最新初中数学二次根式真题汇编及答案
初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.的平方根为()A.B.C.3D.【答案】B.【解析】由于=3,故其平方根是.故选B.【考点】平方根.5.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.6.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.7.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.8.大于小于的所有整数的和是 .【答案】-4.【解析】求出和的范围,求出范围内的整数解,最后相加即可.∵-5<<-4,3<<4,∴大于小于的所有整数为-4,±3,±2,±1,0,∴-4-3-2-1+0+1+2+3=-4,【考点】估算无理数的大小.9.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.10.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.11.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.【答案】9【解析】解:因为2a-1的平方根是±3,所以2a-1=9,解得因为3a+b-1的算术平方根是4,所以3a+b-1=16.又所以故a+2b=9.12.在-4,,0,π,1,,这些数中,是无理数的是.【答案】π.【解析】无理数有:π.故答案为:π.【考点】无理数.13.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.14.若(x-1)=64,则x=______。
初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。
二次根式易错题汇编及答案解析

【点睛】
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
4.若代数式 在实数范围内有意义,则实数 的取值范围是( )
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.
17.下列二次根式是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含分母,故A不符合题意;
B、被开方数含开的尽的因数,故B不符合题意;
C、被开方数是小数,故C不符合题意;
D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.
【详解】
A、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
B、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
C、 与 的被开方数相同,所以它们是同类二次根式;故本选项正确;
D、 是三次根式;故本选项错误.
故选:C.
【点睛】
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
【详解】
解:A、 =2 ,故本选项错误;
B、 是最简根式,故本选项正确;
C、 = ,故本选项错误;
D、 = ,故本选项错误.
故选:B.
【点睛】
本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.
12.下列计算正确的是
A. B. C. D.
新初中数学二次根式难题汇编及答案

新初中数学二次根式难题汇编及答案一、选择题1.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.2.如果0,0ab a b >+<,那么给出下列各式=;a =-;正确的是( ) A .①②B .②③C .①③D .①②③ 【答案】B【解析】【分析】由题意得0a <,0b <,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】解:∵0ab >,0a b +<,∴0a <,0b <,无意义,故①错误;==,故②正确;1====-,故③正确;a a故选:B.【点睛】本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.3.在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2【答案】B【解析】【分析】在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案.【详解】在实数范围内有意义,∴a+2≥0,解得a≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;x=-时,二次根m等于()4.当3C DA B.2【答案】B【解析】解:把x=﹣3代入二次根式得,原式=,依题意得:=.故选B.5.下列各式计算正确的是( )A.2+b=2b B=C.(2a2)3=8a5D.a6÷ a4=a2【答案】D【解析】解:A.2与b不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.7.下列计算结果正确的是( )A 3B ±6CD .3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式=|-3|=3,正确;B 、原式=6,错误;C 、原式不能合并,错误;D 、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.下列计算错误的是()A=B=C.3=D=【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C.【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.下列计算正确的是()A6=B=C.2=D5=-【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A====C.=,此选项计算错误;=,此选项计算错误;5故选:B.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.11.下列运算正确的是()A+=B)﹣1=2C 2 D±3【答案】B【解析】【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A-=,正确;B、12C2=D3,故此选项错误;故选:B.【点睛】此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.12.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】== 1.414222≈,即可解答.【详解】== 1.414222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.14.下列计算正确的是()A.=B=C .=D -=【答案】B【解析】【分析】 根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、-B 、,此选项正确;C 、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.15.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B .6C .236223+--D .23225+-【答案】D【解析】【分析】 将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.17.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.18.下列根式中属最简二次根式的是()A.21a+B.12C.8D.2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式19.若x+y=2,x﹣y=3﹣222x y-的值为()A.2B.1 C.6 D.3﹣2【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=2,x﹣y=3﹣2,22()()(322)(322)x y x y x y-=+-=+-1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.mmn-有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。
初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.要使代数式有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x≤-2D.x≤2【答案】A.【解析】根据题意,得x-2≥0,解得,x≥2;故选A.【考点】二次根式有意义的条件.2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.下列各式是最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,A、=3,不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.5.下列说法正确的是()A.带根号的数都是无理数B.无理数都是无限小数C.是无理数D.无限小数都是无理数【答案】B.【解析】A、如,是有理数不是无理数,故本选项错误;B、无理数都是无限小数,故本选项正确;C、是有理数,故本选项错误;D、无限不循环小数是无理数,故本选项错误.故选B.考点: 无理数.6.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.7.已知实数满足,则代数式的值为()A.B.C.D.【答案】B【解析】由,知所以8.有一个数值转换器,原理如图所示:当输入的=64时,输出的y等于()A.2B.8C.3D.2【答案】D【解析】由图表得,64的算术平方根是8,8的算术平方根是2.故选D.9.下列计算中,正确的有()①=±2 ②=2 ③=±25 ④a=-A.0个B.1个C.2个D.3个【答案】C.【解析】A、任何数的立方根只有一个;B、负数的奇次幂是负数,负数的立方根也是负数;C、非负数的平方根有两个,且互为相反数;D、二次根式的意义可知a<0,再根据二次根式的性质求解据此作答,进行判断.A、=2,此选项错误;B、=-2,此选项错误;C、=±25,此选项正确;D、a=-故选C.【考点】1.立方根;2.平方根;3.算术平方根.10.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.11.计算:(1);(2)sin30°+cos30°•tan60°.【答案】(1);(2)2【解析】(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较13.计算:3÷的结果是()A.B.C.D.【答案】A【解析】,选A【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。
初中数学二次根式难题汇编及解析

本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;
3.下列计算正确的是( )
A. + =
B. ﹣ =﹣1
C. × =6
D. ÷ =3
【答案】D 【解析】 【分析】 根据二次根式的加减法对 A、B 进行判断;根据二次根式的乘法法则对 C 进行判断;根据 二次根式的除法法则对 D 进行判断. 【详解】 解:A、B 与 不能合并,所以 A、B 选项错误; C、原式= × = ,所以 C 选项错误; D、原式= =3,所以 D 选项正确. 故选:D. 【点睛】 本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘 除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式 的性质,选择恰当的解题途径,往往能事半功倍.
解得:x≥0 且 x≠1. 故选:B. 【点睛】 此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为 0;二 次根式的被开方数是非负数.
则阴影面积= 2 2 2 3 2 3
=2 2 22 33 =2 32 2 5
故选:D 【点睛】 本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结 合的思想解答.
19.当实数 x 的取值使得 x 2 有意义时,函数 y 4x 1中 y 的取值范围是( )
B.a≥﹣2
C.a<﹣2
【答案】B
【解析】
) D.a>﹣2
【分析】
分析已知和所求,要使二次根式 a+2 在实数范围内有意义,则其被开方数大于等于 0;
易得 a+2≥0,解不等式 a+2≥0,即得答案. 【详解】
解:∵二次根式 a+2 在实数范围内有意义,
∴a+2≥0,解得 a≥-2. 故选 B.
中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。
2023中考数学真题汇编05 二次根式(含答案与解析)

2023中考数学真题汇编·05二次根式一、单选题1.(2023·是同类二次根式的是()AB C D 2.(2023·x的取值范围是()A .x <1B .x ≤1C .x >1D .x ≥13.(2023·x 的取值范围在数轴上表示为()A .B .C .D .4.(2023·有意义,则a 的值可以是()A .1 B .0C .2D .65.(2023·辽宁大连)下列计算正确的是()A .0B .CD 266.(2023·)A .0,0a bB .0,0a bC .0,0a bD .0,0a b7.(2023·山东临沂)设m m 所在的范围是()A .5mB .54mC .43mD .3m8.(2023·山东)若代数式2x 有意义,则实数x 的取值范围是()A .2xB .0xC .2xD .0x 且2x9.(2023·天津)sin 45 )A .1BC D .210.(2023·河北)若a b ()A .2B .4C D11.(2023·湖北荆州)已知k ,则与k 最接近的整数为()A .2B .3C .4D .5二、填空题12.(2023·湖北黄冈)请写出一个正整数mm _____________.13.(2023·湖南永州)已知x在实数的范围内没有意义....的x 值是_______.14.(2023·x 应满足的条件是__________.15.(2023·x 的取值范围是__________.16.(2023·有意义,则实数x 的取值范围是______17.(2023·黑龙江绥化)若式子x有意义,则x 的取值范围是_______.18.(2023·黑龙江齐齐哈尔)在函数12y x 中,自变量x 的取值范围是______.19.(2023·江苏连云港)计算:2 __________.20.(2023·天津)计算的结果为________.21.(2023·山东聊城)计算: ______.22.(2023·上海)已知关于x2 ,则x ________三、解答题23.(2023·24.(2023·213325.(2023· 10220231 .26.(2023·四川内江)计算:2202301(1)3tan 30(3)2|2【参考答案与解析】1.【答案】C【解析】解:A 2 B不是同类二次根式,不符合题意;C是同类二次根式,符合题意;D不是同类二次根式,不符合题意;故选:C .2.【答案】D【解析】解:由题意得,x -1≥0,解得x ≥1.故选:D .3.【答案】C【解析】解:根据题意得,10x ,解得1x ,在数轴上表示如下:故选:C .4.【答案】D【解析】解:有意义,∴40a ,解得:4a ,则a 的值可以是6故选:D .5.【答案】D【解析】解:A. 1 ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C.D.26 故选:D .6.【答案】D【解析】解:根据二次根式有意义的条件,得000a b ab,0,0a b ,故选:D .7.【答案】B【解析】解:m∵∴54 ,即54m ,故选:B .8.【解析】解:∵代数式2x 有意义,∴020x x ,解得0x 且2x ,故选:D.9.【答案】B 【解析】解:222sin 45222故选:B .10.【答案】A 【解析】解:∵a b2,故选:A .11.【答案】B【解析】解:k53∵22.5=6.25,23=9∴532 ,∴与k 最接近的整数为3,故选:B .二、填空题12.【答案】8【解析】解:∴8m 要是完全平方数,∴正整数m 的值可以为8,即864m 8 ,故答案为:8(答案不唯一).13.【答案】1(答案不唯一)【解析】解:当30x 没有意义,解得3x ,x ∵为正整数,x 可取1,2,故答案为:1.14.【答案】4x 【解析】根据题意得:40x ,解得:4x ,故答案为:4x .15.【答案】9x 【解析】解:∵∴90x ,解得:9x ,故答案为:9x .16.【答案】3x 【解析】有意义,∴3030x x ≥,且,解得x 3>,故答案为:x 3>.17.【答案】5x 且0x /0x 且5x【解析】∵∴50x 且0x ,∴5x 且0x ,故答案为:5x 且0x .18.【答案】1x 且2x 【解析】解:依题意,10,20x x∴1x 且2x ,故答案为:1x 且2x .19.【答案】5【解析】解:2 5故答案为:5.20.【答案】1【解析】解:22761 故答案为:1.21.【答案】3【解析】解:333 .故答案为:3.22.【答案】18【解析】解:根据题意得,140x ,即14x ,2 ,等式两边分别平方,144x 移项,18x ,符合题意,故答案为:18.三、解答题23.【答案】24.【答案】解:原式2293 6 .25.【答案】解: 102202313211211 4 .26.【答案】解:2202301(1)3tan 30(3)2|231431231412 4 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
【答案】D
【解析】
【分析】
根据a和b的值去计算各式是否正确即可.
【详解】
A. ,错误;
B. ,错误;
C. ,错误;
D. ,正确;
故答案为:D.
【点睛】
本题考查了实数的运算问题,掌握实数运算法则是解题的关键.
18.下列运算正确的是( )
A. B.
C. D.
C、 ,不是最简二次根式;
D、 ,不是最简二次根式;
故选:A.
【点睛】
此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
20. · 的值是一个整数,则正整数a的最小值是()
A.1B.2C.3D.5
【答案】B
【解析】
【答案】B
【解析】
解:把x=﹣3代入二次根式得,原式= ,依题意得: = ,故m= .故选B.
4.已知n是一个正整数, 是整数,则n的最小值是().
A.3B.5C.15D.25
【答案】C
【解析】
【分析】
【详解】
解: ,若 是整数,则 也是整数,
∴n的最小正整数值是15,故选C.
5.下列各式计算正确的是( )
详解:A.原式= ,不符合题意;
B.原式不能合并,不符合题意;
C.原式= ,不符合题意;
D.原式=|﹣3|=3,符合题意.
故选D.
点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.
15.下列各式中,运算正确的是()
A. B. C. D.
【答案】B
【解析】
【分析】
【详解】
,
即: ,
当 时,则 ,得 ,矛盾;
当 时,则 ,得 ,符合;
当 时,则 ,得 ,符合;
当 时,则 ,得 ,符合;
当 时,则 ,得 ,矛盾;
综上, 取值范围为: ,
故选:A.
【点睛】
本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.
13.当 有意义时,a的取值范围是()
根据 =|a|, (a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.
【详解】
A、 ,故原题计算错误;
B、 =4,故原题计算正确;
C、 ,故原题计算错误;
D、2和 不能合并,故原题计算错误;
故选B.
【点睛】
此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.
16.下列计算正确的是()
最新初中数学二次根式真题汇编及答案
一、选择题
1.下列各式中,是最简二次根式的是( )
A. B. C. D.判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.
【详解】
(1)A被开方数含分母,错误.
A. B. C. D.
【答案】C
【解析】
【分析】
先判断出a-b的符号,然后解答即可.
【详解】
∵被开方数 ,分母 ,∴ ,∴ ,∴原式 .
故选C.
【点睛】
本题考查了二次根式的性质与化简: |a|.也考查了二次根式的成立的条件以及二次根式的乘法.
10.若 成立,那么a的取值范围是( )
A. B. C. D.
【详解】
∵代数式 在有意义,
∴x+3≥0,x-1≠0,
解得:x≥-3且x≠1,
故选D.
【点睛】
本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.
8.下列二次根式: 、 、 、 、 中,是最简二次根式的有( )
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据二次根式的性质解答.
【详解】
解:∵x+y=3+2 ,x﹣y=3﹣2 ,
∴ =1.
故选:B.
【点睛】
本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.
12.若 ,则 取值范围为()
A. B. C. D.
【答案】A
【解析】
【分析】
先化成绝对值,再分区间讨论,即可求解.
【答案】A
【解析】
试题解析: ,是最简二次根式;
= ,不是最简二次根式;
= ,不是最简二次根式;
=2|a| ,不是最简二次根式;
,是最简二次根式.
共有2个最简二次根式.故选A.
点睛:最简二次根式必须满足两个条件:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式.
9.把 根号外的因式移到根号内的结果为().
【答案】A
【解析】
【分析】
由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.
【详解】
得-a≥0,所以a≤0,所以答案选择A项.
【点睛】
本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.
11.若x+y=3+2 ,x﹣y=3﹣2 ,则 的值为( )
A.4 B.1C.6D.3﹣2
A.2+b=2bB. C.(2a2)3=8a5D.a6÷ a4=a2
【答案】D
【解析】
解:A.2与b不是同类项,不能合并,故错误;
B. 与 不是同类二次根式,不能合并,故错误;
C.(2a2)3=8a6,故错误;
D.正确.
故选D.
6.若x、y都是实数,且 ,则xy的值为
A.0B. C.2D.不能确定
【答案】C
根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.
【详解】
根据题意得,3a-8=17-2a,
移项合并,得5a=25,
系数化为1,得a=5.
故选:D.
【点睛】
本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.
3.当 时,二次根 式的值为 ,则m等于()
A. B. C. D.
(2)B满足条件,正确.
(3) C被开方数含能开的尽方的因数或因式,错误.
(4) D被开方数含能开的尽方的因数或因式,错误.
所以答案选B.
【点睛】
本题考查最简二次根式的定义,掌握相关知识是解题关键.
2.如果最简二次根式 与 能够合并,那么a的值为( )
A.2B.3C.4D.5
【答案】D
【解析】
【分析】
A.a≥2B.a>2C.a≠2D.a≠-2
【答案】B
【解析】
解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.
14.下列各式成立的是( )
A. B. =3
C. D. =3
【答案】D
【解析】
分析:各项分别计算得到结果,即可做出判断.
【解析】
由题意得,2x−1⩾0且1−2x⩾0,
解得x⩾ 且x⩽ ,
∴x= ,
y=4,
∴xy= ×4=2.
故答案为C.
7.若代数式 在实数范围内有意义,则实数 的取值范围是( )
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.
【答案】D
【解析】
试题分析:A. ,无法计算,故此选项错误;
B. = ,故此选项错误;
C. ,故此选项错误;
D. ,正确.
故选D.
19.下列二次根式中的最简二次根式是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据最简二次根式的概念判断即可.
【详解】
A、 是最简二次根式;
B、 ,不是最简二次根式;
【分析】
根据二次根式的乘法法则计算得到5 ,再根据条件确定正整数a的最小值即可.
【详解】
∵ · = =5 是一个整数,
∴正整数a是最小值是2.
故选B.
【点睛】
本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的加减乘除运算法则逐一计算可得.
【详解】
A、 与 不是同类二次根式,不能合并,此选项错误;
B、 = = = ,此选项正确;
C、 =(5 - )÷ =5- ,此选项错误;
D、 = ,此选项错误;
故选B
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.