู้
例题
• 例2 如图25.3.2,东西两炮台A、 B相距2000米,同时发现入侵敌舰C, 炮台A测得敌舰C在它的南偏东40°的方 向,炮台B测得敌舰C在它的正南方,试 求敌舰与两炮台的距离.(精确到1米)
图 25.3.2
例题解答
• • • • • • • • 解 在Rt△ABC中, ∵ ∠CAB=90°-∠DAC=50°, =tan∠CAB, ∴ BC=AB· tan∠CAB =2000×tan50°≈2384(米). ∵ =cos50°, ∴ AC=≈3111(米). 答: 敌舰与A、B两炮台的距离分别约为3111米和 2384米.
自学提纲
• 自学课本94-96页,理解解 直角三角形的概念,仰角俯 角的概念,并能简单的应用 直角三角形的边角关系解决 实际问题,时间为15分钟。
a c
解直角三角形的理论根据:
• (1)边角之间关系 cosA= tanA= sinA=
• (2)三边之间关系 • a2 +b2 =c2 (勾股定理) • (3)锐角之间关系 ∠A+∠B=90°.
解直角三角形,只有下面 两种情况:
• (1) 已知两条边; • (2) 已知一条边和一个锐角. • 即:除直角外的5个元素(3条边和 2个锐角)只要知道其中的2个元素 (至少有一个元素是边),就可以 求出其余的3个元素。
华师大版数学九年级上册21.2 二次根式的乘除 教案1

二次根式的乘除1. 二次根式的乘法【知识与技能】a•=ab〔a≥b,b≥0〕,并利用它们进展计算和化简.理解b【过程与方法】a•=ab〔a≥0,b≥0〕并运用它进展计算.由具体数据发现规律,导出b【情感态度】a•=ab〔a≥0,b≥0〕,培养特殊到一般的探究精神,培养学生对事通过探究b物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a•=ab〔a≥0,b≥0〕,及它的运用.b【教学难点】a•=ab〔a≥0,b≥0〕.发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>〞、“<〞或“=〞填空.2.利用计算器计算填空.a•=ab〔a≥0,b≥0〕.【教学说明】由学生通过具体数据,发现规律,导出b二、思考探究,获取新知〔学生活动〕让3、4个同学上台总结规律.教师点评:〔1〕被开方数都是正数;〔2〕两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为a•=ab〔a≥0,b≥0〕.:b【教学说明】引导学生应用公式a•=ab〔a≥0,b≥0〕.b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是〔〕23【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a•=ab〔a≥0,b≥0〕.b【教学说明】教师引发学习回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.五、教学反思a•=ab〔a≥0,b≥0〕,这节课教师引导学生通过具体数据,发现规律,导出b并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.2. 积的算术平方根【知识与技能】a•〔a≥0,b≥0〕;ab=ba•〔a≥0,b≥0〕.ab=b【过程与方法】a•〔a≥0,b≥0〕,并运用它解题和化简.利用逆向思维,得出ab=b【情感态度】a•〔a≥0,b≥0〕以训练逆向思维,通过严谨解题,增强学生让学生推导ab=b准确解题的能力.【教学重点】a•〔a≥0,b≥0〕及其运用.ab=b【教学难点】a•〔a≥0,b≥0〕的理解与应用.ab=b一、情境导入,初步认识a•=ab〔a≥0,b≥0〕.反过来,一般地,对二次根式的乘法规定为ba•〔a≥0,b≥0〕.ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规定,利用逆向思维,得出a•〔a≥0,b≥0〕.ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab =b a •〔a ≥0,b ≥0〕直接化简即可. 例2判断以下各式是否正确,不正确的请改正:【教学说明】注意引导学生理解并掌握积的算术平方根应用的条件:a ≥0,b ≥0. 三、运用新知,深化理解1.化简:〔1〕20;〔2〕18;〔3〕24;〔4〕54.2.自由落体的公式为s=21gt 2〔g 为重力加速度,它的值为10m/s 2〕,假设物体下落的高度为120m ,那么下落的时间是 s.【教学说明】可由学生自主完成分组讨论,小组代表汇报,再由教师总结归纳. 四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即ab =b a •〔a ≥0,b ≥0〕.【教学说明】教师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳. 五、教学反思本课时教学以“自主探究——合作交流〞为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力. 3. 二次根式的除法【知识与技能】b a b a =〔a ≥0,b >0〕和bab a =〔a ≥0,b >0〕,并运用它们进展计算. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进展计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0〕,并用它进展计算. 2.再利用逆向思维,得出bab a =〔a ≥0,b >0〕,并运用它进展解题和化简. 3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【情感态度】 通过探究b aba =〔a ≥0,b >0〕培养学生由特殊到一般的探究精神;让学生推导bab a =〔a ≥0,b >0〕以训练逆向思维,通过严谨解题,增强学生准确解题的能力. 【教学重点】b a b a =〔a ≥0,b >0〕,bab a =〔a ≥0,b >0〕及利用它们进展计算和化简. 2.最简二次根式的运用. 【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识〔学生活动〕请同学们完成以下各题. 1.写出二次根式的乘法规定及逆向公式.2.填空:3.利用计算器计算填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评. 二、思考探究,获取新知刚刚同学们都练习得很好,上台的同学也答复得十分准确,根据大家的练习和答复,我们可以得到:一般地,对二次根式的除法规定:b aba 〔a ≥0,b >0〕反过来,bab a =〔a ≥0,b >0〕 下面我们利用这个规定来计算和化简一些题目. 例1 计算:【教学说明】 直接利用b aba =〔a ≥0,b >0〕 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点:〔1〕被开方数中不含分母;〔2〕被开方数中所含的因数〔或因式〕的幂的指数都小于2.【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解1.化简:3.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请假设干学生口述小结,教师再利用电子课件将小结放映在屏幕上.五、教学反思本课时教学突出学生主体性原那么,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.。
全面剖析二次根式的乘除及化简

全面剖析二次根式的乘除及化简1.二次根式的乘法法则(1)二次根式的乘法法则(性质3): a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立. ②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根.③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4×3.6;(2)545×3223.分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法.解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230.2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a≥0,b≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可.②公式中的a,b可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab=a·b(a≥0,b≥0)可以推广为abc=a·b·c(a≥0,b≥0,c≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简:(1)300;(2)21×63;(3)(-50)×(-8);(4)96a3b6(a>0,b>0).分析:根据积的算术平方根的性质:ab=a·b(a≥0,b≥0)进行化简.解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a3b6=42·6·a2·a·(b3)2=4ab36a.3.二次根式的除法法则对于两个二次根式a,b,如果a≥0,b>0,那么ab=ab.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a≥0,b>0,则有a b =ab.②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a≥0,b>0与二次根式乘法的条件a≥0,b≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =mnab (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用 通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =ab,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用: (1)数学表达式:如果a ≥0,b >0,则有a b =ab;(2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握) 【例4】把下列各式中根号外的因数(式)移到根号内. (1)535; (2)-2a 12a ;(3)-a-1a ; (4)xyx (x <0,y <0).分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15.(2)∵12a >0,∴a >0. ∴-2a 12a =-(2a )2·12a =-(2a )2·12a =-2a .(3)∵-1a >0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a )=-a .(4)∵x <0,y <0, ∴x y x=-(-x )2y x=-(-x )2·y x =-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式. ①被开方数的因数是整数,因式是整式; ②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +bb 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎨⎧ a +b =2,3a +b =b ,解得⎩⎨⎧a =0,b =2.所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用. (3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件; ②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上; ④误认为形如a 2+b 2的式子是能开得尽方的二次根式. 【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a ).分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除.解:(1)9145÷(3235)×12223=(9÷32×12)145÷35×83 =(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12aba 2b ·a b·a =-12ab a 4=-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式.a与a;a+b与a-b;a+b与a-b;a b+c d与a b-c d.③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab<0时,化简ab2,得__________.(2)把代数式x-1x根号外的因式移到根号内,化简的结果为__________.(3)把-x3(x-1)2化成最简二次根式是__________.(4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是().A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙的解法都正确D.甲、乙的解法都不正确解析:(1)在ab2中,因为ab2≥0,所以ab·b≥0.因为ab<0,b≠0,所以b<0,a>0.原式=b2·a=-b a.(2)因为-1x≥0,又由分式的定义x≠0,得x<0.所以原式=-(-x)-1x=-(-x)2(-1x)=--x.(3)化简时,需知道x,x-1的符号,而它们的符号可由题目的隐含条件推出.∵(x-1)2>0(这里不能等于0),∴-x3≥0,即x≤0,1-x>0.故原式=(-x)2·(-x)(1-x)2=-x1-x-x.(4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a(2)--x(3)-x1-x-x(4)C8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用. 如:借助于计算器可以求得 42+32=__________, 442+332=__________, 4442+3332=__________, 4 4442+3 3332=__________, ……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55, 4442+3332=308 025=555, 4 4442+3 3332 =30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.分析:式子a b =ab ,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎨⎧ 9-x ≥0,x -6>0,即⎩⎨⎧x ≤9,x >6.∴6<x ≤9.∵x 为偶数,∴x =8. ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6. 【例8-2】观察下列各式: 223=2+23,338=3+38.验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23;338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38.(1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用.解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415.(2)猜想:nnn2-1=n+nn2-1(n≥2,n为正整数).证明:因为nnn2-1=n3n2-1=n3-n+nn2-1=n(n2-1)+nn2-1=n+nn2-1,所以nnn2-1=n+nn2-1.11 / 11。
22.2.1二次根式的乘除(一)

21.2.1二次根式的乘除(一)学案稿学习目标:1.经历二次根式乘法法则的探究过程,进一步理解乘法法则.2.能运用二次根式的乘法法则:)0,0(≥≥=⋅b a ab b a 进行乘法运算.3.理解积的算术平方根的意义,会用公式)0,0(≥≥⋅=b a b a ab 化简二次根式. 重点:二次根式的乘法法则与积的算术平方根的性质.难点:二次根式的乘法法则与积的算术平方根的理解与运用.学习过程:一.复习回顾:填空:(1)4×9=____, 49⨯=____; 4×9__49⨯(2)16×25=____,1625⨯=___; 16×25__1625⨯(3)100×36=___,10036⨯=___. 100×36__10036⨯二.合作探究:请观察以上式子及其运算结果,看看其中有什么规律?)0__,0________(b a b a =⋅ 反过来: )0__,0___________(b a ab = 文字描述: 例1、计算 (1)75⨯ (2)931⨯ (3)10263⨯ (4))0(515≥⋅a ay a 解:(1)75⨯=__5⨯=35例2、化简(1)169⨯(2)8116⨯(3)10081⨯(4))0,0(922≥≥y x y x (5)54解:(1)169⨯=__9⨯=__3⨯=__三.巩固练习1.计算:① 16×8 ②55×215 ③312a ·)0,0(312≥≥y a ay2.化简:①20; ②18; ③24; ④54; ⑤2212a b )0,0(≥≥b a3.判断下列各式是否正确,不正确的请予以改正:(1)(4)(9)49-⨯-=-⨯-(2)12425×25=4×1225×25=41225×25=412=83。
二次根式的乘除法(1)

分子和分母乘除后,分别分解素因数,找平方的项开 出,不必马上乘出来(分母必须是平方的项)
例3 计算:
(1) 3 2 6 (2) 8 27 18
6ab 3b
15uv 5uv
u 0,10u3v 0
v 0
原式
15uv
5uv 0
5uv
分子和分母乘除后,分别分解素因数,找平方的项开 出,不必马上乘出来(分母必须是平方的项)
(3) a b a2c b2c (a>b>0)
解 : 原式
ab a2c b2c
(默4)
a2c b2c 0
4.已知x满足 (99 x)(x 99、) 99 x. x 99
y是 2007 x 的整数部分,求 x y
解 (99 x)(x 99) 99 x x 99 99 x 0且x 99 0, x 99, y是 2007 99 的整数部分, y 45, x y 99 45 12
2 3 1 3 1 3 18 3 9
2 18 2 18 2
3 3
试一试
32
计算:(1) 2
(2) 50 10
3 4 1 7
5 10
(4)2 11 5 1 26
解:1 32 32 16 4
22
2 50 50 5
10 10
(3)原式=
41 7= 5 10
21 10=
57
6 如果根号前 有系数,就
b
b2 a
2
2 6a
原式=
( b
)( b2
21.2二次根式的乘除(1)

2.已知菱形的两条对角线的长分别为a= b= 12 cm,求这个菱形的面积; 3.计算:
3 cm,
36 25 ?
81144 ?
将二次根式乘法法则:
a b a b (a 0,b 0)
反过来,得到:
2.积的算术平方根的性质:
a b
a b (a 0,b 0)
41 9
2
2
4
12 5
2
2
化简计算要求:
被开方数中不含能开得尽方的因数和因式
例题 化简:
(1). 4a b
4 2 3
解:原式 2 a b b
2 2 2
2 a b
2 2
2
2 2
2
b 2ab b
2 2
(2). x x y
解:原式 x ( x y ) x2 x2 y 2 x x2 y 2
积的算术平方根,等于积中各因式算 术平方根的积.
a b a b a 0, b 0
1.计算化简下列各式:
①
49121
② ④
(16) (9)
a b
4
③
36 5
这样,被开方数中将不再含有完全 平方的因数(或因式)!
二次根式乘法运算规律公式
a b a b(a≥0,b≥0)
14 21
② ④
72
4a
3
a b (a< 0)
2
请你归纳:
化简二次根式有哪些步骤呢?
化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数. 2.应用
ab a b a 0,b 0
3.将平方项应用
a aa 0 化简.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
× 25 =4 12 =8 3
例5 (1)
计算
x4 + x2 y2
(2)
2000
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业 小结
本节课主要学习些什么呢? 本节课主要学习些什么呢?谈一谈自己的 收获以及自己对本节课的体会。 收获以及自己对本节课的体会。
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业
你计算的结果,有何规律?你能用含字母的式子表示吗? 你计算的结果,有何规律?你能用含字母的式子表示吗? 归纳
1、二次根式的乘法法则
a · b = ab
1 × 5 =_________, 3.6 × 5.4 =_________, , , 5
3−1 c 3bc × =_______. . b
4. 设长方形的长 a=2 50 , 宽 b=3 32 , 则面积 S=________. . . 5. 已知 , x>0, y>0, 则 x 2 y · xy 2 =__________. . 已知, , , . 6. 化简 a 4 + a 6b2 结果等于 ( ) . 结果等于( A. a2( a2+b) B. a( a2+b) C. a2 a 2 + ab2 D. a2 1 + a 2b2 . ) . ( ) . . 7. 已知 a= 2 , b= 10 , 用含 a、 b 的代数式表示 20 , . 、 这个代数式是( 这个代数式是 ( ) A. a+b B. ab C. 2a D. 2b . . . . 8. 若 9 − x2 = 3 − x · 3 + x , 则 x 的取值范围是 ( ) 的取值范围是( . A. -3≤ x≤ 3 B. x>-3 C. x≤ 3 D. -3<x<3 . ≤ ≤ . . ≤ .
( a≥ 0, b≥ 0) ≥ , ≥ )
2、 积的算术平方根的性质
ab = a · b
( a≥ 0, b≥ 0) ≥ , ≥ )
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业 范例
例1
Байду номын сангаас
化简 (1)
教材分析
电 子 教 案 目 标 呈 现 教 材 析 教 分
重点 会利用积的算术平方根的性质化简二次根式, 会利用积的算术平方根的性质化简二次根式 , 会进行简单的二次根式的乘法运算. 会进行简单的二次根式的乘法运算 . 难点 二 次 根 式 的 乘 法 与 积 的 算 术 平 方 根的关系及 应用. 应用 . 关键 由具体数据,发现规律 , 由具体数据 ,发现规律,导出 a · b = ab ( a 并运用它进行计算; ≥ 0 , b ≥ 0 ) 并运用它进行计算 ; 利用逆向 思 维 , 得 出 ab = a · b ( a ≥ 0 , b ≥ 0 ) 并运 用它进行解题和化简. 用它进行解题和化简 .
电 子 教 案 目 标 呈 现 教 材 析 教 学 流 程 同 步 演 练 课 后 练 习 分
双基演练 能力提升 聚焦中考
3 1 ① 1 ×2 3 ×( 5 2
3n 2 3m 2 m ③ · · m n n 3 1 2 + 2 ) 3 3
x3 y ) × 3
1. 计 算 .
10 )
② 3( ④
2 3 xy 5 × ( 2 y
作业
教材P15习题21.2 第1,4,5题,第6(1)(2)题
电 子 教 案 目 标 呈 现 教 材 析 教 学 流 程 同 步 演 练 课 后 练 习 分
双基演练 能力提升 聚焦中考
1. 2 3 × ( -2 5 ) =_________, a × ab =________. . , . 2.( 2 × 7 ) 2=_______, ( 2)2 × ( 3)2 =________. .( , . 3. .
1 5
电 子 教 案 目 标 呈 现 教 材 析 教 学 流 程 同 步 演 练 课 后 练 习 分
双基演练 能力提升 聚焦中考
1.( .(2007. 南京 ) 下列各数中 , 与数 2− 3 积为有理数的是 ( .( . A 2+ 3 B
)
2− 3
C − 2+ 3
D
3
)
2.( .(2005。 武汉 ) 已知 a< b, 化简 −a3b 的正确结果是 ( .( 。
练习 1 , 2 , 3 ( 2 ) 2 3 × 4 15
12 × 6
6a ⋅
1 ab 2
( 1 ) 49 × 121
8y 2
( 2 ) 289
64 xy 3 z 4
10 cm
( 3) ( 4) 3.一个 3. 一个 矩 形的 长 和宽 分 别 是 矩 形的 面 积 .
和2
2cm ,求 这 个
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
4. 若 把 根 号 外 的 因 式 移 到 根 号 内 , 则 a − . A. - − a . B. − a . C. - a .
1 等于( ) a D. a .
5. 仿 照 2 0.5 = 2 2 × 0.5 = 22 × 0.5 = 2 的 做 法 , 化 简 下 列 各 式 : . ① 10 0.1 ② 5
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业 范例
例 3: 计算: : 计算: ( 1) 14× 7 )
1 ( 2) 3 5×2 10 ( 3) 3x • 3 xy ) )
解 : ( 1) 14× 7 = 14×7 = 72 × 2 = 72 × 2 = 7 2; ) ( 2) 3 5 ×2 10= 3×2 5×10 = 6 52 × 2 = 6×5 2 = 30 2; )
二次根式的乘除(1) 21.2 二次根式的乘除(1)
主
电 子 教 案 目 标 呈 现 教 材 析 教 分
页
学习方式说明 按顺序学习,可利用鼠标控制进程。 按顺序学习,可利用鼠标控制进程。 从右侧或上方导航栏中选择内容,进 从右侧或上方导航栏中选择内容, 行学习。 行学习。 电子教案可查看配套教案, 电子教案可查看配套教案,课后练习 可查看配套练习(含答案)。 可查看配套练习(含答案)。
目标呈现
电 子 教 案 目 标 呈 现 教 材 析 教 分
知识技能 1.会 1. 会 进 行 简 单 的 二 次 根 式 的 乘 法 运 算 . 2.能 2. 能 够 利 用 积 的 算 术 平 方 根 的 性 质 进 行 二 次 根 式 的 化 简与运算。 数学思考 进一步了解数学知识之间是相互联系的。 解决问题 能联系几何课中学习的勾股定理解决实际问题. 情感态度 培养努力探索事物之间内在联系的学习习惯.
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业
例 4. 判断下列各式是否正确 , 不正确的请予以改正 : . 判断下列各式是否正确, 不正确的请予以改正: ( 1) ) ( 2) )
(−4) × (−9) = −4 × −9
4 12 25
× 25 =4× × =4
12 25
12 25
× 25
x y5
2. 计 算 ( 2 − 3 × 2 + 3 ) 2002=_______. . 算( . 3. 当 x<0, y<0 时 , 下 列 等 式 成 立 的 是 ( ) . , A. x 2 y = − x y . C. 9 x 3 y = −3 x xy . B. xy 2 = y x . D. 9 x 4 y 2 =3x2y .
本节课应掌握: 本节课应掌握 :
a · b = ab( a≥0,b≥0), ab = a· b ≥ , ≥ ), ( a≥0,b≥0)及其运用 . ≥ , ≥ ) 及其运用.
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业
思考
1. 什么叫二次根式 ? . 什么叫二次根式?
2. 你已经掌握了二次根式的哪些性质 ? . 你已经掌握了二次根式的哪些性质?
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
化简: 化简 :
16 × 81
(2)
4a 2 b 3
解: ( 1 )
16 × 81 = 16 × 81
=4 × 9 = 36
(2)
4a 2 b 3 = 2 2 × a 2 × b 2 × b
2 2 2 = 2 × a × b × b
= 2ab b
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
3× 5
(2)
1 × 27 3
解:( 1 ) ( 2) )
3 × 5 = 15 ;
1 1× 27 × 27 = 3 3
=
9 =3
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 范例点击 反馈练习 应用拓展 小结作业 范例
例2 (1)
A − a − ab B − a ab C a ab D a − ab 3.( .(2006。 福建南安 ) 观察分析 下列数据 , 寻找规律 : .( 。 0, 3 , 6 , 3, 2 3, 15, … , , 那么第 10 个数是 ___ 4.( .(2004。 辽宁大连 ) 已知 ( a)2 <1, .( 。 化简 a2 (a −1)2 =____