苏科版八年级上册 轴对称图形 知识点总结讲解
苏科版数学八年级上册第2章轴对称图形章末重难点题型(举一反三)(原卷版)

轴对称图形章末重难点题型汇编【举一反三】【苏科版】【考点1 判断轴对称图形】【方法点拨】掌握轴对称图形的概念:把一个图形沿着某一条直线翻折,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
注意:理解轴对称图形的定义应注意两点:(1)轴对称图形是一个图形,反映的是这个图形自身的性质。
(2)符合要求的“某条直线”可能不止一条,但至少要有一条。
【例1】(2019春•相城区期中)下列图形中,不是轴对称图形的是()A.B.C.D.【变式1-1】(2018秋•思明区校级期中)如图,四个手机应用图标中是轴对称图形的是()A.B.C.D.【变式1-2】(2018秋•开封期中)下列四个图形中,不是轴对称图形的是()A.B.C.D.【变式1-3】(2018秋•宜兴市校级期中)下列图形中,不是轴对称图形的有()A.1个B.2个C.3个D.4个【考点2 角平分线的应用】【方法点拨】掌握角平分线的性质定理:角平分线上的点到角两边的距离相等牢记:(1)角平分线的性质是证明线段相等的一个比较简单的方法;(2)当遇到有关角平分线的问题时,通常过角平分线上的点向角的两边作垂线,构造相等的线段。
【例2】(2019春•港南区期中)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE ⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【变式2-1】(2018秋•九龙坡区校级期中)如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6B.8C.4D.10【变式2-2】(2018秋•思明区校级期中)如图,△ABC中,AB=6,AC=4,AD平分∠BAC,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为()A.3B.4C.5D.6【变式2-3】(2018秋•西城区校级期中)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC =24,DE=4,AB=7,则AC长是()A.3B.4C.6D.5【考点3 线段垂直平分线性质的应用】【方法点拨】掌握线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等注意:(1)这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结
八年级上册数学轴对称的知识点总结如下:
1. 轴对称图形:如果一个图形可以折叠成两半,使得两半完全重合在一起,则这个图形是轴对称的。
轴对称图形具有轴对称轴,也称为镜像轴。
2. 轴对称图形的性质:
- 图形的每个点关于轴对称轴对应有另一个点。
- 图形的每一对对称点与轴对称轴的距离相等。
- 图形的任意两点关于轴对称轴的连线垂直于轴对称轴。
3. 轴对称图形的判断方法:
- 观察图形是否可以折叠成两半,使得两半完全重合。
- 观察图形是否和它自己的镜像一样。
4. 轴对称图形的绘制方法:
- 给出轴对称轴,沿着轴对称轴将图形折叠。
- 给定部分图形的对称点,通过连接对称点来绘制完整的轴对称图形。
5. 轴对称图形的性质的应用:
- 可以通过找到轴对称图形的对称点来绘制完整的图形。
- 可以通过轴对称图形的性质来解决有关对称点的问题,如求解距离、面积等。
这些都是八年级上册数学轴对称的知识点的总结,希望对你有所帮助!。
苏教版八年级上册数学[轴对称与轴对称图形--知识点整理及重点题型梳理](基础)
](https://img.taocdn.com/s3/m/1c42498c69dc5022aaea00f1.png)
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习轴对称与轴对称图形--知识讲解(基础)【学习目标】1.通过具体实例了解两个图形成轴对称的概念,能找出对称轴和对称点.2.了解两个图形关于某直线成轴对称和轴对称图形的联系与区别,理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应用和文化价值.4. 理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线,能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.5.通过学习,体验数学的对称美,激发学习数学的兴趣.【要点梳理】要点一、轴对称与轴对称图形1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴. 折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点二、轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等.要点三、线段的垂直平分线定义:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.【典型例题】类型一、判断轴对称图形1、(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】轴对称图形即能找到对称轴,使对称轴两边的图形重合.【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式】下列图形中,对称轴最少的对称图形是 ( )【答案】A;提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.类型二、轴对称的应用2、将一个正方形纸片依次按图,a b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()【答案】D;【解析】【总结升华】只需要根据对称轴补全图形就找能到答案.举一反三:【变式】将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A;3、(2015春·启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO 的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【思路点拨】根据轴对称的性质可得ME=PE,NF=PF,然后求出MN=△PEF的周长.【答案与解析】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.【总结升华】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.举一反三:【变式1】如图,△ABC中,AB=BC,△ABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BD A'的度数.【答案】100°;∵AB =BC ,∴∠A =∠C =70°,∠B =40°又∵ΔABC 沿DE 折叠后,点A 落在BC 边上的A '处,点D 为AB 边的中点, ∴BD =D A ',∠B =∠D A 'B =40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°;类型三、轴对称的作图4、如图,△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称.(1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠''BOB 与直线MN 、EF 所夹锐角α之间的数量关系.【答案与解析】(1)如图;(2)∠''BOB =2α;(2)∵△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称.∴∠BOM =∠'B OM ,∠'B OE =∠''B OE ,∵∠'B OM +∠'B OE =α∴∠''BOB =2α【总结升华】在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上. 举一反三:【变式】(2015· 聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.【答案】解:(1)如图所示:△A 1B 1C 1,即为所求;点B 1坐标为:(﹣2,﹣1);(2)如图所示:△A 2B 2C 2,即为所求,点C 2的坐标为:(1,1).。
八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
苏教版八年级上册轴对称图形知识点

轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB,直线m⊥AB于C,∴直线m是线段AB的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB,直线m⊥AB于C,点P是直线m上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB,直线m是线段AB的垂直平分线,∴点P在直线m上。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。
②等边对等角。
如图5,在△ABC中∵AB=AC∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
如图5,在△ABC中,∵AB=AC∴△ABC是等腰三角形。
②有两个角相等的三角形是等腰三角形。
(完整版)八年级上十二章轴对称知识点总结(最全最新)

(完整版)⼋年级上⼗⼆章轴对称知识点总结(最全最新)轴对称知识点(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。
连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。
5.画⼀图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
八年级轴对称知识点讲解

八年级轴对称知识点讲解在初中数学中,轴对称是一种重要的几何概念,也是学生需要掌握的常识之一。
本文将为八年级学生详细讲解轴对称的概念、性质以及常见应用。
一、轴对称的概念轴对称是指一种对称方式,在平面内将图形分为两部分,其中一部分通过某个轴的旋转后可以恰好重合于另一部分,这个轴就被称为轴对称轴。
换言之,轴对称是指一种图形上下左右对称的状态。
二、轴对称的性质1. 坐标关系对于坐标系中的轴对称,其轴与坐标轴的交点处的坐标为(a, 0)或(0, a),其中a为实数。
2. 图形特征轴对称有以下几个特征:对称轴上的点不变;对称轴上的任何点到图形内的对应点的距离相等;对称轴将图形分为两个完全相同的部分。
3. 作图方法作图一个图形的轴对称需要以下几个步骤:确定对称轴的位置和方向;确定图形中所有对称的点或线段;将每个点或线段依次沿对称轴复制,直至构成整个轴对称图形。
三、常见应用1. 绘制轴对称图形轴对称在绘制各种图形时都可以派上用场。
所以,掌握绘制轴对称图形的技能是至关重要的。
2. 模拟新图形通过所给轴对称图形和轴对称轴,可以模拟出新的图形。
比如说,拥有线段CB、直线AB和DE且过点A的轴对称轴,通过绘制一条ADE的边来构建新的轴对称图形。
3. 发现轴对称图形性质在解题时,掌握轴对称图形的性质可以给我们提供更多的思路。
比如说,对于轴对称图形来说,它们的对称轴和对称图形上的任何一个点的坐标都是对应的;轴对称图形的面积等于其对称轴两侧图形面积之和。
以上是对轴对称的概念、性质以及常见应用的详细讲解。
希望通过本文的阐述,能够帮助八年级学生更好地理解轴对称的知识点,掌握轴对称应用技巧,从而提高其数学成绩。
苏科版八年级数学上册知识要点

苏科版八年级数学上册知识要点GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-初二数学(上)期末复习各章知识点第一章轴对称图形(知识点)一、轴对称与轴对称图形1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、线段、角的轴对称性1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合。
2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称;注意:其中这条直线叫对称轴;两个图形的对应点叫对称点;轴对称图形:如果把一个图形沿一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形;注意:轴对称图形也有对称轴和对称点;轴对称和轴对称图形的区别于联系:区别:1、轴对称是指两个图形折叠重合。
轴对称图形是指本身折叠重合,2、轴对称对称点在两个图形上;轴对称图形对称点在一个图形上;3、轴对称只有一条对称轴;轴对称图形至少有一条对称轴;联系:若把成轴对称的两个图形看作一个整体,那么这个整体是一个轴对称图形; 若把一个轴对称图形位于对称轴的两部分看作两个图形,那么这两个图形 就成轴对称。
图文解释:△ABC 和△DEF 关于直线MN 对称, △ABC 关于直线MN 对称 MN 是对称轴,我们称这两个三角形关于 MN 为对称轴,我们称 直线MN 成轴对称,点C 点F 为对称点, △ABC 为轴对称图形。
点B 点E 为对称点,点A 点D 为对称点。
CABMNFEDMNAB C轴对称的性质:1、成轴对称的两个图形全等;2、成轴对称的两个图形,对应点的连线被对称轴垂直平分;垂直平分线:作点关于直线的对称点,连接这两点的线段。
我们定义:垂直并且平分一条线段的直线,叫作这条线段的垂直平分线。
又称“中垂线”注意:判断一条直线是否是线段的垂直平分线,必须满足两个条件。
1、这条直线过线段的中点;2、这条直线垂直于线段;通过研究线段或者某个图形关于直线的对称:轴对称还有如下的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
注意:这个性质其实告诉如何确定对称轴:即成轴对称的两个图形,对称轴是对应点连线的垂直平分线。
画一个图形关于一条直线对称的图形步骤:首先我们要明白一个事实:点构成线,线构成面。
1、关键是确定某些点关于这条直线的对称点。
2、顺次将对称点连接起来。
(注意:成轴对称的两个图形的任何对应的部分也成轴对称!!!)图文解析:画点关于直线的对称点: ①画AO ⊥L ,垂足为O ;②在AO 的延长线上截取OA ’使得OA ’=OA ; 则点A ’就是点A 关于直线L 的对称点。
画线段关于直线的对称点:①先画出点A 点B 分别关于直线L 的对称点A ’、B ’②连接点A ’、B ’;则线段A ’B ’是线段AB 关于直线L 的对称线段。
画一个图形关于直线的对称点:①先画出点A 、B 、C 分别关于直线L 的对称点A ’、B ’、C ’; ②顺次连接点A ’、B ’、C ’;则图形'''C B A 是图形ABC 关于直线L 的对称图形。
如果要确定成轴对称两个图形的对称轴,只要做一对对称点连线的垂直平分线。
A ACBLA'B'C'线段、角的轴对称性线段的对称轴:线段的垂直平分线就是它的对称轴。
角的对称轴:角平分线所在的直线是它的对称轴。
注意:1、角和线段都是轴对称图形 2、角只有一条对称轴。
3、线段有两条对称轴,除了它的垂直平分线,还有它本身所在的直线。
线段垂直平分线的性质定理:线段垂直平分线上的点线段两端的距离相等;线段垂直平分线的判定定理:到线段两端的距离相等的点在线段的垂直平分线上;(由两个定理可得:线段的垂直平分线是到线段两端距离相等点的集合!!!)角平分线的性质定理:角平分线上的点到角的两边距离相等;角平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上;用尺规作线段AB 的垂直平分线步骤:1、分别以点A 、B 为圆心,大于21AB 的长为半径画弧,两弧相交于点C 、D. 2、过C 、D 两点作直线。
直线CD 就是线段AB 的垂直平分线。
AO=B0 AB ⊥CDOABCD用尺规作∠AOB 的平分线步骤:1、以O 为圆心,适当长为半径画弧,交OA ,OB 为点D ,点E ;2、分别以点D ,点E 为圆心,大于21DE 长度为半径画弧,两弧交于点C ; 3、过O ,C 两点作直线,直线OC 就是∠AOB 的角平分线。
若过点C 分别作OA 和OB 的垂线,通过全等三角形的证明,可以得到角平分线上的点到角的两边距离相等。
DOEC AB等腰三角的轴对称性等腰三角形的对称轴:顶角平分线所在直线是它的对称轴。
根据等腰三角形是轴对称图形我们可以得到如下定理:1、等腰三角形的底角相等(简称“等边对等角”)2、等腰三角形底边上的中线、高线及顶角平分线重合(简称“三线合一”) 利用三角形的全等可证明上述定理: 图文:已知等腰△ABC作顶角的平分线 作底边的垂线 作底边的中线∵AB-AC ∠1=∠2 AD=AD ∵AB-AC AD ⊥BC AD=AD ∵AB-AC BD=DC AD=AD ∴△ABC ≌△ACD (SAS ) ∴△ABC ≌△ACD (HL ) ∴△ABC ≌△ACD (SSS )∴∠B=∠C BD=DC AD ⊥BC ∴∠B=∠C BD=DC ∠1=∠2 ∴∠1=∠2 ∠B=∠C AD ⊥BC用尺规作等腰三角形ABC 步骤:使得底边BC=a,高AD=h 1、作线段BC=a ;2、作线段BC 的垂直平分线MN ,MN 交BC 于点D ;3、在MN 上截取线段DA ,使得DA =h ;4、连接AB ,AC;则△ABC 为所求作的等腰三角形。
BCA D12BCA D12BCA D12OBCMNA a b等腰三角形的判定:有两个角相等的三角形是等腰三角形(简称“等角对等边”) 等边三角形的判定:1、三边相等或三个角都相等的三角形是等边三角形。
2、有一个角是60°的三角形是等边三角形。
等边三角形的性质:1、等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质;2、有三条对称轴;3、每个内角都是60°直角三角形的性质:直角三角形斜边上的中线等于斜边的一半。
注意:1、若三角形的一边中线等于该边长的一半,那么三角形为直角三角形。
2、若有一个角为30°的直角三角形,那么30°所对的边是斜边的一半。
图文说明: 在AB 上取一点D, CD 为△ABC 的中线 在AB 上取一点使得使得∠BCD=∠B 且CD=21AB AD=CD即BD=CD ∵AD=BD=CD ∵∠A=30° AD=CD ∵∠BCA=90° ∴∠B=∠DCB ∴∠BDC=60° ∴∠BCD+∠DCA=90° ∠A=∠DCA ∵∠ACB=90° ∠B+∠A=90° ∵∠A+∠B+∠DCA+∠DCB=180° ∴∠B=60° ∴∠A=∠DCA ∴∠DCA+∠DCB=90° ∴△BCD 为等边三角形 ∴AD=CD ∴∠ACB=90° ∴BC=CD=BD=AD 即AD=CD=BD ∴BC=21AB (直角三角形斜边的 (三角形的一边中线等于该边 (在直角三角形中,30° 中线等于斜边的一半) 的一半,那么三角形 所对的边是斜边的一半) 为直角三角形。
)ABC DABCD 30°60°60°60°ABCD30°拓展知识点:如图,△ABC 中,AB ,AC 的垂直平分线,L1,L2相交于点O , 求证:求证点O 在BC 的垂直平分线上。
证明:连接OA 、OB 、OC∵点O 是AB 、AC 边的垂直平分线的交点 ∴OA=OB OA=OC(垂直平分线的点到线段的两端距离相等) ∴OB=OC∴点O 在BC 的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上)(注意:此题引出三角形的外心定义:三角形三条边垂直平分线的交点为三角形的外心。
三角形外心到三角形三个顶点距离相等!!!)如图,△ABC 的角平分线AD ,BE 相交于点P , 求证:点P 在∠C 的平分线上。
证明:过点P 分别作PF ⊥AB ,PM ⊥BC ,PN ⊥AC 垂足分别为点F 、M 、N∵点P 是∠ABC 、∠BAC 平分线的交点 ∴PF=PM PF=PN(角平分线上的点到角的两边距离相等) ∴PM=PN∴点P 在∠ACB 的平分线上。
(角的内部到角的两边距离相等的点在角的平分线上)(注意:此题引出三角形的内心定义:三角形三个内角平分线的交点为三角形的内心。
三角形内心到三角形三条边距离相等!!!)L 1L 2ABCOE D A BCPFMN如图,△ABC 的两个内角∠BAC 、∠BCA 的外角平分线相交于点P , 求证:点P 在∠B 的平分线上。
证明:过点P 分别作PM ⊥AB ,PN ⊥BC ,PF ⊥AC 垂足分别为点M 、N 、F∵点P 是∠BAC 、∠BCA 的外角平分线的交点 ∴PM=PF 、PN=PF 、(角平分线上的点到角的两边距离相等) ∴PM=PN∴点P 在∠B 的平分线上。
(角的内部到角的两边距离相等的点在角的平分线上)(注意:此题引出三角形的旁心定义:三角形一个内角平分线和其它两个内角的外角平分线的交点为三角形的旁心。
三角形的旁心到三角形三条边距离相等!!!)ABCPM NF。