2013-2014学年北京市八年级上学期期末经典题汇编数学试题(含答案)
2013-2014学年上学期期末考试(含答案)八年级数学

八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。
北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案

2018-2019学年北京市朝阳区初二(上)期末数学及答案一.选择题(共8小题,满分24分)1. 画△ABC的边AB上的高,下列画法中,正确的是()【答案】D【解析】试题分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.考点:三角形的角平分线、中线和高.2.下列各式属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.若分式的值为0,则x的值是()A. 2或﹣2B. 2C. ﹣2D. 0【答案】A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.以下图形中,不是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:A、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;B、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;C、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;D、沿任何一条直线对折后都不能重合,不是轴对称图形,故本选项正确.故选:D.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )A. ∠A>∠B>∠CB. ∠A>∠B=∠CC. ∠B>∠C>∠AD. ∠B=∠C>∠A【答案】B【解析】【分析】将∠A、∠B、∠C统一单位后比较即可.【详解】∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点睛】本题考查了度、分、秒的转化计算,比较简单,注意以60为进制即可.7.下列各式变形中,是因式分解的是()A. a2﹣2ab+b2﹣1=(a﹣b)2﹣1B. x4﹣1=(x2+1)(x+1)(x﹣1)C. (x+2)(x﹣2)=x2﹣4D. 2x2+2x=2x2(1+)【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】A选项:它的结果不是乘积的形式,不是因式分解,故是错误的;B选项:x4﹣1=(x2+1)(x+1)(x﹣1)结果是乘积形式,是因式分解,故是正确的;C选项:(x+2)(x﹣2)=x2﹣4中结果不是乘积的形式,不是因式分解,故是错误的;D选项:2x2+2x=2x2(1+)结果不是整式乘积的形式,不是因式分解,故是错误的;故选:B.【点睛】考查了因式分解的定义,理解因式分解的定义(把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式)是解题的关键。
北京市房山区2013-2014学年度第二学期期末考试八年级数学试卷(WORD版,含答案)

房山区2013—2014学年度第二学期期末考试八年级数学试卷一.选择题:(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个....是符合题意的,把“答题卡”上相应的字母处涂黑. 1.下列图形中,是中心对称图形的是A. B. C. D.2.在平面直角坐标中,点P (-3,5)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若一个多边形的内角和等于720°,则这个多边形的边数是A. 8B. 7C. 6D. 54. 在一个不透明的盒子中放有2个黄色乒乓球和4个白色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出白色乒乓球的概率为A .12 B .13 C . 23 D .165. 在函数31-=x y 中,自变量x 的取值范围是( ) A. x ≠3 B.x ≠0 C. x >3 D. x ≠-36. 正方形具有而矩形没有的性质是( )A.对角线互相平分 B . 对边相等C .对角线相等D .每条对角线平分一组对角7. 如图,函数y =a x -1的图象过点(1,2),则不等式a x -1>2的解集是 A. x <1 B. x >1 C. x <2 D. x >2PMCBBDA8.如图,矩形ABCD中,AB=1,AD=2,M是A D的中点,点P在矩形的边上,从点A出发沿DCBA→→→运动,到达点D运动终止.设APM△的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是 ( )C. D.二.填空题(本题共16分,每小题4分)9. 如图,在□ABCD中,已知∠B=50°,那么∠C的度数是.10. 已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是.11. 甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中的新手是;他们这10次射击成绩的方差的大小关系是s2甲s2乙(填“<”、“>”或“=”).12. 如图所示,在平面直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…OP n(n为正整数).那么点P6的坐标是,点P2014的坐标是 .三.解答题:(本题共30分)13.用指定的方法解下列方程:(每小题5分,本题共10分)(1)x 2+4x -1=0(用配方法) (2)2x 2-8x +3=0(用公式法)14. (本题5分)已知:如图,E 、F 是□ABCD 对角线AC 上两点,AF=CE . 求证:BE ∥DF .15. (本题5分)已知2514x x -=,求代数式()()()212111x x x ---++的值.16. (本题5分) 如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)判断四边形EFGH 是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件HGF DCBEA17. (本题5分)已知:关于x 的一元二次方程()02122=-+--m x m mx (m >0).(1)求证:方程总有两个不相等的实数根;(2)m取何整数值时,此方程的两个实数根都为整数?四.解答题(本题共21分)18. (本题5分)判断A(1,3)、B(-2,0)、C(-4,-2)三点是否在同一直线上,并说明理由.19. (本题5分)据统计,2014年3月(共31天)北京市空气质量等级天数如下表所示:(1)请根据所给信息补全统计表;(2)请你根据“2014年3月北京市空气质量等级天数统计表”,计算2014年3月空气质量等级为优和良的天数出现的频率一共是多少?(精确到0.01)(3)市环保局正式发布了北京PM2.5来源的最新研究成果,专家通过论证已经分析出汽车尾气排放是本地主要污染源.在北京市小客车数量调控方案中,将逐年增加新能源小客车的指标. 已知2014年的指标为2万辆,计划2016年的指标为6万辆,假设2014~2016年新能源小客车指标的年增长率相同且均为x,求这个年增长率x. (参考数据:≈2≈.1≈414,),≈,.23.244923665732.120. (本题5分)已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程x2-5x+4=0的两个根,点C在y轴正半轴上,且OB=2OC.(1)试确定直线BC的解析式;(2)求出△ABC的面积.DCBADCBA DCBAOEDHCGBFA21. (本题6分)如图,正方形ABCD的两条对角线把正方形分割成四个等腰直角三角形,将这四个三角形分别沿正方形ABCD的边向外翻折,可得到一个新正方形EFGH.请你在矩形ABCD中画出分割线,将矩形分割成四个三角形,然后分别将这四个三角形沿矩形的边向外翻折,使得图1得到菱形,图2得到矩形,图3得到一般的平行四边形(只在矩形ABCD中画出分割线,说明分割线的作法,不画出翻折后的图形).图 1 图 2 图3五.解答题(本题共21分)22. (本题6分)如图,直线5+-=xy分别与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;(3)请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在平面直角坐标系中作出图形,并求出点N的坐标.23. (本题7分)如图所示,在□ABCD 中,BC =2AB ,点M 是AD 的中点,CE ⊥AB 于E ,如果∠AEM =50°,求∠B 的度数.MDCBE A24. (本题8分)直线434+-=x y 与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图所示放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线m x y +=经过点C ,交x轴于点E .①请直接写出点C 、点D 的坐标,并求出m 的值;②点P (0,)是线段OB 上的一个动点(点P 不与0、B 重合),经过点P 且平行于x 轴的直线交AB 于M 、交CE 于N.设线段MN 的长度为d ,求d 与之间的函数关系式(不要求写自变量的取值范围);③点P (0,)是y 轴正半轴上的一个动点,为何值时点P 、C 、D 恰好能组成一个等腰三角形?房山区2013—2014学年度第二学期终结性试卷参考答案和评分参考八年级数学一、选择题(本题共32分,每小题4分)1.A2.B3.C4.C 5.A 6.D 7.B 8.A二、填空题(本题共16分,每小题4分)9. 130° 10. 20 11. 乙 ;s2甲< s 2乙 (此题每空2分)12. (0,-64)或(0,-26) ;(0,-22014)(此题每空2分)三、解答题(本题共30分,每小题5分)13.(1)解: 142=+x x ……………………………1分5442=++x x ……………………………2分()522=+x ……………………………3分52±=+x ……………………………4分521+-=x 522--=x ……………………………5分(2) 解: 3,8,2=-==c b a ……………………………1分ac b 42-=∆∴()32482⨯⨯--=40=>0 ……………………………2分 代入求根公式,得()4102822408242±=⨯±--=-±-=a ac b b x ……………………………4分 ∴方程的根是2104,210421-=+=x x ……………………………5分14.证明:∵□ABCDHGFDCBEA∴AB ∥DC, AB=CD ……………………………2分 ∴∠BAE=∠DCF ……………………………3分 在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠=CF AE DCF BAE CD AB ∴△ABE ≌ △CDF ……………………………4分 ∴BE =DF ……………………………5分15.解:原式=()11212222+++-+--x x x x x ……………………………2分=11213222+---+-x x x x ……………………………3分 =152+-x x ……………………………4分∵1452=-x x∴原式=15 ……………………………5分16.(1)四边形EFGH 是平行四边形 ;……………………………1分证明: 在△ACD 中 ∵G 、H 分别是CD 、AC 的中点,∴GH ∥AD ,GH=21AD 在△ABC 中 ∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD ,EF=21AD ……………………………2分 ∴EF ∥GH ,EF=GH ……………………………3分 ∴四边形EFGH 是平行四边形. ………………………4分……………………………5分17.解:(1) ()2,12,-=--==m c m b m aac b 42-=∆∴()[]()24122----=m m mm m m m 8448422+-+-=4=>0……………………………1分∴此方程总有两个不等实根……………………………2分(2) 由求根公式得mm m x x 212,121-=-==……………………………3分 ∵方程的两个根均为整数且m 是整数 ∴m 2-1是整数,即m2是整数 ∵m >0 ∴m =1或2……………………………5分FE FEADCBADCBBCDA18.解:设A (1,3)、B (-2,0)两点所在直线解析式为b kx y +=∴⎩⎨⎧+-=+=b k bk 203…………………1分解得⎩⎨⎧==21b k ……………………………3分∴2+=x y ……………………………4分 当=x -4时,2-=y∴点C 在直线AB 上,即点A 、B 、C 三点在同一条直线上.……………5分19.(1) 3 ……………………………1分(2) (5+11)÷31≈0.52,∴空气质量等级为优和良的天数出现的频率一共是0.52…………………………2分 (3)列方程得:()6122=+x ,…………………………3分解得311+-=x ,3-12-=x (不合题意,舍去)…………………4分 ∴732.0≈x 或2.73≈x %答:年增长率为73.2% …………………………5分20.解: (1) ∵OA 、OB 的长是方程x 2-5x +4=0的两个根,且OA <OB ,解得1,421==x x …………………………1分∴OA =1,OB=4∵A 、B 分别在x 轴正半轴上,∴A (1,0)、B (4,0)…………………………2分 又∵OB =2OC ,且点C 在y 轴正半轴上 ∴OC =2,C (0,2)…………………………3分 设直线BC 的解析式为b kx y +=∴⎩⎨⎧=+=b b k 240,解得⎪⎩⎪⎨⎧=-=221b k∴直线BC 的解析式为221-+=x y …………………………4分 (2)∵A (1,0)、B (4,0) ∴AB =3∵OC =2,且点C 在y 轴上 ∴3232121=⨯⨯=⋅=∆OC AB S ABC…………………………5分21.图1 图2 图3得到菱形的分割线做法:联结矩形ABCD 的对角线AC 、BD (把原矩形分割为四个全等的等腰三角形);得到矩形的分割线做法:联结矩形ABCD 的对角线BD ,分别过点A 、C 作AE ⊥BD 于E ,CF ⊥BD 于F (把原矩形分割为四个直角三角形);得到平行四边形的分割线做法:联结矩形ABCD 的对角线BD ,分别过点A 、C 作AE ∥CF ,分别交BD 于E 、 F (把原矩形分割为四个三角形).每图分割线画法正确各1分,每图分割线作法叙述基本正确各1分,共6分. 22. 解:(1) ∵直线5+-=x y 分别与x 轴、y 轴交于A 、B 两点令0=x ,则5=y ;令0=y ,则5=x∴点A 坐标为(5,0)、点B 坐标为(0, 5);…………………………2分 (2) 点C 关于直线AB 的对称点D 的坐标为(5,1)…………………………3分 (3)作点C 关于y 轴的对称点C ′,则C ′的坐标为(-4,0)联结C ′D 交AB 于点M ,交y 轴于点N ,…………………………4分 ∵点C 、C ′关于y 轴对称 ∴NC = NC ′,又∵点C 、D 关于直线AB 对称,∴CM=DM ,此时,△CMN 的周长=CM+MN+NC= DM +MN+ NC ′= DC ′周长最短;设直线C ′D 的解析式为b kx y +=∵点C ′的坐标为(-4,0),点D 的坐标为(5,1)∴⎩⎨⎧+=+=b k b k 4-051,解得⎪⎪⎩⎪⎪⎨⎧==9491b k ∴直线C ′D 的解析式为9491+=x y ,…………………………5分 与y 轴的交点N 的坐标为 (0,94) …………6分23.解:联结并延长CM ,交BA 的延长线于点N∵□ABCD∴AB ∥CD, AB=CD …………………1分∴∠NAM=∠D∵点M 是的AD 中点,∴AM=DM在△NAM 和△CDM 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠DMC AMN DMAM DNMA ∴△NAM ≌ △CDM ……………………2分∴NM=CM,NA=CD …………………………4分∵AB=CD∴NA= AB, 即BN=2AB∵BC=2AB ∴BC= BN, ∠N=∠NCB …………………………5分∵CE ⊥AB 于E,即 ∠NEC=90°且NM=CM∴EM=21NC=NM …………………………6分 ∴∠N=∠NEM =50°=∠NCB∴∠B=80° …………………………7分24. 解:(1)点C 的坐标为(-5,4),点D 的坐标为(-2,0)…………………………2分∵直线m x y +=经过点C ,∴=m 9 …………………………3分(2) ∵MN 经过点P (0,t )且平行于x 轴∴可设点M 的坐标为(t x M ,),点N 的坐标为(t x N ,)…………………………4分D∵点M 在直线AB 上,直线AB 的解析式为434+-=x y , ∴t 434+-=M x ,得343+-=t x M 同理点N 在直线CE 上,直线CE 的解析式为9+=x y ,∴t 9+=N x ,得9-t x N =∵MN ∥x 轴且线段MN 的长度为d , ∴()1247-9-343+=-+-=-=t t t x x d N M …………………………5分(3) ∵直线AB 的解析式为434+-=x y ∴点A 的坐标为(3,0),点B 的坐标为(0,4)AB=5∵菱形ABCD∴AB=BC=CD=5∴点P 运动到点B 时,△PCD 即为△BCD 是一个等腰三角形,此时t =4;…………………………6分∵点P (0,t )是y 轴正半轴上的一个动点,∴OP =t ,PB =4-t∵点D 的坐标为(-2,0)∴OD=2,由勾股定理得22224t OP OD PD +=+=同理,()2222425-+=+=t BP BC CP 当PD=CD=5时, 224t PD +==25,∴21=t (舍负)…………………7分当PD=CP 时,PD 2=CP 2, 24t +()2425-+=t ∴t 837=……………………8分综上所述,t =4,21=t ,t 837=时,△PCD 均为等腰三角形. 备注:此评分标准仅提供一种解法,其他解法仿此标准酌情给分。
(中学教材全解)2013-2014学年八年级数学上学期期末检测题 冀教版

期末检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.若y x 3=则222272)(yxy x y xy y x ++-+-的值为( ) A.0 B.21C. 319D.12.下列二次根式中,化简后能与2合并的是( ) A.21B. C. D. 3.如图,每个小正方形的边长为1,那么△的三边长的大小关系为( ) A. B. C. D.4.如图,在△中,,∠∠∠∠∠则∠( )A. B. C. D.5.下列计算正确的是( ) A.822-=B.27129413-=-=C.(25)(25)1-+=D.62322-= 6.若,则的立方根是( ) A B. C. D. 7.16的算术平方根和25的平方根的和是( ) A. B. C. D.8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③的算术平方根是;④的算术平方根是;⑤算术平方根不可能是负数.其中,不正确的有( )A.2个B.3个C.4个D.5个 9.设-1,在两个相邻整数之间,则这两个整数是( )A.1和2B.2和3C.3和4D.4和510.将△的三个顶点的横坐标都乘,纵坐标不变,则所得图形( )A.与原图形关于轴对称B.与原图形关于轴对称C.与原图形关于原点对称D.向轴的负方向平移了一个单位11.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA12.直角三角形两直角边的和为7,面积为6,则斜边长为( ) A. B. C. D.二、填空题(每小题3分,共24分)13.1)(2________. 14.若分式2102a a a -=+-,则____________.15.如图,在△中,,是∠的平分线,,∠,则 ∠______.16.如图是一个艺术窗的一部分,所有的四边形都是正方形,三角形是直角三角形,其中最大正方形的边长为,则正方形A ,B 的面积和是_________. 17.如果一个正数的平方根是与,则这个正数是______. 18.当时,=___________.19.已知0113=-++b a ,则________.20.若实数y x ,2(0y =,则xy 的值为 . 三、解答题(共60分) 21.(5分)如图,在△中,垂直平分线段,,△的周长为,求△的周长.22.(5分)如图,已知等腰△的周长是,底边上的高的长是,求这个三角形各边的长.23.(5分)用反证法证明:等腰三角形两底角必为锐角. 24.(5分)比较与的大小. 25.(8分)计算:(1) E A C DB第21题图第22题图 第11题图(2).26.(8分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)n n ++11(n 为正整数)的值.(3⋅⋅⋅+27.(8分)已知,a b 为等腰三角形的两条边长,且,a b 满足4b =,求此三角形的周长.28.(6分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC . 求证:(1)EC =BF ;(2)EC ⊥BF.29.(10分) 如图所示,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,DE ⊥AB 交AB 于E ,F 在AC 上,BD =DF . 求证:(1)CF =EB ;(2)AB =AF +2EB.第29题图 第28题图期末检测题参考答案1.C 解析:()().31931937332372)(2222222222==+⋅⨯+-⋅⨯+-=++-+-y y yy y y y y y y y y xy x y xy y x 2.A 解析:因为,55512.0,5220不能再化简,22,2221====所以只有A 项化简后能与2合并.故选A. 3.C 解析:因为,,, 所以.故选C . 4.D 解析:因为,∠所以, 所以所以 因为∠∠所以所以,所以所以∠,故选D.5. 解析:,故正确;错误;,故B 333323331227=-=-()()()错误;,故C 15452525222-=-=-=+-.D 1232226226错误,故-=-=- 6.A 解析:负数的立方根是负数,任意一个数的立方根都可表示成,故选A.7.C 解析:因为16的算术平方根是4,25的平方根是±5,所以16的算术平方根和25的平方根的和为.8.C 解析:负数没有算术平方根,故①不正确;0的算术平方根是0,故②不正确; 可能是负数,如果是负数,则不成立,故③不正确;是负数,一个非负数的算术平方根是非负数,故④不正确;⑤正确.9.C 解析:∵∴故选C. 10.A 解析:根据轴对称的性质,知将△的三个顶点的横坐标都乘,就是把横坐标变成其相反数,纵坐标不变,因而是把三角形的三个顶点以轴为对称轴进行轴对称变换.所得图形与原图形关于轴对称.故选A .11. D 解析:∵ △ABC 和△CDE 都是等边三角形, ∴ BC =AC ,CE =CD ,∠BCA =∠ECD =60°,∴ ∠BCA +∠ACD =∠ECD +∠ACD ,即∠BCD =∠ACE , ∴ 在△BCD 和△ACE 中,∴ △BCD ≌△ACE (SAS ),故A 成立. ∵ △BCD ≌△ACE ,∴ ∠DBC =∠CAE . ∵ ∠BCA =∠ECD =60°,∴ ∠ACD =60°. 在△BGC 和△AFC 中,∴ △BGC ≌△AFC ,故B 成立.∵ △BCD ≌△ACE ,∴ ∠CDB =∠CEA ,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立.故选D.12.A 解析:设直角三角形的两条直角边的长分别为斜边长为,则,所以,所以13.2解析:14.1 解析:由题意,得所以当时,分式无意义,舍去;当时,所以所以15.解析:因为,∠,所以∠.因为是∠的平分线,所以∠因为,所以∠所以∠16.25解析:设正方形A的边长为正方形B的边长为则,所以.17.49 解析:由一个正数的两个平方根互为相反数,知,解得,所以这个正数的平方根是,这个正数是.18.解析:当时,19.解析:由,得,所以.20.23解析:由题意知21.解:因为垂直平分线段,所以,.因为,所以,所以.因为△的周长为,所以,所以,故△的周长为.22.解:设,由等腰三角形的性质,知.由勾股定理,得,即,解得,所以,.23.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角24.解:因为所以. 所以,所以.25.解:(1)224525292145051183-+=-+2822229=-+=. (2)1217125134519169161=+=⨯+=⨯++=.26.解:(1)671+1(76)(76)(76)⨯-=+-=76-.(2)1(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)122334989999100+++⋅⋅⋅+++++++27.解:由题意可得即所以3a =,332364b =-⨯-4=. 当腰长为3时,三角形的三边长为,周长为10; 当腰长为4时,三角形的三边长为,周长为11.28. 证明:(1)∵ AE ⊥AB ,AF ⊥AC ,∴ ∠EAB =90°=∠FAC , ∴∠EAB +∠BAC =∠FAC +∠BAC .又∵ ∠EAC =∠EAB +∠BAC ,∠BAF =∠FAC +∠BAC .∴ ∠EAC =∠BAF . 在△EAC 与△BAF 中,∴ △EAC ≌△BAF. ∴ EC =BF.(2)∵ ∠AEB +∠ABE =90°,又由△EAC ≌△BAF 可知∠AEC =∠ABF ,∴ ∠CEB +∠ABF +∠EBA =90°,即∠MEB +∠EBM =90°,即∠EMB =90°,∴ EC ⊥BF . 29. 证明:(1)∵ AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴ DE =DC . 又∵ BD =DF ,∴ Rt△CDF ≌Rt△EDB (HL ),∴ CF =EB . (2)∵ AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴ △ADC ≌△ADE ,∴ AC =AE ,∴ AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .。
2013-2014学年八年级数学上学期期末复习试题 (新人教版 第6套)

天津学大教育信息咨询有限公司2013-2014学年八年级上学期期末复习数学试题 新人教版一、选择题(每题3分)1.在以下四个图形中,对称轴条数最多的一个图形是( )A. B. C. D.2.点(1,-2)关于原点的对称点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(1,-2)3.到三角形三个顶点距离相等的点是( )A .三角形三条角平分线的交点B .三角形的三条中线的交点C .三角形三边垂直平分线的交点D .三角形三条高线的交点4.下列运算中,计算结果正确的是( )A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a +=5.在△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A .30°B .36°C .45°D .70°6.若分式2a a b+中的a 、b 的值同时扩大到原来的10倍,则分式的值( ). A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变 7.解分式方程2x 23x 11x ++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231 x -+=-D .()()2x 23x 1-+=-8.如图所示,在△ABC 中,AB =AC ,∠ABC、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD≌CBE; ②△BAD≌△BCD; ③△BDA≌△CEA;④△BOE≌COD; ⑤△ACE≌△BCE,上述结论一定正确的是( )A .①②③ B.①③④ C.①③⑤ D.②③④9.若20 10a b b c ==,,则a b b c++的值为( ). (A )1121 (B )2111 (C )11021 (D )2101110.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足【 】A .a=52bB .a=3bC .a=72b D .a=4b二、填空题(每题3分)11.如果分式33x x --的值为1,则x 的取值范围为________________. 12.在实数范围内分解因式:226x -=________________.13.如图,∠ACD 是△ABC 的外角,若∠ACD=135°,∠A=75°,则∠B= 度;14.已知△ABC ≌△DEF ,△ABC 的周长为100cm ,DE =30cm ,DF =25cm ,那么BC =_______.15.若7m n +=,11mn =,则22m mn n -+的值是________. 16.化简:22x 4x 4x x 4x 2++-=-- . 17.△ABC 中,点 A 、B 、C 坐标为(0,1),(3,1),(4,3),如果要使△ABD 与△ABC 全等,18.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当ODP △是腰长为5的等腰三角形时,点P 的坐标为 。
北京市昌平区2013-2014学年八年级上期末质量抽测数学试题及答案

昌平区2013-2014学年第一学期初二年级期末质量抽测数学试卷 (120分,120分钟) 2014.1考生须知1.本试卷共4页,共五道大题,25个小题,满分120分.考试时间120分钟. 2.在答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的. 1.下面所给的图形中, 不是轴对称图形的是ABCD2.下列运算正确的是 A .236x x x =÷ B .()523x x= C .()22263y x xy = D . 24322y x xy y x =⋅3.点P (2,-3)关于y 轴的对称点是 A .(2,3) B .(2,-3) C .(-2,3) D .(-2,-3)4.下列各式由左边到右边的变形中,属于分解因式的是A .b a b a 33)(3+=+B .9)6(962++=++x x x x C .)(y x a ay ax -=- D .22(2)(2)a a a -=+- 5. 若分式21-+x x 的值为0,则x 的值为 A .﹣1 B .0 C .2 D .﹣1或26. 下列各式中,正确的是A . 22x y x y-++=- B .222()x y x y x y x y --=++ C .1a b b ab b ++= D . 23193x x x -=-- 7. 如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D .若BC =4cm ,BD=5cm ,则点D 到AB 的距离是A .5cmB .4cmC .3cmD .2cmCDBA8.如图,从边长为a +1的正方形纸片中剪去一个边长为a ﹣1的正方形(a >1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是a-1a +1A . 2B .2a C .4a D . a 2﹣1二、填空题(共4道小题,每小题4分,共16分) 9.二次根式2+x 中,x 的取值范围是 .10.等腰三角形两边长分别为6和8,则这个等腰三角形的周长为 . 11.已知2a b -=,那么224a b b --的值为 .12.如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP;再过1P 作121OP P P ⊥且21P P =1,得32=OP;又过2P 作232OP P P ⊥且132=P P ,得=3OP 2;…;依此继续,得=2012OP ,=n OP (n 为自然数,且n >0).三、解答题(共6 道小题,每小题5分,共 30 分) 13.计算:22783-+--()25-.14.分解因式:ax 2–2ax + a .15.计算:x y x y y x x ⎛⎫+-÷⎪⎝⎭.16.已知:如图,C 是线段AB 的中点,∠A =∠B ,∠ACE =∠BCD .求证:AD =BE .P 4P 3P 2PP 1OED BC A17.解方程:212xx x +=+.18.已知x 2=3,求(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2的值.四、解答题(共 4 道小题,每小题5分,共 20 分)19.如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.20.如图1,已知三角形纸片ABC ,AB =AC ,∠A = 50°,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,求∠DBC 的大小.21.甲、乙两人分别从距目的地6公里和12公里的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前10分钟达到目的地.求甲、乙的速度.图2(A )A B C D E图1A BC方法一方法二22.已知:如图,在△ABC 中,AD 平分∠BAC ,CD ⊥AD 于点D ,∠DCB=∠B ,若AC=10,AB=26,求AD 的长.五、解答题(共3道小题,23,24小题每题7分,25小题8分,共 22 分) 23.如图,四边形ABCD 中,AD =2,∠A =∠D = 90°,∠B = 60°,BC =2CD . (1)在AD 上找到点P ,使PB +PC 的值最小.保留作图痕迹,不写证明; (2)求出PB +PC 的最小值.24.如图,AD 是△ABC 的角平分线,点F ,E 分别在边AC ,AB 上,且FD =BD . (1)求证∠B +∠AFD =180°;(2)如果∠B +2∠DEA =180°,探究线段AE ,AF ,FD 之间满足的等量关系,并证明.25.已知A (-1,0),B (0,-3),点C 与点A 关于坐标原点对称,经过点C 的直线与y 轴交于点D ,与直线AB 交于点E .(1)若点D ( 0,1), 过点B 作BF ⊥CD 于F ,求∠DBF 的度数及四边形ABFD 的面积; (2)若点G (G 不与C 重合)是动直线CD 上一点,点D 在点(0,1)的上方,且BG =BA ,试探究∠ABG 与∠ECA 之间的等量关系.ABC D ABCDAC B ED F 备用图xOyxOy昌平区2013—2014学年第一学期初二年级质量监控数学试卷参考答案及评分标准 2014.1一、选择题(共8个小题,每小题4分,共32分)题 号 12345678答 案BDDCABCC二、填空题(共4个小题,每小题4分,共16分)题 号 9 101112答 案x ≥-220或2242013,1+n三、解答题(共6 道小题,每小题5分,共 30 分)13.解:原式=1-23-22+ ……………………………………………… 4分 =4-23. ……………………………………… 5分 14.解:原式=a (x 2-2x +1) ………………………………………… 2分 =a (x -1)2. ………………………………………………… 5分15.解:原式=y x xxy y xy x +⨯⎪⎪⎭⎫ ⎝⎛-22 ……………………………………… 2分= yx xxy y x +⨯-22 ……………………………………… 3分 =yx xxy y x y x +⨯-+))(( …………………………………………… 4分 =yyx -. …………………………………… 5分 16.证明:∵ C 是线段AB 的中点,∴ AC =BC . ……………………… 2分 ∵ ∠ACE =∠BCD ,∴ ∠ACD =∠BCE . ……………………………………… 3分 ∵ ∠A =∠B ,∴ △ADC ≌△BEC . ……………………… 4分 ∴ AD = BE . ……………………………………………………………… 5分EDBC A17.解: 2(x +2)+x (x +2)=x 2………………………………………………………… 2分 2x +4+x 2+2x =x 24x =-4. …………………………………………………………… 3分 x =-1. ……………………………………………………… 4分经检验x =-1是原方程的解. ………………………………………… 5分 ∴ 原方程的解为x =-1.18.解:原式=4x 2-9-4x 2+4x +x 2-4x +4 ……………………… 3分=x 2-5. ……………………………………… 4分当x 2=3时,原式=3-5=-2. ………………………………… 5分四、解答题(共 4 道小题,每小题5分,共 20 分) 19.解:画出一种方法,给2分,画出两种方法给5分.20.解:∵ △ABC 中,AB =AC ,∠A = 50°,∴ ∠ABC =∠C=6 5°. ……………… 2分 由折叠可知:∠ABD =∠A=50°. ……………… 4分 ∴ ∠DBC=6 5°-50°=15°. ……………… 5分21.解:设甲、乙两人的速度分别为每小时3x 千米和每小时4x 千米. ………………………… 1分根据题意,得6112364x x+=. ……………………………… 3分 解这个方程,得 x =6. ……………………………… 4分 经检验:x =6是所列方程的根,且符合题意. ∴ 3x =18,4x =24.答:甲、乙两人的速度分别为每小时18千米和每小时24千米. ……………… 5分 22.解:如图,延长CD 交AB 于点E . ……………… 1分∵ AD 平分∠BAC ,CD ⊥AD 于点D , ∴ ∠EAD = ∠CAD ,∠ADE=∠ADC =90°. ∴ ∠AED=∠ACD . ……………… 2分 ∴ AE=AC . ∵ AC=10,AB=26,∴ AE=10,BE=16. ……………… 3分方法一方法二图2(A )AB CD E图1AB C DCBAE∵ ∠DCB=∠B , ∴ EB= EC=16. ∵ AE= AC ,CD ⊥AD ,∴ ED= CD=8. ……………………………………………… 4分 在Rt △ADC 中,∠ADC =90°,∴22AD AC CD =-=22108-=6. ……………………………………… 5分五、解答题(共3道小题,23,24小题每题7分,25小题8分,共 22 分)23.解:(1)如图,延长CD 到点E 使DE =CD ,连接BE 交AD 于点P . ……………… 2分PB +PC 的最小值即为BE 的长.(2)过点E 作EH ⊥AB ,交BA 的延长线于点H . ∵ ∠A =∠ADC = 90°,∴ CD ∥AB .∵ AD =2, ∴ EH =AD =2. ……………… 4分 ∵ CD ∥AB , ∴ ∠1=∠3.∵ BC =2CD ,CE=2CD , ∴ BC = CE . ∴ ∠1=∠2. ∴ ∠3=∠2.∵ ∠ABC = 60°,∴ ∠3=30°. ……………… 6分 在Rt △EHB 中,∠H =90°,∴ BE =2HE =4. ………………………………………………… 7分 即 PB +PC 的最小值为4.24.解:(1)在AB 上截取AG =AF .∵AD 是△ABC 的角平分线, ∴∠FAD =∠DAG . 又∵AD =AD , ∴△AFD ≌△AGD .∴∠AFD =∠AGD ,FD =GD .∵FD =BD , ∴BD=GD , ∴∠DGB=∠B ,∴∠B+∠AFD=∠DGB+∠AGD=180°. ………………………………………………… 4分 (2)AE = AF +FD . ………………………………………………… 5分过点E 作∠DEH=∠DEA ,点H 在BC 上. ∵∠B +2∠DEA =180°, ∴∠HEB =∠B .H FD E B CAG 321H P E D C B A∵∠B+∠AFD=180°, ∴∠AFD =∠AGD =∠GEH , ∴GD ∥EH .∴∠GDE =∠DEH =∠DEG . ∴GD =GE . 又∵AF =AG ,∴AE =AG +GE =AF +FD . ………………………………………………… 7分 25.解:(1)如图1,依题意,C (1,0),OC =1.由D (0,1),得OD =1.在△DOC 中,∠DOC =90°,OD =OC =1.可得 ∠CDO =45°. …………………1分 ∵ BF ⊥CD 于F ,∴ ∠BFD =90°.∴ ∠DBF =90°-∠CDO =45°. …………………2分 ∴ FD =FB 。
北京市东城区(南片)2013-2014学年八年级上学期期末考试数学试题(WORD版)

北京市东城区(南片)2013-2014学年上学期初中八年级期末考试数学试卷一、选择题(共10小题,每小题3分,共30分,在每小题列出的四个选项中,选出符合要求的一项)1. 下面所给的交通标志图中是轴对称图形的是2. 下列运算正确的是 A. 734)(a a =B. 236a a a =÷C. 3336)2(b a ab =D. 1055a a a -=⋅-3. 从长度分别为5cm ,10cm ,15cm ,20cm 的四根木条中,任取三根可组成三角形的个数是 A. 1个B. 2个C. 3个D. 4个4. 到三角形三条边的距离都相等的点是这个三角形的 A. 三条中线的交点 B. 三条高的交点 C. 三条角平分线的交点 D. 三条边的垂直平分线的交点5. 25)4(31222÷-⨯的运算结果是A. 215B. 1023 C.523D. 1023-6. 若等腰三角形的两边长分别是4和10,则它的周长是 A. 18B. 24C. 18或24D. 147. 如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为 A. 6B. 7C. 8D. 98. 若分式0392=+-x x ,则x 的值是 A. 3±B. 3C. -3D. 09. 如图1,直线m 表示一条河,M ,N 表示两个村庄,欲在m 上的某处修建一个给水站,向两个村庄供水,现有如下四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是10. 如图,是一组按照某种规则摆放成的图案,则按此规则摆成的第5个图案中三角形的个数是A. 8B. 9C. 16D. 17二、填空题(共10小题,每小题3分,共30分) 11. 分解因式:=+-x xy xy 442____________。
12. 若1+x 有意义,则x 的取值范围是___________。
13. 在ABC ∆中,︒=∠90ACB ,AB=8cm ,︒=∠30A ,D 为斜边AB 的中点,连接CD ,则CD 的长度为__________。
2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二年级期末压轴题讲解1.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一边在AD 的右侧作△ADE ,使AE =AD ,∠DAE=∠BAC ,连接CE .设∠BAC =α,∠DCE =β.(1)如图⑴,点D 在线段BC 上移动时,角α与β之间的数量关系是 ;证明你的结论;(2)如图⑵,点D 在线段BC 的延长线上移动时,角α与β之间的数量关系是 ,请说明理由;(3)当点D 在线段BC 的反向延长线上移动时,请在图⑶中画出完整图形并猜想角α与β之间的数量关系是 .图⑴图⑵图⑶AD C EBBCAAD C EB2.已知:如图,在平面直角坐标系xOy 中,(2,0)A -,(0,4)B ,点C 在第四象限,AC ⊥AB , AC=AB . (1)求点C 的坐标及∠COA 的度数;(2)若直线BC 与x 轴的交点为M ,点P 在经过点C 与x 轴平行的直线上,直接写出BOM POM S S ∆∆+的值.解:(1)(2)BOM POM S S ∆∆+的值为 .3.已知:如图,Rt △ABC 中,∠BAC=90︒.(1)按要求作图:(保留作图痕迹)①延长BC 到点D ,使CD=BC ; ②延长CA 到点E ,使AE=2CA ;③连接AD ,BE 并猜想线段 AD 与BE 的大小关系; (2)证明(1)中你对线段AD 与BE 大小关系的猜想. 解:(1)AD 与BE 的大小关系是 .(2)证明:4.(7分)已知:如图,△ABC 是等腰直角三角形,∠BAC =90°,过点C 作BC 的垂线l ,把一个足够大的三角板的直角顶点放到点A 处(三角板和△ABC 在同一平面内),绕着点A 旋转三角板,使三角板的直角边AM 与直线BC 交于点D ,另一条直角边AN 与直线l 交于点E . (1)当三角板旋转到图1位置时,若AC =2,求四边形ADCE 的面积; (2)在三角板旋转的过程中,请探究∠EDC 与∠BAD 的数量关系,并证明.lBAC备用图EDCBA图1lNM5.如图1,在△ABC 中,∠ACB =2∠B ,∠BAC 的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l ⊥AO 于H ,分别交直线AB 、AC 、BC 、于点N 、E 、M . (1)当直线l 经过点C 时(如图2),求证:BN =CD ;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.D NEMAB CHlDN(E)(M)ABC Hl(1)证明:(2)当M 是BC 中点时,CE 和CD 之间的等量关系为_________________________. 证明:(3)请你探究线段BN 、CE 、CD 之间的等量关系, 并直接写出结论.6. 如图,在△ABC 中,AB =AC ,108A ∠=°,请你在图中,分别用两种不同方法,将△ABC 分割成四个小三角形,使得其中两个是全等..的不等边三角形......(不等边三角形指除等腰三角形以外),而另外两个是不全等...的等腰三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数,在每个等腰三角形中标出相等两底角度数(画图工具不限,不要求证明,不要求写出画法,但要保留作图痕迹,若经过图形变换后两个图形重合,则视为同一种方法).备用图DABCO备用图DABCOA B C AB C7.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都 可化为带分数,如:86222223333+==+=. 我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于 分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:()12121111x x x x x +--==-+++; 再如:22111(1)1111x x x )x x x x -++-+==---(111x x =++-. 解决下列问题:(1)分式2x是 分式(填“真分式”或“假分式”); (2)假分式12x x -+可化为带分式 的形式;(3)如果分式211x x -+的值为整数,那么x 的整数值为 .8.在△ABC 中,AB=AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段CB 上,且∠BAC =90°时,那么∠DCE = ▲ 度; (2)设∠BAC =α,∠DCE =β.① 如图2,当点D 在线段CB 上,∠B AC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;② 如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接..写出此时α与β之间的数量关系(不需证明).解:(1)∠DCE = 度;(2)结论:α与β之间的数量关系是 ;证明:BD CAED ED AB C C B A图1图2图3(3)结论:α与β之间的数量关系是 .9.已知:四边形ABED 中,AD ⊥DE 、BE ⊥DE .(1) 如图1,点C 是边DE 的中点,且AB=2AD=2BE .判断△ABC 的形状: (不必说明理由);(2) 保持图1中△ABC 固定不变,将直线DE 绕点C 旋转到图2中所在的MN 的位置(垂线段AD 、BE 在直线MN 的同侧).试探究...线段AD 、BE 、DE 长度之间有什么关系?并给予证明; (3) 保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(垂线段AD 、BE 在直线MN 的异侧).⑵中结论是否依然成立,若成立请证明;若不成立,请写出新的结论,并给予证明.10. 阅读材料1:对于两个正实数,a b ,由于()02≥-ba ,所以()()0222≥+⋅-b b a a ,即02≥+-b ab a ,所以得到ab b a 2≥+,并且当a b =时,2a b ab +=.阅读材料2:若0x >,则22111x x x x x x x+=+=+,因为10,0x x >>,所以由阅读材料1可得,ABCDEABC DEMNMNABCDE 图1图2图32121=⋅≥+xx x x ,即21x x +的最小值是2,只有1x x =时,即1x =时取得最小值. 根据以上阅读材料,请回答以下问题:(1)比较大小:21x + 2x (其中1x ≥); 1x x+2-(其中1x <-) (2)已知代数式2331x x x +++变形为11x n x +++,求常数n 的值;(3)当x = 时,133+++x xx 有最小值,最小值为 . (直接写出答案)11.在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,ACE ∠=90°, 则线段AE 、AB 、DE 的长度满足的数量关系为;(直接写出答案)(2)如图(2),AC 平分BAE ∠, EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明;12.已知:如图,在△ABC 中,AD 平分∠BAC ,CD ⊥AD 于点D ,∠DCB=∠B ,若AC=10,AB=26,求AD 的长.EDC BA图(2)EDC BA图(1)ABCD13. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.14. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.BAOl15. 请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+ AD =2CD.小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图116.(本题5分) 如图,在△ABC 中,∠BAC=60°,∠ACB=40°,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线. 求证:(1)BQ = CQ ; (2) BQ+AQ=AB+BP. 证明: (1) (2)17.(本题7分) 在△ABC 中,∠BAC=90°,AB=AC ,点D 是线段BC 上的一个动点(不与点B 重合).DE ⊥BE 于E ,∠EBA=21∠ACB ,DE 与AB 相交于点F . (1)当点D 与点C 重合时(如图1),探究线段BE 与FD 的数量关系,并加以证明;(2)当点D 与点C 不重合时(如图2),试判断(1)中的猜想是否仍然成立,请说明理由.PQBCA18.如图,在直角△ABC 中, ∠ACB=90,CD ⊥AB,垂足为D,点E 在AC 上,BE 交CD 于点G,EF ⊥BE交AB 于点F,若AC=BC,CE=EA.试探究线段EF 与EG 的数量关系,并加以证明.答:EF 与EG 的数量关系是 . 证明:19.在平面直角坐标系xoy 中,等腰三角形ABC 的三个顶点A (0,1),点B 在x 轴的正半轴上,∠ABO =30°,点C 在y 轴上.(1)直接写出点C 的坐标为 ;(2)点P 关于直线AB 的对称点P ′在x 轴上,AP =1,在图中标出点P 的位置并说明理由; (3)在(2)的条件下,在y 轴上找到一点M ,使PM +BM 的值最小,则这个最小值为.20.解决下面问题:如图,在△ABC 中,∠A 是锐角,点D ,E 分别在AB , AC 上,且12DCB EBC A ∠=∠=∠,BE 与CD 相交于 点O ,探究BD 与CE 之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC 是等腰三角形,那么在给定一组对应条件,如图a ,BE ,CD 分别是两底角的平分线(或者如图b ,BE ,CD 分别是两条腰的高线,或者如图c ,BE ,CD 分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.xy O-3-1-2-3123-1-2-4123GF EDCBA OEDCA B图a 图b21.已知A (-1,0),B (0,-3),点C 与点A 关于坐标原点对称,经过点C 的直线与y 轴交于点D ,与直线AB 交于点E . (1)若点D ( 0,1), 过点B 作BF ⊥CD 于F ,求∠DBF 的度数及四边形ABFD 的面积; (2)若点G (G 不与C 重合)是动直线CD 上一点,点D 在点(0,1)的上方,且BG =BA ,试探究∠ABG 与∠ECA 之间的等量关系.DED E CC DEC AA ABB BD ECC ABD EC C AB备用图xOyxOy数学试卷参考答案及评分标准 2014.121.(1)α+β=180°; ……………………1分证明:∵∠DAE =∠BAC ,∴∠DAE -∠DAC =∠BAC -∠DAC , ∴∠CAE =∠BAD . ∵在△ABD 和△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ), ……………………2分 ∴∠ABD =∠ACE ,∵∠BAC +∠ABD +∠ACB =180°, ∴∠BAC +∠ACE +∠ACB =180°,∴∠BAC +∠BCE =180°,即α+β=180°. ………………3分(2)α=β; ………………4分理由如下:∵∠DAE =∠BAC , ∴∠DAE +∠CAD =∠BAC +∠CAD , ∴∠BAD =∠CAE . 在△BAD 和△CAE 中,∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ), ……………………5分 ∴∠ABD =∠ACE ,∵∠ACD =∠ABD +∠BAC =∠ACE +∠DCE ,∴∠BAC =∠DCE ,即α=β. ……………………6分 (3)如图,α=β. …………7分BECDA4. (7分)(1)解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°.∵BC⊥l,∴∠BCE=90°,12ED CBAlN M∴∠ACE =45°, ∴∠ACE =∠B . ∵∠DAE=90°, ∴∠2+∠CAD =90°. 又∵∠1+∠CAD =90°, ∴∠1=∠2,∴△BAD ≌△CAE (ASA ).………………….2分 ∵S 四边形ADCE = S △CAE + S △ADC , ∴S四边形ADCE= S △BAD + S △ADC = S △ABC .又∵AC =2, ∴AB =2, ∴S △ABC =1, ∴S四边形ADCE=1.. ……………………………….3分(2)解:分以下两类讨论:①当点D 在线段BC 上或在线段CB 的延长线上时,∠EDC=∠BAD ,如图1、图2所示.如图1∵△BAD ≌△CAE (ASA ),(已证) ∴AD =AE . 又∵∠MAN =90°, ∴∠AED =45°. ∴∠AED =∠ACB .在△AOE 和△DOC 中,∠AO E =∠DO C , ∴∠EDC =∠2. 又∵∠1=∠2,∴∠EDC =∠1.………………………………………....5分 如图2中同理可证NMl图3ABCD E12O12MN NMOll图2图1EDC BAABCD E②当点D 在线段BC 的延长线上时,∠EDC +∠BAD=180°,如图3所示.…………..…….6分同理可证△BAD ≌△CAE (ASA ), ∴AD =AE .∴∠A DE =∠AED =45°. ∵∠EDC=45°+∠A DC , ∠BAD=180°-45°-∠A DC ,∴∠EDC +∠BAD=180°.. …………………………….7分5. (1)证明:连结ND∵AO 平分BAC ∠, ∴12∠=∠ ∵直线l ⊥AO 于H , ∴4590∠=∠=︒ ∴67∠=∠ ∴AN AC =∴NH CH =∴AH 是线段NC 的中垂线 ∴DC DN = ∴98∠=∠∴AND ACB ∠=∠∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3∠=∠B∴DN BN =∴BN DC = ……………………………………………………………………2分 (2)当M BC 是中点时,CE 和CD 之间的等量关系为2CD CE =证明:过点C 作'CN AO ⊥交AB 于'N由(1)可得'BN CD =,',AN AC AN AE == ∴43∠=∠,'NN CE =过点C 作CG ∥AB 交直线l 于点G ∴42∠=∠,1B ∠=∠ ∴23∠=∠∴CG CE = ∵M BC 是中点, ∴BM CM =在△BNM 和△CGM 中,1,,,B BM CM NMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩987654321ENMDABC H l4321EN'GN MDABCH Ol∴△BNM ≌△CG M ∴BN CG =∴BN CE =∴''2CD BN NN BN CE ==+= …………………………………………4分 (3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-………………………………6分 (阅卷说明:三种情况写对一个给1分,全对给2分)67.解:(1) 真 分式;…………………………………………………………………1分 (2)13122x x x -=-++;……………………………………………………3分 (3)x 的可能整数值为 0,-2,2,-4 . …………………………………5分8.解:(1) 90 度.…………………………………………………………1分图3E DCBA图1图2ED ED ABCCBA(2)① 180αβ+=︒.………………………………………………………2分理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC .即∠B A D =∠CA E .………………………………………………………3分 又AB =AC ,AD =AE ,∴△A B D ≌△A C E .…………………………………………………4分 ∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .36°36°72°72°72°72°FEDABC36°36°72°72°72°72°E DA CB∴B ACB DCE β∠+∠=∠=.∵180B ACB α+∠+∠=︒,∴180αβ+=︒.…………………………………………………5分(3)图形正确.………………………………………………………………6分 αβ=.……………………………………………………………………7分9.解(1) 等腰直角三角形 ………………………………………………1分(2) DE =AD +BE ;………………………………………………2分 证明:如图2,在Rt △ADC 和Rt △CEB 中,∵∠1+∠CAD =90︒,∠1+∠2=90︒,∴∠CAD =∠2又∵AC =CB ,∠ADC =∠CEB =90︒, ∴Rt △ADC ≅Rt △CEB∴DC =BE ,CE =AD ,∴DC +CE =BE +AD , ………………………………………3分即DE =AD +BE(3) DE =BE -AD …………………………………………………4分 如图3,Rt △ADC 和Rt △CEB 中,∵∠1+∠CAD =90︒,∠1+∠2=90︒,∴∠CAD =∠2,又∵∠ADC =∠CEB =90︒,AC =CB ,∴Rt △ADC ≅Rt △CEB ,∴DC =BE ,CE =AD ,∴DC -CE =BE -AD , ……………………………………………5分即DE =BE -AD.1 A BCDE图12MN ABCDE 图212ABC DEMN 图31 2<10.(1)比较大小:21x + ≥ 2x (其中1x ≥); 1x x +____2-(其中1x <-)---------2分 (2)解: 111332+++=+++x n x x x x()()1111121+++=+++++x n x x x x x 11112+++=+++x n x x x ∴2=n --------------------------------------------4分 (3)当x = 0 时,133+++x xx 有最小值,最小值为 3 . (直接写出答案)---6分11.(1) AE=AB+DE ; ------------1分 (2)解:猜想:AE =AB+DE +BD 21.------------2分 证明:在AE 上取点F ,使AF =AB ,连结CF , 在AE 上取点G ,使EG =ED ,连结CG .∵C 是BD 边的中点,∴CB =CD=BD 21.∵AC 平分BAE ∠,∴∠BAC =∠FAC .∵AF =AB ,AC =AC ,∴△ABC ≌△AFC .∴CF =CB ,∴∠BCA =∠FCA .----------------------------4分同理可证:CD =CG ,∴∠DCE =∠GCE . ∵CB =CD ,∴CG =CF ∵120ACE ∠=︒,∴∠BCA +∠DCE=180°-120°=60°. 图(2) ∴∠FCA +∠GCE=60°.∴∠FCG=60°. ∴△FGC 是等边三角形.-------------------------5分 ∴FG =FC=BD 21. ∵AE =AF+EG+FG .∴AE =AB+DE +BD 21.-----------------------6分(3)2410+. ----------------7分EDCBA图(3)EDC BA图(1)GFEDCBA12.解:如图,延长CD 交AB 于点E . ……………… 1分∵ AD 平分∠BAC ,CD ⊥AD 于点D , ∴ ∠EAD = ∠CAD ,∠ADE=∠ADC =90°. ∴ ∠AED=∠ACD . ……………… 2分 ∴ AE=AC . ∵ AC=10,AB=26,∴ AE=10,BE=16. ……………… 3分 ∵ ∠DCB=∠B , ∴ EB= EC=16. ∵ AE= AC ,CD ⊥AD ,∴ ED= CD=8. ……………………………………………… 4分 在Rt △ADC 中,∠ADC =90°,∴22AD AC CD =-=22108-=6. ……………………………………… 5分13.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB . ∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 14.解:(1)12x x -+()232x x +-=+……1分DCBAElODCBAABCDOl2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分15.解:(1)如图2,BD -AD =2CD . ……1分如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°. ∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°.F12图2A C BNDME FM DA∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°. ∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=, ∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 (2)31± . ……7分4F 321 图3A DM N CBE E BCN M DA 图3123F 416. 证明:延长AB 至M, 使得BM = BP ,联结MP 。