年鲁教版八年级数学期末试卷
鲁教版五四制数学八年级下册期末测试(二)(含答案)

鲁教版五四制数学八年级下册期末测试(二)(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中,与2是同类二次根式的是( ) A.2.0 B.4 C.6 D.8 2.下列a 、b 、c 、d 四条线段,是成比例线段的是( ) A.a =12,b =4,c =5,d =12 B.a =15,b =3,c =5,d =1 C.a =13,b =2,c =8,d =12 D.a =5,b =0.02,c =0.7,d =0.33.若关于x 的一元二次方程(k-1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A.k <5B.k <5,且k ≠1C.k ≤5,且k ≠1D.k >54.如图,以点O 为位似中心,把△ABC 各边扩大为原来的2倍得到△A ´B ´C ´以下说法中错误的是( )A.△ABC ∽△A ´B ´C ´B.C ,O ,C ´三点在同一条直线上C.AO:AA ´=1: 2D.AB ∥A ´B ´5.如图,正方形ABCD 的边长为4,点E 在边DC 上,且DE =1,连接BE 并延长,交AD 的延长线于点F ,则DF 的长为( )A.1B.43 C.34 D.32 6.如图,直线l 1∥l 2∥l 3,等腰Rt △ABC 的三个顶点A 、B 、C 分别在直线l 1、l 2、l 3上,∠ACB =90°,AC 交l 2于点D ,若l 1与l 2的距离为1,l 1与l 3的距离为4,则BDAB的值是( )A.22 B.534 C.524 D.825 7.对于两个不相等的实数a ,b ,我们规定符号max{a ,b}表示a ,b 中较大的数,如:max{2,4}=4.按照这个规定,方程xx x x 12}max{+=-,的解为( ) A.1-2 B.2-2 C.1-2和1+2 D.1+2和-18.某楼盘准备以每平方米10000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米8100元的均价开盘销售,则平均每次下调的百分率是( ) A.8% B.9% C.10% D.11% 9. 已知关于x 的一元二次方程mx 2-(m +2)x +4m=0有两个不相等的实数根x 1,x 2,若m x x 41121=+=,则m 的值是( ) A.2或-1 B.2 C.-1 D.不存在10.如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O.∠MPN 是直角,其顶点P 与点O 重合,边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的是( )(1)EF =2OE ;(2)S 四边形OEBF :S 正方形ABCD =1:4;(3)BE +BF =2OA ;(4)OG ·BD =AE 2+CF 2.A.(1)(2)(3)(4)B.(1)(2)(3)C.(2)(3)(4)D.(1)(4) 二、填空题(每小题3分,共24分)11.化简:()()()()222235532323+⨯-+--+= ____________.12.如图所示,已知AEACAD AB ==3,∠BAD =∠CAE ,若△ADE 的面积为6,则△ABC 的面积为____________.13.如图所示,菱形ABCD 的对角线相交于点O ,过点A 作AE ⊥CB 交CB 的延长线于点E ,连接OE 若菱形ABCD 的面积等于12,对角线BD =4,则OE 的长为____________.14.如图所示,在矩形ABCD 中,AB =6,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,若BE =EO ,则AD 的长是____________.15.如图所示,在平面直角坐标系中,△ABC 和△A ′B ´C ´是以坐标原点O 为位似中心的位似图形,且点B (3,1),B ´(6,2),若点A ´(5,6),则点A 的坐标为___________.16.已知关于x 的一元二次方程(m-1)2x 2+3mx +3=0的一个实数根为-1,则该方程的另一个实数根为__________.17.下表是小明填写的实践活动报告的部分内容,则小河的宽度为__________.题目测量小河的宽度测量目标示意图相关数据BC =1m ,DE =1.5m ,BD =5m18.如图所示,在矩形ADCB 中,AD =2,AB =5,P 为CD 边上的动点(不与点C 、D 重合),当DP =__________时,△ADP 与△BCP 相似.三、解答题(共66分) 19.(6分)计算: (1)184831512-+-; (2)()()()()22233653-+--+⨯-.20.(8分)解方程:(1)x 2-3x-2=0(公式法); (2)2x 2-4x-8=0(配方法)21.(8分)在如图所示的方格中,△OAB 的顶点坐标分别为O (0,0)、A (-2,-1)、B (-1,-3),△O 1A 1B 1与△OAB 是以点P 为位似中心的位似图形.(1)在图中标出位似中心P的位置,并写出点P的坐标及△O1A1B1与△OAB的相似比;(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的相似比为2:1,并写出点B的对应点B2的坐标.22(8分)已知关于x的一元二次方程x2+mx=3(m为常数).(1)求证:无论m为何值,该方程都有两个不相等的实数根;(2)若方程有一个根为2,求方程的另一个根.23.(8分)如图所示,已知在矩形ABCD中,点E在边AD上,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BFCE是正方形.24.(10分)某水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,那么每天可售出500千克经市场调查后发现,在进货价不变的情况下,若每千克涨价1元,则日销量将减少20千克.(1)若该种水果以每千克盈利16元的单价出售,则每天的总毛利润为多少元?(2)现市场既要保证每天的总毛利润为6000元,又要使顾客得到实惠,则该种水果每千克应涨价多少元?25.(10分)如图所示,在△ABC中,AB=AC,D为BC的中点,AE∥BD,O是CE的中点,CE交AB于点F.(1)求证:四边形AEBD是矩形;(2)若BE=23,AE=2,求EF的长.26.(10分)如图所示,四边形ABCD是正方形,点E是BC边上一动点(不与B、C重合),连接AE,过点E作EF⊥AE,交DC于点F,连接AF.(1)求证:△ABE∽△ECF;(2)试探究当点E在BC的什么位置时,∠BAE=∠EAF,请证明你的结论.参考答案一、选择题1.D2.B3.B4.C5.C6.C7.D8.C9.B 10.A 二、填空题11.222+ 12.54 13.3 14.63 15.(2.5,3)16.-3117.10 m 18.1或4或2.5三、解答题19.解析(1)原式=2333132********-=-+-. (2)原式=28232233033536-+=++--+-. 20.解析(1)∵a =1,b =-3,c =-2,∴△=b 2-4ac =(-3)2-4×1×(-2)=17>0, ∴x =12173⨯±,∴x 1=2173+,x 2=2173-. (2)∵2x 2-4x =8,∴x 2-2x =4,则x 2-2x +1=4+1,即(x-1)2=5,∴x-1=±5, ∴x 1=5+1,x 2=-5+1.21.解析(1)如图,点P 的坐标为(-5,-1),△O 1A 1B 1与△OAB 的相似比为2:1.(2)如图,△OA 2B 2即为所求,B 2的坐标为(-2,-6). 22.解析(1)证明:由题意得x 2+mx-3=0,∵a =1,b =m ,c =-3,∴△=b 2-4ac =m 2-4×1×(-3)=m 2+12, ∵m 2≥0,∴m 2+12>0,∴△>0,∴无论m 为何值,该方程都有两个不相等的实数根.(2)设方程的另一个根为x 1, 则2·x 1=313-=-=a c ,∴x 1=23,∴方程的另一个根为23. 23.证明 ∵BF ∥CE ,CF ∥BE ,∴四边形BFCE 是平行四边形, 又∵在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,∴∠ABE =∠EBC =∠DCE =∠BCE =45°,∴BE =CE ,∠BEC =90°. ∴四边形BFCE 是正方形.24.解析 (1)若每千克盈利16元,则每天可销售500-20×(16-10)=380(千克). ∴每天的总毛利润为16×380=6080(元). 答:每天的总毛利润为6080元 (2)设该种水果每千克应涨价x 元,由题意得(10+x )(500-20x )=6000,解得x 1=5,x 2=10, ∵要使得顾客得到实惠,∴应选x =5. 答:该种水果每千克应涨价5元.25.解析 (1)证明:∵O 是CE 的中点,∴OE =OC ,∵AE ∥BD ,∴∠AEO =∠DCO ,∠EAO =∠CDO ,∴△AEO ≌△DCO ,∴AE =DC , ∵D 是BC 的中点,AB =AC ∴AD ⊥BC ,BD =CD ,∴AE =BD , 又∵AE ∥BD ,∴四边形AEBD 是平行四边形,又∵AD ⊥BC ,即∠ADB =90°,∴四边形AEBD 是矩形. (2)∵AE =2,∴BC =2BD =2AE =4. ∵四边形AEBD 是矩形,∴∠EBC =90°, ∵BE =23,BC =4,∴EC =27, ∵AE ∥BC ,∴△AEF ∽△BCF ,∴21==BC AE CF EF ,∴EF =31EC =732. 26.解析(1)证明:四边形ABCD 是正方形, ∴∠B =∠C =90°,∴∠BAE +∠BEA =90°, ∵EF ⊥AE ,∴∠AEF =90°,∴∠BEA +∠FEC =90°, ∴∠BAE =∠FEC ,∴△ABE ∽△ECF.(2)当点E 在BC 的中点位置时,∠BAE =∠EAF 证明如下: 如图,延长AE ,交DC 的延长线于点H ,∵E为BC的中点,∴BE=CE,∵∠B=∠ECH=90°,∠AEB=∠CEH,∴△ABE≌△HCE,∴AE=HE,∵EF⊥AH,∴△AFH是等腰三角形,∴∠EAF=∠H.∵AB∥DH,∴∠H=∠BAE,∴∠BAE=∠EAF,∴当点E在BC的中点位置时,∠BAE=∠EAF.。
2023年鲁教版(五四制)数学八年级上册期末考试综合检测试卷及部分答案(共三套)

2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共36分)1.某校评选先进班集体,从“学习”“卫生”“纪律”“德育”四个方面考核打分,各项满分均为100,所占比例如下表:九年级1班这四项得分依次为80,86,84,90,则该班四项综合得分为() A.81.5 B.84.5 C.85 D.842.若a+5=2b,则代数式a2-4ab+4b2-5的值是()A.0 B.-10 C.20 D.-303.下列各组图形可以通过平移得到的是()4.下列分式中是最简分式的是()A.xyx2B.63y C.xx-1D.x+1x2-15.将(a-1)2-1分解因式,结果正确的是()A.a(a-1) B.a(a-2)C.(a-2)(a-1) D.(a-2)(a+1)6.下列四个图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是()7.某校为加强学生出行的安全意识,每月都要对学生进行安全知识测评,随机选取15名学生五月份的测评成绩如下表:则这组数据的中位数和众数分别为()A.95,95 B.95,96 C.96,96 D.96,978.分式x+a3x-1中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-13,分式的值为零D.若a≠13,分式的值为零9.如图,E是平行四边形ABCD的边AD的延长线上一点,连接BE交CD于点F,连接CE,BD.添加以下条件,仍不能判定四边形BCED为平行四边形的是() A.∠ABD=∠DCE B.∠AEC=∠CBDC.EF=BF D.∠AEB=∠BCD(第9题) (第11题)10.下面是涂涂同学完成的一组练习题,每小题20分,他的得分是()①x2-1x-1=x+1;②3-x·23-x=2;③1÷ab·ba=1;④1x+1y=x+yxy;⑤⎝⎛⎭⎪⎫xx+1-x÷x2-xx+1=x-x2+xx+1÷x2-xx+1=x(2-x)x+1·x+1x(x-1)=2-xx-1.A.40分B.60分C.80分D.100分11.如图,在平面直角坐标系中,将△ABC绕点P顺时针旋转得到△A′B′C′,则点P的坐标为()A.(1,1) B.(1,2) C.(1,3) D.(1,4)12.已知a1=x+1(x≠0且x≠-1),a2=11-a1,a3=11-a2,…,a n=11-a n-1,则a2 024等于()A.-x+1 B.x+1 C.xx+1D.-1 x二、填空题(每题3分,共18分)13.已知x2+nx+m有因式(x-1)和(x-2),则m=______,n=________.14.分解因式:3(x2+1)-6x=______________.15.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本标准差相同;④两组样本数据的样本极差相同.正确说法的序号是________.16.中华优秀传统文化是中华民族的“根”和“魂”,为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3 600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2 400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x元,则符合题意的方程是______________.17.如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于________.18.若关于x的分式方程3xx-1=m1-x+2的解为正数,则m的取值范围是______________.三、解答题(19题6分,20,22,24题每题8分,其余每题12分,共66分) 19.已知a,b,c为△ABC的三边长,求证:(a-c)2-b2是负数.20.(1)计算:2m m 2-1-1m -1;(2)先化简,再求值:⎝ ⎛⎭⎪⎫x +x x +1÷x +2 x 2+x ,其中x =1+2.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-1,0),B (-4,1),C (-2,2).(1)点B 关于原点对称的点B ′的坐标是________;(2)平移△ABC ,使平移后点A 的对应点A 1的坐标为(2,1),请画出平移后的△A 1B 1C 1; (3)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2.22.如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,EF 过点O ,交AB于点E,交CD于点F.求证:(1)∠1=∠2;(2)△DOF≌△BOE.23.某水果公司以10元/kg的成本价新进2 000箱荔枝,每箱质量为5 kg,在出售荔枝前,需要去掉坏荔枝,现随机抽取20箱,去掉坏荔枝后称得每箱的质量(单位:kg)如下:4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.74.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.75.0整理数据:分析数据:(1)直接写出上述表格中a,b,c的值.(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2 000箱荔枝共坏了多少千克.(3)根据(2)中的结果,求该公司销售这批荔枝每千克最低定为多少元才不亏本.(结果保留一位小数)24.八年级(1)班开展“经典诵读,光亮人生”读书活动,小冬和小惠两同学读了同一本480页的名著,小冬每天读的页数是小惠每天读的页数的1.2倍,小惠读完这本书比小冬多用4天,求两人每天读这本名著多少页.25.在△ABC与△DEC中,∠BAC=∠EDC=90°,AB=AC=4,DE=DC,EC=2,将线段BA平移到EF.(1)如图①,当B,C,D三点共线时,求线段CF的长;(2)将△DEC绕点C逆时针旋转至如图②所示的位置,请探究AD与DF的数量关系和位置关系,并证明.答案一、1.B2.C 3.C4.C5.B6.A 7.C8.C9.D10.A11.B12.D点拨:∵a1=x+1,∴a2=11-a1=11-(x+1)=-1x,∴a3=11-a2=11-⎝⎛⎭⎪⎫-1x=xx+1,∴a4=11-a3=11-xx+1=x+1,∴a5=11-a4=-1x,a6=11-a5=xx+1,….∵2 024÷3=674……2,∴a2 024=-1x.故选D.二、13.2;-3 14.3(x-1)2 15.③④16.3 600x -2 4000.8x =417.126° 点拨:∵△ABF 是等边三角形,∴AB =BF ,∠AFB =∠ABF =60°.在正五边形ABCDE 中,AB =BC ,∠ABC =108°, ∴BF =BC ,∠FBC =∠ABC -∠ABF =48°, ∴∠BFC =12(180°-∠FBC )=66°, ∴∠AFC =∠AFB +∠BFC =126°.18.m <-2且m ≠-3 点拨:去分母,得3x =-m +2(x -1),去括号、移项、合并同类项,得 x =-m -2.∵关于x 的分式方程3x x -1=m1-x +2的解为正数,∴-m -2>0. ∴m <-2. 由题意得x -1≠0, ∴x ≠1. ∴-m -2≠1. ∴m ≠-3.∴m <-2且m ≠-3.三、19.证明:∵a ,b ,c 为△ABC 的三边长,∴a +b >c ,b +c >a , 即a -c +b >0,a -c -b <0.∴(a -c )2-b 2=(a -c +b )(a -c -b )<0, ∴(a -c )2-b 2是负数.20.解:(1)原式=2m(m +1)(m -1)-m +1(m -1)(m +1)=2m -m -1(m -1)(m +1)=m -1(m -1)(m +1)=1m +1. (2)原式=⎝ ⎛⎭⎪⎫x 2+xx +1+x x +1·x 2+x x +2=x 2+2x x +1·x 2+x x +2 =x (x +2)x +1·x (x +1)x +2=x 2.当x =1+2时, 原式=(1+2)2 =1+22+2 =3+22. 21.解:(1)(4,-1)(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A 2B 2C 2即为所求. 22.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD . ∴∠1=∠2.(2)∵点O 是BD 的中点, ∴OD =OB .在△DOF 和△BOE 中,⎩⎨⎧∠1=∠2,∠DOF =∠BOE ,OD =OB ,∴△DOF ≌△BOE (AAS).23.解:(1)a =6,b =4.7,c =4.75.(2)选择众数,估算这2 000箱荔枝共坏了2 000×(5-4.7)=600(kg).(答案不唯一)(3)10×5×2 000÷(2 000×5-600)≈10.7(元).答:该公司销售这批荔枝每千克最低定为10.7元才不亏本. 24.解:设小慧每天读这本名著x 页,则小冬每天读这本名著1.2x 页,依题意得480x -4801.2x =4, 解得x =20.经检验,x =20是原方程的解,且符合题意. ∴1.2x =24,答:小慧每天读这本名著20页,小冬每天读这本名著24页. 25.解:(1)∵∠BAC =90°,AB =AC ,∴∠ABC =45°.∵DE =DC ,∠EDC =90°, ∴∠ECD =45°, ∴∠ABC =∠ECD . 又∵B ,C ,D 三点共线, ∴EC ∥AB . 又∵EF ∥AB , ∴C ,E ,F 三点共线. 由题意知EF =AB =4, ∴CF =CE +EF =2+4=6. (2)AD =DF ,且AD ⊥DF .证明:如图,延长FE 交AC 于G .由题意得EF∥AB,∴∠EGA=∠BAC=90°.∴∠FGC=90°=∠EDC.∴∠DEG+∠DCG=180°.又∵∠FED+∠DEG=180°,∴∠ACD=∠FED.又∵EF=AB=AC,DE=DC,∴△ACD≌△FED(SAS).∴AD=DF,∠ADC=∠EDF.∴∠ADF=∠EDC=90°,∴AD⊥DF.2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(二)一、选择题(本大题共12道小题,每小题3分,满分36分)1.太原正式步入“地铁时代”,太原轨道交通近期建设的1、2、3号线在全国是第338条线路.下面是中国四个城市的地铁图标,其中是中心对称图形的是()2.若a+b=3,则a2+6b-b2的值为()A.3 B.6 C.9 D.123.把多项式3(x-y)2+2(y-x)3分解因式,结果正确的是()A.(x-y)2(3-2x-2y) B.(x-y)2(3-2x+2y)C.(x-y)2(3+2x-2y) D.(y-x)2(3+2x+2y)4.若分式|x|-2(x-2)(x+1)的值为0,则x的值为()A.±2 B.2 C.-2 D.-15.一个多边形的内角和与外角和相加之后的结果是2 520°,则这个多边形的边数为()A.12 B.13 C.14 D.156.方程23x=1x+2的解为()A.x=-2 B.x=4C.x=0 D.x=67.某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是() A.全班同学在线学习数学的平均时间为2.5 hB.全班同学在线学习数学时间的中位数为2 hC.全班同学在线学习数学时间的众数为20 hD.全班超过半数同学每周在线学习数学的时间超过3 h8.若分式方程6(x+1)(x-1)-mx-1=6有增根,则它的增根是()A.0 B.1 C.-1 D.1或-19.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A.5 B.4 C.3 D.210.如图,将线段AB平移到线段CD的位置,则a+b的值为() A.4 B.0 C.3 D.-511.如图,在▱ABCD中,对角线AC,BD相交于点O,点E是BC的中点,若AB =16,则OE的长为()A.8 B.6 C.4 D.312.如图,E ,F 分别是平行四边形ABCD 的边AD ,BC 上的点,且BE ∥DF ,AC分别交BE ,DF 于点G ,H .下列结论:①四边形BFDE 是平行四边形;②△AGE ≌△CHF ;③BG =DH ;④S △AGE ︰S △CDH =GE ︰DH .其中正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共6道小题,每小题3分,满分18分) 13.如果a 2-2a =0,则2a 2 020-4a 2 019+2 020的值为________. 14.使代数式x +3x -3÷x 2-9x +4有意义的x 的取值范围是________.15.一组数据3,2,x ,2,6,3的唯一众数是2,则这组数据的方差为________. 16.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,且AB ⊥AC ,∠DAC =45°,如果AC =2,那么BD 的长是________.17.如图,在平面直角坐标系中,点A (3,0),点B (0,2),连接AB ,将线段AB绕点A 顺时针旋转90°得到线段AC ,连接OC ,则线段OC 的长度为________.18.如图,在▱ABCD 中,AB =6,∠BAD 的平分线与BC 的延长线交于点E ,与DC交于点F,且点F为边CD的中点,DG⊥AE,垂足为G,若DG=5,则AE的长为________.三、解答题(本大题共7道小题,满分66分)19.(9分)分解因式:(1)x3-x;(2)2a2-4a+2;(3)m4-2m2+1.20.(7分)先化简,再求值:1x÷ ⎝⎛⎭⎪⎫x2+1x2-x-2x-1+1x+1,其中x的值为方程2x=5x-1的解.21.(8分)某校八年级开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据统计图直接写出上表中a,b,c的值;(2)已知爱国班复赛成绩的方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定.22.(10分)如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且∠1=∠2,∠3=∠4.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC是否随之变化?若变化,找出规律或求出其变化范围;若不变,求出这个比.23.(10分)2020年初,市场上防护口罩出现热销.某药店用3 000元购进甲、乙两种不同型号的口罩共1 100只进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少;(2)若甲、乙两种口罩的进价不变,该药店计划用不超过7 000元的资金再次购进甲、乙两种口罩共2 600只,求甲种口罩最多能购进多少只.24.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.25.(12分)已知在△ABC中,AB=AC,点D在BC上,以AD,AE为腰作等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM∥BC交CA的延长线于M,连接BM.(1)求证:△BAD≌△CAE;(2)若∠ABC=30°,求∠MEC的度数;(3)求证:四边形MBDE是平行四边形.答案一、1.C 2.C 3.B 4.C 5.C 6.B7.B8.B【点拨】分式方程的最简公分母为(x+1)(x-1),去分母得6-m(x+1)=6(x+1)(x-1).由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,把x=-1代入整式方程得6=0,无解,则它的增根是1.故选B.9.B【点拨】由平移的性质可知,AD=BE,∵BC=CE,BC=2,∴BE=4,∴AD=4.故选B.10.A【点拨】由题意知,线段AB向左平移3个单位长度,再向上平移4个单位长度得到线段CD,∴a=5-3=2,b=-2+4=2,∴a+b=4.故选A. 11.A【点拨】∵在▱ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点.又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=12AB=8.故选A.12.D【点拨】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵BE∥DF,∴四边形BFDE是平行四边形,故①正确;∵四边形BFDE 是平行四边形, ∴BF =DE ,DF =BE ,∴AE =FC ,∵AD ∥BC ,BE ∥DF ,∴∠DAC =∠ACB ,∠ADF =∠DFC ,∠AEB =∠ADF , ∴∠AEB =∠DFC , ∴△AGE ≌△CHF (ASA ),故②正确;∵△AGE ≌△CHF ,∴GE =FH , ∵BE =DF ,∴BG =DH ,故③正确; ∵△AGE ≌△CHF ,∴S △AGE =S △CHF , ∵S △CHF ︰S △CDH =FH ︰DH ,∴S △AGE ︰S △CDH =GE ︰DH ,故④正确.故选D. 二、13.2 020 14.x ≠±3且x ≠-415.2 【点拨】∵数据3,2,x ,2,6,3的唯一众数是2,∴x =2.∴3,2,2,2,6,3的平均数为16×(3+2+2+2+6+3)=3,则这组数据的方差为16×[(2-3)2×3+(3-3)2×2+(6-3)2]=2.16.25 【点拨】∵四边形ABCD 是平行四边形,∴AD ∥BC ,OB =OD ,OA =12AC =1,∴∠ACB =45°.∵AB ⊥AC ,∴△ABC 是等腰直角三角形,∴AB =AC =2.在Rt △AOB 中,根据勾股定理,得OB =5,∴BD =2BO =2 5. 17.34 【点拨】如图,作CH ⊥x 轴于H .∵A (3,0),B (0,2),∴OA =3,OB =2,∵∠AOB =∠BAC =∠AHC =90°,∴∠BAO +∠HAC =90°,∠HAC +∠ACH =90°,∴∠BAO =∠ACH .∵AB =AC ,∴△ABO ≌△CAH (AAS ),∴AH =OB =2,CH =OA =3,∴OH =OA +AH =3+2=5,∴OC =OH 2+CH 2=52+32=34.18.8 【点拨】∵AE 为∠DAB 的平分线, ∴∠DAE =∠BAE .∵四边形ABCD 为平行四边形, ∴AD ∥BC ,DC ∥AB ,DC =AB . ∵DC ∥AB ,∴∠BAE =∠DFA ,∴∠DAE =∠DFA , ∴AD =FD . 又∵DG ⊥AE ,∴AG =FG ,即AF =2AG . ∵F 为DC 的中点,∴DF =CF , ∴AD =DF =12DC =12AB =3.在Rt △ADG 中,根据勾股定理得AG =2,则AF =2AG =4. ∵AD ∥BC ,∴∠DAF =∠E ,∠ADF =∠ECF . 在△ADF 和△ECF 中,⎩⎨⎧∠DAF =∠E ,∠ADF =∠ECF ,DF =CF ,∴△ADF ≌△ECF (AAS), ∴AF =EF ,则AE =2AF =8.三、19.解:(1)x 3-x =x (x 2-1)=x (x +1)(x -1); (2)2a 2-4a +2=2(a 2-2a +1)=2(a -1)2; (3)m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2. 20.解:1x ÷⎝ ⎛⎭⎪⎫x 2+1x 2-x -2x -1+1x +1 =1x ÷x 2+1-2x x (x -1)+1x +1=1x ·x (x -1)(x -1)2+1x +1=1x-1+1 x+1=2x(x+1)(x-1).解方程2x=5x-1,得x=1 3.当x=13时,原式=-34.21.解:(1)a=85;b=80;c=85.(2)求知班成绩的方差为15×[(70-85)2+(75-85)2+(80-85)2+2×(100-85)2]=160.∵70<160,∴爱国班的成绩比较稳定.22.解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=120°,∴∠COA=180°-∠C=180°-120°=60°.∵∠1=∠2,∠3=∠4,∴∠COA=2∠1+2∠4=2(∠1+∠4)=2∠EOB.∴∠EOB=12∠COA=12×60°=30°.(2)不变化.∵CB∥OA,∴∠OBC=∠2,∠OFC=∠FOA.又∵∠1=∠2,∴∠OBC=∠1,∴∠OFC=2∠1,∴∠OBC∠OFC=∠12∠1=1 2.23.解:(1)3 000÷2=1 500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,由题意,得1 500 1.2x+1 500x=1 100,解得x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.∴甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2 600-a)只,由题意,得3a+2.5(2 600-a)≤7 000,解得a≤1 000.∴甲种口罩最多能购进1 000只.24.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.∵AC平分∠DAE,∴∠DAC=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠DAC=40°.(2)证明:∵四边形ABCD是平行四边形,∴OA=OC.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.25.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°-2∠ABC.∵以AD,AE为腰作等腰三角形ADE,∴AD=AE,∴∠ADE=∠AED,∴∠DAE=180°-2∠ADE.∵∠ADE=∠ABC,∴∠BAC=∠DAE,∴∠BAC-∠CAD=∠DAE-∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∴∠ACB=∠ABC=30°.∵△BAD≌△CAE,∴∠ABD=∠ACE=30°,∴∠ECB=∠ACB+∠ACE=60°.∵EM∥BC,∴∠MEC+∠ECD=180°,∴∠MEC=180°-60°=120°.(3)证明:∵△BAD≌△CAE,∴DB=CE,∠ABD=∠ACE.∵AB=AC,∴∠ABD=∠ACB,∴∠ACB=∠ACE.∵EM∥BC,∴∠EMC=∠ACB,∴∠ACE=∠EMC,∴ME=EC,∴DB=ME.又∵EM∥BD,∴四边形MBDE是平行四边形.2023年鲁教版(五四制)数学八年级上册期末考试测试卷(三)一.选择题(本题共10个小题)每小题均给出标号为A、B.C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.下列图形中,是中心对称图形的是()A.B.C.D.2.分式﹣可变形为()A.B.C.﹣D.﹣3.下列分式,,,中,最简分式有()A.1个B.2个C.3个D.4个4.空气是混合物,为了直观介绍空气各成分的百分比,最适合用的统计图是()A.折线统计图B.条形统计图C.散点统计图D.扇形统计图5.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)5055606570车辆数(辆)54821则上述车速的中位数和众数分别是()A.60,8B.60,60C.55,60D.55,86.早上6:20的时候,钟表的时针和分针所夹的锐角是()A.50°B.60°C.70°D.80°7.计算:101×1022﹣101×982=()A.404B.808C.40400D.808008.如图,已知四边形ABCD中,R、P分别为BC、CD上的点,E、F分别为AP、RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长不变C.线段EF的长逐渐减小D.线段EF的长与点P的位置有关9.如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.平均数是95分B.中位数是95分C.众数是90分D.方差是1510.如图1,平行四边形纸片ABCD的面积为120,AD=20.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片,若将甲、丙合井(AD、CB重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为()A.26B.29C.24D.25二、填空题(本题共10个小题)11.如图,△ABC是等边三角形,D为BC边上的点,△ABD经旋转后到达△ACE的位置,若∠CAE=15°,那么∠DAC=.12.若关于x的二次三项式x2+ax+16是完全平方式,则a的值是.13.若m2﹣n2=3,且m﹣n=6,则m+n=.14.若关于x的方程﹣=0产生增根,则m=.15.如图,△ABC沿边BC所在直线向右平移得到△DEF,下列结论:①△ABC≌△DEF;②∠DEF=∠B;③AC=DF;④EC=CF.正确的有(只填序号).16.一个多边形的内角和比四边形内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是.17.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.18.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为19,OE=2.5,则四边形EFCD的周长为.19.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.20.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若CG=2BG,S△BPG=2,则S▱AEPH=.三、解答题(本大题共9个小题)21.分解因式:(1)(x2+25)2﹣100x2.(2)3(x﹣1)2﹣18(x﹣1)+27.22.先化简(1﹣)÷,再从﹣2,﹣1,2中选一个合适的数代入并求值.23.解方程:﹣=﹣.24.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C.(2)平移△ABC,使点A的对应点A2坐标为(﹣3,﹣4),请画出平移后对应的△A2B2C2.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.25.我省某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩数据如图表所示.平均分(分)中位数(分)众数(分)方差初中部 a 85 b s 初中2 高中部85c100160(1)计算出a 、b 、c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好? (3)计算初中代表队决赛成绩的方差S中,并判断哪一个代表队选手成绩较为稳定.26.阅读下列材料,并解答其后的问题: 定义:两组邻边分别相等的四边形叫做筝形,如图1,四边形ABCD 中,若AD =AB ,CD =CB ,则四边形ABCD 是筝形. 类比研究我们在学完平行四边形后,知道可以从对称性、边角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成表格. 四边形 示例图形对称性边角 对角线 平行 四边形是中心对称图形两组对边分别平行,两组对边分别相等.两组对角分别相等. 对角线互相平分.筝形① 两组邻边分别相等有一组对角相等②(1)表格中①、②分别填写的内容是: ① ;② ;(2)证明筝形有关对角线的性质.已知:如图2,在第形ABCD 中,AD =AB ,BC =DC ,对角线AC ,BD 交于点O . 求证: ; 证明:(3)运用:如图2,已知筝形ABCD 中,AD =AB =4,CD =CB ,∠BAD ﹣120°,∠DCB=60*.求筝形ABCD的面积.27.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,同样用3600元购买排球要比购买篮球多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?28.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.29.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证DE+DF=AC.(2)当点D在边BC的延长线上时,如图②,线段DE,DF,AC之间的数量关系是为什么?(3)当点D在边BC的反向延长线上时,如图③,线段DE,DF,AC之间的数量关系是(不需要证明).。
鲁教版初二数学第二学期期末考试题-学生用卷

鲁教版初二数学第二学期期末考试题-学生用卷(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--初二下数学期末考试题(时间:120分钟总分: 120分)题号 一 二 三 四 总分 得分一、选择题(本大题共8小题,共分)1. 若a >a ,a <0,则下列四个不等式中成立的是( )A. aa >aaB. aa <aaC. a −a <a −aD. a +a <a +a2. 下列方程组中,是二元一次方程组的是( )A. {a +2a =13a −a =2B. {2a +3a =5a −a =1C. {a +a =2aa =−3D. {a =3a −22a−1=03. 二元一次方程组{2a +a =5a 2a −a =7a的解满足方程13a −2a =5,那么k 的值为( ) A. 35B. 53C. −5D. 14. 下列说法正确的是( )A. 在同一平面内两条直线被第三条直线所截,同旁内角互补B. 如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等C. 两个相等的角一组边平行,那么另一组边也平行D. 一条直线垂直于平行线中的一条,也一定垂直于另一条5. 如图,已知aa //aa .则角a 、a 、a 之间关系为()A. a +a +a =180∘B. a −a +a =180∘C. a+a−a=180∘D. a+a+a=360∘6.已知点a(a−1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C. D.7.在aa△aaa中,∠aaa=90∘,aa=aa,CD是斜边AB的中线,若aa=2√2,则点D到BC的距离为()A. 1B. √2C. 2D. √228.如图,△aaa中,∠a=90∘,aa=aa,AD平分∠aaa交BC于点D,aa⊥aa,垂足为E,且aa=6aa,则△aaa的周长为()A. 4cmB. 6cmC. 8cmD. 10cm二、填空题(本大题共8小题,共分)2a−3<0的整数解为______ .9.不等式组{a+1≥03a+a=1+3a的解a+a>0,则m的取值范围是10.已知方程组{a+3a=1−a______ .11.如图△aaa中,∠a:∠a=1:2,aa⊥aa于E,且∠aaa=75∘,则∠a= ______ .12.13.如图,已知△aaa中,∠a=65∘,∠a=45∘,AD是∠aaa的高线,AE是∠aaa的平分线,则∠aaa= ______ .14.15.16.当k ______ 时,代数式23(a−1)的值不小于代数式1−5a−16的值.17.若关于x的不等式(1−a)a>2可化为a>21−a,则a的取值范围是______ .18.命题:“等腰三角形两腰上的中线相等”的逆命题是______ .这条逆命题是______ 命题(填“真”或“假”)19.如图,已知aa=aa,∠aaa=∠aaa,要使△aaa≌△aaa,则应添加的一个条件为______ .(答案不唯一,只需填一个)三、计算题(本大题共1小题,共分)20.解下列方程组:21.(1){a−a=44a+2a=−1(2){3a+4a=−3.46a−4a=5.222.(3){7a−3a=5−5a+6a=−6(4){a4+a3=7 a3+a2=8.23.24.25.26.27.四、解答题(本大题共8小题,共分)28.解下列不等式(组),并把解集在数轴上表示出来29.(1)2a−12<1−4a−1630.(2){a−23+3>a−11−3(a+1)≥6−a.32.33.34.35.36.某校5名教师要带若干名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,车站提出两种优惠方案供学校选择.甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款.设一共有x名学生,请问选择哪种方案合算?37.38.39.40.41.42.43.44.某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件获利16元,每加工一个乙种零件获利24元,若派x人加工甲种零件,其余的人加工乙种零件.45.(1)此车间每天所获利润为y元,求出y与x的函数关系式.46.(2)要使车间每天所获利润不低于1800元,至多派多少人加工甲种零件?47.48.50.51.52.53.54.已知:如图,aa//aa,∠1=∠2,求证:∠a=∠a.55.56.57.枣庄大酒店客房部有三人间、双人间和单人间客房,收费数据如下表:58.(例如三人间普通间客房每人每天收费50元).为吸引客源,在十一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)则三人间、双人间普通客房各住了多少间?(2)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少为什么59.平面内的两条直线有相交和平行的位置关系.60.(1)aa//aa,如图a,点P在AB、CD外部时,由aa//aa,有∠a=∠aaa,又因∠aaa是△aaa的外角,故∠aaa=∠aaa+∠a,得∠aaa=∠a−∠a.61.(2)如图b,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠aaa、∠a、∠a之间有何数量关系?请证明你的结论.62.63.如图所示,有一个直角三角形纸片,两直角边aa=6aa,aa=8aa,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE 重合,你能求出CD的长吗?64.65.66.如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.67.(1)求证:△aaa≌△aaa;68.(2)求:∠aaa的大小;69.(3)如图2,△aaa固定不动,保持△aaa的形状和大小不变,将△aaa绕着点O旋转(△aaa和△aaa不能重叠),则∠aaa的大小______.(填“变”或“不变”)。
鲁教版(五四制)八年级数学下册期末综合测试卷含答案

鲁教版(五四制)八年级数学下册期末综合测试卷一、选择题(每题3分,共36分)1.【2023·济南期末】若a5=b8,则ab等于()A.85B.53C.35D.582.【2023·滨州滨城区期中】如表是代数式ax2+bx的值的情况,根据表格中的数据,可知方程ax2+bx=12的根是()x…-3 -2 -1 0 1 2 3 4 …ax2+bx…12 6 2 0 0 2 6 12 …A.x1=0,x2=1 B.x1=-1,x2=2C.x1=-2,x2=3 D.x1=-3,x2=43.【2023·滨州邹平市月考】用配方法解方程2x2+3=7x时,方程可变形为()A.(x-72)2=374B.(x-72)2=434C.(x-74)2=116D.(x-74)2=25164.【2023·德州期末】如图,将长方形和直角三角形的直角顶点重合,若∠AOE=128°,则∠COD的度数为()A.28°B.38°C.52°D.62°5.下列各式与427是同类二次根式的是()A.216 B.125 C.48 D.32 6.【2023·重庆】如图,已知△ABC∽△EDC,AC∶EC=2∶3,若AB的长度为6,则DE的长度为()A.4 B.9 C.12 D.13.5 7.【2023·东营东营区月考】表示实数a,b的点在数轴上的位置如图所示,化简a2-b2+(a-b)2的结果是()A.-2a B.-2b C.0 D.2a-2b 8.【2023·济宁邹城市期末】如图,图形甲与图形乙是位似图形,点O是位似中心,点A,B的对应点分别为点A′,B′,若OA′=2OA,则图形乙的面积是图形甲的面积的()A.2倍B.3倍C.4倍D.5倍9.【新定义题】定义运算:a☆b=ab2-ab-1,例如:3☆4=3×42-3×4-1,则方程1☆x=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根10.【2023·丽水】如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为()A.12B.1 C.32D. 311.【2023·泰安泰山区一模】矩形ABCD与矩形CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D.5212.如图,在边长为4的正方形ABCD中,点E,F分别是BC,CD的中点,DE,AF交于点G,AF的中点为H,连接BG,DH.给出下列结论:①AF⊥DE;②DG=85;③HD∥BG;④△ABG与△DHF相似.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)13.【2022·济宁】若二次根式x-3有意义,则x的取值范围是________.14.若x2=y3=z4,则2x-y+3zx+y-z=________.15.若关于x的一元二次方程(k-2)x2-2kx+k=6有实数根,则k的取值范围为________.16.【2023·济南历下区期末】如图,等边三角形ABC被矩形DEFG所截,EF∥BC,线段AB被截成三等份.若△ABC的面积为12 cm2,图中阴影部分的面积为________cm2.17.【2023·苏州改编】如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OAB C.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC·EF的值为________.18.如图,边长为2的正方形ABCD中,E,F分别是边BC,CD的中点,连接AE,G是AE上的一点,∠EGF=45°,则GF=________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)33-(3)2+(π+3)0-27+|3-2|.(2)24+3113-54÷6×2348.20.【2023·临沂兰山区期末】解下列方程:(1)(2x-1)2=(3-x)2.(2)x2-4x-7=0.21.已知关于x的一元二次方程x2+3x+k-2=0有实根,方程的两个实数根分别为x1,x2,若(x1-1)(x2-1)=-1,求k的值.22.【2023·滨州改编】如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,23),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)用x表示线段DF.(2)求S关于x的函数表达式.23.为了加快发展新能源和清洁能源,助力实现“双碳”目标,大力发展高效光伏发电关键零部件制造.青岛上合示范区某工厂生产的某种零件按供需要求分为8个档次.若生产第一档次(最低档次)的产品,一天可生产38件,每件的利润为12元,每提高一个档次,每件的利润增加3元,每天的产量将减少2件.请解答下列问题,设产品的档次(每天只生产一个档次的产品)为x,若该产品一天的总利润为756元,求这天生产产品的档次x的值.24.【2023·温州】如图,已知矩形ABCD,点E在CB的延长线上,点F在BC的延长线上,过点F作FH⊥EF交ED的延长线于点H,连接AF交EH于点G,GE=GH.(1)求证:BE=CF.(2)当ABFH=56,AD=4时,求EF的长.25.【2023·杭州】如图,在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=13,求DF的长.(2)求证:AE·CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.答案一、1.D 【点拨】∵a 5=b 8,∴a b =58.2.D 【点拨】由表中数据得,当x =-3时,ax 2+bx =12;当x =4时,ax 2+bx =12,所以方程ax 2+bx =12的解为x 1=-3,x 2=4. 3.D 【点拨】∵2x 2+3=7x ,∴2x 2-7x =-3,∴x 2-72x =-32,∴x 2-72x +4916=-32+4916, ∴(x -74)2=2516.4.C 【点拨】∵将长方形和直角三角形的直角顶点O 重合,∴∠AOC =∠DOE =90°.∵∠AOE =128°,∴∠COE =∠AOE -∠AOC =128°-90°=38°, ∴∠COD =∠DOE -∠COE =90°-38°=52°. 5.C 【点拨】∵427=239,216=66,125=55,48=43,32=42,∴与427是同类二次根式的是48.6.B 【点拨】∵△ABC ∽△EDC ,AC ∶EC =2∶3,∴AB ED =AC EC =BC DC =23,∴当AB =6时,DE =9. 7.A 【点拨】由数轴可知a <0,b >0,a -b <0,∴原式=-a -b -(a -b )=-a -b -a +b =-2a .8.C 【点拨】由题意可得,甲乙两图形相似,且相似比为12,根据相似图形的面积比是相似比的平方可得,图形乙的面积是图形甲的面积的4倍. 9.A10.D 【点拨】如图,连接BD 交AC 于点O .∵四边形ABCD是菱形,∠DAB =60°,∴OA =OC ,∠BAO =12∠DAB =30°,AC ⊥BD ,∴∠AOB =90°,∴OB =12AB =12, ∴OA =AB 2-OB 2=12-⎝ ⎛⎭⎪⎫122=32,∴AC =2OA = 3.11.C 【点拨】如图,延长GH 交AD 于点P .∵四边形ABCD和四边形CEFG 都是矩形,∴∠ADC =∠ADG = ∠CGF =90°,AD =BC =2,GF =CE =1,∴AD ∥GF ,∴∠GFH =∠P AH .又∵H 是AF 的中点,∴AH =FH ,在△APH 和△FGH 中,⎩⎨⎧∠P AH =∠GFH ,AH =FH ,∠AHP =∠FHG ,∴△APH ≌△FGH (ASA),∴AP =GF =1,GH =PH =12PG ,∴PD =AD - AP =1.∵CG =2,CD =1,∴DG =1,∴GH =12PG =12×PD 2+DG 2=22. 12.B 【点拨】∵四边形ABCD 为正方形,∴∠ADC =∠BCD =90°,AD =CD .∵E 和F 分别为BC 和CD 的中点,∴DF =EC ,∴△ADF ≌△DCE (SAS), ∴∠AFD =∠DEC ,∠F AD =∠EDC .∵∠EDC +∠DEC =90°,∴∠EDC + ∠AFD =90°,∴∠DGF =90°,即DE ⊥AF ,故①正确;∵AD =4,DF = 12CD =2,∴AF =AD 2+DF 2=42+22=25,又∵S △ADF =12AD ·DF =12AF ·DG ,∴DG =AD ·DF AF =455,故②错误;∵H 为AF 的中点,∴HD =HF =12AF =5,∴∠HDF =∠HFD .∵AB ∥DC ,∴∠HDF =∠HFD =∠BAG .∵AG =AD 2-DG 2=855,AB =4,∴AB DH =455=AGDF ,∴△ABG ∽△DHF ,故④正确;由④可知∠ABG =∠DHF .∵AB ≠AG ,∴∠ABG 和∠AGB 不相等,∴∠AGB ≠∠DHF ,∴HD 与BG 不平行,故③错误.综上所述①④正确. 二、13.x ≥3 【点拨】根据题意,得x -3≥0,解得x ≥3.14.13 【点拨】设x 2=y 3=z4=k (k ≠0),则x =2k ,y =3k ,z =4k ,∴2x -y +3z x +y -z=4k -3k +12k2k +3k -4k=13.15.k ≥1.5且k ≠2 【点拨】∵关于x 的一元二次方程(k -2)x 2-2kx +k =6有实数根,∴⎩⎨⎧k -2≠0,Δ=(-2k )2-4×(k -2)×(k -6)≥0,解得k ≥1.5且k ≠2.16.4 【点拨】易知△AHM ∽△ABC .∵AH =HK =KB ,S △ABC =12 cm 2,∴S △AHMS △ABC=(AH AB )2=(13)2=19,∴S △AHM =19S △ABC =19×12=43(cm 2).又易知△AKN ∽△ABC , ∴S △AKN S △ABC=(AK AB )2=(23)2=49,∴S △AKN =49S △ABC =49×12=163(cm 2),∴S 阴影= S △AKN -S △AHM =163-43=4(cm 2),∴图中阴影部分的面积为4 cm 2. 17.30 【点拨】如图,连接AC ,EF ,则AC =OC 2+OA 2=32+92=310.∵四边形OABC 为矩形,∴B (9,3).又∵OE =BF =4,∴E (4,0),F (5,3). ∴EF =(5-4)2+32=10,∴AC ·EF =310×10=30.18.3105 【点拨】如图,连接BF ,交AE 于点H .∵四边形ABCD 是正方形,∴AB =BC =CD ,∠ABE =∠C =90°.∵点E ,F 分别是边BC ,CD 的中点,∴BE =CF ,在△ABE 与△BCF 中,⎩⎨⎧AB =BC ,∠ABE =∠BCF ,BE =CF ,∴△ABE ≌△BCF (SAS),∴∠BAE =∠CBF ,AE =BF .∵∠BAE +∠AEB =90°,∴∠AEB +∠EBH =90°.∴∠BHE =90°,∴∠GHF =90°.∵∠FGH =45°,∴△FGH 是等腰直角三角形,∵AB =BC =2,∴AE =BF =AB 2+BE 2= 5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =AB ·BE AE =255,∴HG =HF =BF -BH =5-255=355,∴GF =GH 2+HF 2=3105.三、19.【解】(1)33-(3)2+(π+3)0-27+|3-2|=3-3+1-33+2-3=-3 3.(2)24+3113-54÷6×2348=26+23-546×23×4 3=26+23-8 3 =26-6 3.20.【解】(1)(2x -1)2=(3-x )2,(2x -1)2-(3-x )2=0,[(2x -1)+(3-x )][(2x -1)-(3-x )]=0,∴x +2=0或3x -4=0,∴x 1=-2,x 2=43.(2)x 2-4x -7=0,x 2-4x =7,x 2-4x +4=7+4,即(x -2)2=11,∴x -2=±11,∴x 1=2+11,x 2=2-11.21.【解】∵关于x 的一元二次方程x 2+3x +k -2=0有实根,∴Δ=32-4(k -2)≥0,解得k ≤174.∵方程的两个实数根分别为x 1,x 2,∴x 1+x 2=-3,x 1x 2=k -2.∵(x 1-1)(x 2-1)=-1,∴x 1x 2-(x 1+x 2)+1=-1,∴k -2+3+1=-1,解得k =-3,符合题意.故所求k 的值为-3. 22.【解】(1)如图,过点A 作AG ⊥OC 于点G ,连接AC .∵顶点A 的坐标为(2,23),∴OG =2,AG =23,∴OA =22+(23)2=4, ∴OG AO =12,∴∠OAG =30°,∴∠AOG =60°. ∵四边形OABC 是菱形,∴∠BOC =∠AOB =30°,AC ⊥BO ,AO =OC , ∴△AOC 是等边三角形,∴∠ACO =60°.∵DE ⊥OB ,∴DE ∥AC ,∴∠EDO =∠ACO =60°, ∴△EOD 是等边三角形,∴ED =OD =x .∵DF∥OB,∴△CDF∽△COB,∴DFOB=CDCO.∵A(2,23),AO=4,∴B(6,23),∴OB=62+(23)2=43,∴DF43=4-x4,∴DF=3(4-x).(2)∵DF=3(4-x),∴S=-32x2+23x(0≤x≤4).23.【解】∵该工厂生产产品的档次(每天只生产一个档次的产品)为x,∴每件产品的利润为12+3(x-1)=(9+3x)元,一天可生产38-2(x-1)=(40-2x)件产品.根据题意得(9+3x)(40-2x)=756,整理得x2-17x+66=0,解得x1=6,x2=11(不符合题意,舍去).∴这天生产产品的档次x的值为6.24.(1)【证明】∵HF⊥EF,∴∠HFE=90°.∵GE=GH,∴FG=12EH=GE=GH,∴∠E=∠GFE.∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,∴△ABF≌△DCE(AAS),∴BF=CE,∴BF-BC=CE-BC,即BE=CF.(2)【解】∵四边形ABCD是矩形,∴BC=AD=4.∵∠HFE=∠DCB=90°,∠HEF=∠DEC,∴△ECD∽△EFH,∴ECEF=CDFH,∴ECEF=ABFH.∵ABFH=56,∴ECEF=56.设BE=CF=x,则EC=x+4,EF=2x+4,∴x+42x+4=56,解得x=1,∴EF=6.25.(1)【解】∵四边形ABCD是正方形,∴AD∥BC,AB=AD=BC=CD=1,∴∠DEF=∠CBF,∠EDF=∠BCF,∴△DEF ∽△CBF ,∴DE BC =DF CF ,∴131=DF DF +1,∴DF =12. (2)【证明】∵AB ∥CD ,∴∠ABE =∠F .又∵∠A =∠BCD =90°,∴△ABE ∽△CFB ,∴AB CF =AE BC ,∴AE ·CF =AB ·BC =1.(3)【解】设EG =ED =x ,则AE =AD -ED =1-x ,BE =BG +GE =BC +GE =1+x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴1+(1-x )2=(1+x )2,∴x =14,∴ED =14.。
【鲁教版】八年级数学下期末试题(带答案)

一、选择题1.如图,在□ABCD 中,AB=5,BC=6,点O 是AC 的中点,OE ⊥AC 交边AD 于点E ,则△CDE 的周长为等于( )A .5.5B .8C .11D .222.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30° 3.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( ) A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm 4.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 5.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④6.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y++=--有正整数解,则所有满足条件的整数a 的值之和是( )A .4B .5C .6D .37.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个 8.如果917255+能被n 整除,则n 的值可能是( ) A .20B .30C .35D .40 9.下列变形是分解因式的是( ) A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+--10.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 11.若关于x 的不等式组0721x m x -⎧⎨-≤⎩<的整数解有且仅有3个,则实数m 的取值范围是( ) A .56m ≤<.B .56m <<C .56m ≤≤D .56m <≤ 12.如图,CD 是ABC 的角平分线,2,7,4B A AC BC ∠=∠==,则BD 的长为( )A .2B .3C .23D .32二、填空题13.如图,平行四边形ABCD ,将四边形CDMN 沿线段MN 折叠,得到四边形QPMN ,已知68BNM ︒∠=,则AMP ∠=_______.14.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA ,PR 的中点.如果DR=3,AD=4,则EF 的长为______.15.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____. 16.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 17.分解因式 -2a 2+8ab-8b 2=______________.18.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长为___________.三、解答题21.如图1在Rt △ABC 中,∠ACB =90°,CA =CB =2,P 为AB 上一个点,将线段CP 绕点C 逆时针旋转90°得到线段CD ,连接PD ,BD .(1)判断BD 与AP 的关系,并证明你的结论.(2)如图2,设点B 关于直线CP 的对称点为E ,连接BE ,CE .① 依题意补全图2;② 证明:BE ∥CD ;③ 当四边形CDBE 为平行四边形时,求AP 的长.22.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?23.分解因式(1)22363ax axy ay -+(2)()()22162x x x ---24.如图1,已知ABC 中,1,90,AB BC ABC ==∠=︒把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为,DE 长直角边为DF ),将直角三角板DEE 绕D 点按逆时针方向旋转.(1)在图1中.DE 交AB 于,M DF 交BC 于N .①求证:DM DN =;②在这一过程中,直角三角板DEF 与三角形ABC 的重叠部分为四边形,DMBN 请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.(2)继续旋转至如图2的位置,延长AB 交DE 于,M 延长BC 交DF 于,N DM DN =是否仍然成立?(请写出结论,不用证明.)(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于,M DM DN =是否仍然成立?(请写出结论,不用证明.)25.已知点()39,210A m m --,分别根据下列条件解决问题:(1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.26.如图,在等腰ABC 中,AB AC =,045ACB ︒<∠<︒,点C 关于直线AB 的对称点为点D ,连接BD 与CA 的延长线交于点E ,在BC 上取点F ,使得BF DE =,连接AF .(1)依题意补全图形.(2)求证:AF AE =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,继而可得△CDE的周长等于AD+CD,又由平行四边形ABCD的AB+BC=AD+CD=11.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=5,BC=6,∴AD+CD=11,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11.故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.2.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=15×540°=108°,又∵EA=ED,∴∠EAD=12×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF 的内角∠BAG =90°,∴∠DAG =90°﹣72°=18°,故选:A .【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.3.D解析:D【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.【详解】A. ∵2+3<10,不能够成三角形,故此选项错误;B. 4+3<10,不能够成三角形,故此选项错误;C. 4+6=10,不能够成三角形,故此选项错误;D. 10+10>15,能构成三角形,故此选项正确.故选D.4.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.5.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】 原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++1111x x x -=-++ 1x x =+ 又因为x 为正整数, 所以1121x x ≤<+, 故选B .【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.6.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.7.B解析:B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 8.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.9.B解析:B【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】C 和D 不是积的形式,应排除;A 中,不是对多项式的变形,应排除.故选B .【点睛】考查了因式分解的定义,关键在于能否正确应用分解因式的定义来判断.10.D解析:D【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+212⨯=2 ∴C(2,1由题意可得:第1次变换后点C 的坐标变为(2-1,1),即(1,1-,第2次变换后点C 的坐标变为(2-21),即(0,1第3次变换后点C 的坐标变为(2-3,1),即(-1,1-第n 次变换后点C 的坐标变为(2-n ,1)(n 为奇数)或(2-n ,1为偶数), ∴连续经过2021次变换后,等边ABC 的顶点C 的坐标为(-2019,1-, 故选:D .【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键. 11.D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式0x m -<,得:x m <,解不等式721x -≤,得:3x ≥,则不等式组的解集为3x m ≤<,∵不等式组的整数解有且仅有3个,∴不等式组的整数解为3、4、5,则56m <≤.故答案为:D .【点睛】本题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.12.B解析:B【分析】延长CB 至点F ,使CF=CA ,连接DF ,证明△FCD ≌△ACD ,得到∠F=∠A ,结合已知得到线段的关系,从而计算BD .【详解】解:延长CB 至点F ,使CF=CA ,连接DF ,∵CD 是△ABC 的角平分线,∴∠ACD=∠FCD ,在△FCD 和△ACD 中,CF CA FCD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ACD (SAS ),∴∠F=∠A ,∴∠ABC=2∠A 且∠ABC=∠F+∠FDB ,∴∠F=∠FDB ,∴BF=BD ,∴CF=BC+BF=BC+BD ,∴AC=BD+BC ,∴BD=AC-BC=7-4=3,故选B .【点睛】本题考查了全等三角形的判定和性质,解题的关键是合理作出辅助线,构造全等三角形.二、填空题13.【分析】根据平行四边形的性质得得根据折叠的性质得根据平角的性质即可求解【详解】∵四边形ABCD 是平行四边形∴∴∵将四边形CDMN 沿线段MN 折叠得到四边形QPMN ∴∴故答案为【点睛】本题考察了平行四边 解析:44︒【分析】根据平行四边形的性质得//AD BC ,得68NMD ︒∠=,根据折叠的性质得68PMN NMD ︒∠=∠=,根据平角的性质即可求解.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴68NMD BNM ︒∠=∠=∵将四边形CDMN 沿线段MN 折叠,得到四边形QPMN∴68PMN NMD ︒∠=∠=∴18044AMP PMN NMD ︒∠=︒-∠-∠=故答案为44︒.【点睛】本题考察了平行四边形的性质,平行线的性质,和利用平角求解未知角的度数;其中两直线平行,同位角相等,内错角相等,同旁内角互补.14.5【解析】试题分析:根据勾股定理求AR ;再运用中位线定理求EF 试题 解析:5【解析】试题分析:根据勾股定理求AR ;再运用中位线定理求EF .试题∵四边形ABCD 是矩形,∴△ADR 是直角三角形∵DR=3,AD=4∴∵E 、F 分别是PA ,PR 的中点∴EF=12AR=12×5=2.5. 考点:1.三角形中位线定理;2.矩形的性质.15.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k -+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 16.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0.故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 17.-2(a-2b)2【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)2解析:-2(a-2b)2【详解】解:-2a 2+8ab-8b 2=-2(a 2-4ab+4b 2)=-2(a-2b)2故答案为-2(a-2b)218.-1【分析】由A (32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC 的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A (32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.【分析】由已知条件利用线段的垂直平分线的性质得到AD =CDAC =2AE 结合周长进行线段的等量代换可得答案【详解】解:∵DE 是AC 的垂直平分线∴AD =CDAC =2AE =6cm 又∵ABD 的周长=AB+B解析:19cm【分析】由已知条件,利用线段的垂直平分线的性质,得到AD =CD ,AC =2AE ,结合周长,进行线段的等量代换可得答案.【详解】AE ,解:∵DE是AC的垂直平分线,3cm∴AD=CD,AC=2AE=6cm,又∵ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴ABC的周长=AB+BC+AC=13+6=19cm.故答案为:19cm.【点睛】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.三、解答题21.(1)BD⊥AP,BD=AP,证明见解析;(2)①见解析;②见解析;③2【分析】(1)由旋转的性质及题意易得△ACP ≌△PCD,进而问题得证;(2)①根据题意直接作图即可;②根据轴对称的性质及题意可直接得证;③由(1)及平行四边形的性质可得AP=BD,然后根据对称可求解.【详解】解:(1)结论:BD⊥AP,BD=AP证明:∵∠ACB=90°,∠PCD=90°∴∠ACP=∠BCD ,∠A=∠ABC =45°∵AC=BC,PC=DC∴△ACP ≌△BCD∴BD=AP,∠A=∠CBD =45°∴∠ABD=∠ABC+∠CBD=90°∴BD⊥AP(2)① 如图② ∵点B关于直线CP的对称点为E∴CG⊥BE∵∠PCD=90°即CG⊥CD∴BE∥CD③∵四边形CDBE为平行四边形∴BD=CE由(1)可得AP=BD∵B、E关于直线CP的对称∴BC=CE∴AP=BC=2.【点睛】本题主要考查轴对称的性质、全等三角形的判定与性质及平行四边形的性质,熟练掌握各个知识点是解题的关键.22.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x套新型防护服,则乙工厂每天能加工1.5x套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40,经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服. (2)选择甲工厂所需费用为200×120040=6000(元); 选择乙工厂所需费用为350×120060=7000(元). ∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 23.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.24.(1)①见解析;②不变,14;(2)成立;(3)成立 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)成立.同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)结论仍然成立,方法同(1).【详解】解:()1①如图,连接DB ,在Rt ABC ∆中,,,AB BC AD DC ==45,90,45A C BDC ABD CBD ∴∠=∠=︒∠=︒∠=∠=︒45,ABD C ∴∠=∠=︒,DB DC AD ∴==90,MDB BDN CDN BDN ∠+∠=∠+∠=,MDB NDC ∴∠=∠,BMD CND ∴∆≅∆DM DN ∴=;②四边形DMBN 的面积不发生变化;由①知,,BMD CND ∆≅∆BMD CND S S ∆∴∆=DBN DMB DBN DNC DMBN S S S S S ∆∆∆∆∴=+=+四边形 1111112224DBC ABC S S ∆∆===⨯⨯⨯= ()2DM = DN 仍然成立.理由如下:连接BD由(1)知BD⊥AC,BD= CD,∴∠ABD=∠ACB = 45°,∴∠ABD+∠MBD= 180°,∠ACB+∠NCD= 180°,∴∠MBD=∠NCD,∵BD⊥AC,∴∠MDB +∠MDC = 90°,又∠NDC +∠MDC = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中,∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NDC (ASA)∴DM = DN,()3DM = DN成立,理由如下:连接BD,由(1) 知BD⊥AC,BD= AD,∴∠BAD=∠ABD = 45°,∴∠MBD=∠NCD= 45°,∵BD⊥AC,∴∠MDB +∠NDB = 90°,又∠NDC +∠NDB = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NCD (ASA),∴DM = DN.【点睛】本题考查了利用ASA 求三角形全等,还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理,勾股定理和面积公式的利用等知识.25.(1)m=5;(2)()3,2A -【分析】(1)根据点A 在x 轴上可知点A 的纵坐标为0,从而可以解答本题;(2)点A 在第四象限,并且m 为整数,从而可以求得点A 的坐标;【详解】解:根据题意,∵点()39,210A m m --在x 轴上,∴2100m -=,解得:5m =;()2点()39,210A m m --在第四象限.390,2100,m m ->⎧∴⎨-<⎩①② 解不等式①得3m >,解不等式②得5m <,所以,m 的取值范围是:35m << m 为整数4m ∴=,()3,2A ∴-;【点睛】坐标与图形的性质,解题的关键是明确每一问提供的信息,能正确知道与坐标之间的关系,灵活变化,求出所求问题的答案.26.(1)见解析;(2)见解析【分析】(1)根据几何语言画出对应的几何图形;(2)利用对称的性质得AB 垂直平分CD ,则BC =BD ,AC =AD ,利用等腰三角形的性质得∠ADE =∠ACB ,再利用AB =AC 得到∠ACB =∠ABF ,AD =AB ,所以∠ABF =∠ADE ,然后证明△ABF ≌△ADE ,从而得到结论.【详解】(1)解:如图,(2)证明:连接AD ,如图,∵点C ,D 关于直线AB 对称,∴AB 垂直平分CD ,∴BC BD =,AC AD =,∴ADE ACB ∠=∠,∵AB AC =,∴ACB ABF ∠=∠,AD AB =,∴ABF ADE =∠∠,在ABF 和ADE 中,AB AD ABF ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,∴()ABF ADE SAS ≅△△,∴AF AE =.【点睛】本题考查了作图-轴对称变换,等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,熟练掌握各知识点是解答本题的关键.。
鲁教版八年级数学下册期末测试卷

八年级数学下册期末测试卷一、单选题(共10题;共20分)1.下列运算中正确的是( ) A. √1916=134B. (√2)2=±2C. √1+2=1+2D. √(−3)2=32.如图,在矩形ABCD 中,E ,F 分别是AD ,AB 边上的点,连接CE ,DF ,他们相交于点G ,延长CE 交BA 的延长线于点H ,则图中的相似三角形共有( )A. 5对B. 4对C. 3对D. 2对 3.将一元二次方程 x(2x −1)=1 化成一般形式,正确的是( )A. 2x 2−x +1=0B. 2x 2−x −1=0C. 2x 2−x =1D. 2x 2+x −1=04.如图1,在菱形ABCD 中,∠BAD=60°,AB=2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF=30°.设DE=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的( )A. 线段ECB. 线段AEC. 线段EFD. 线段BF5.如图,在菱形ABCD 中,AC =8,BD =6,DE ⊥AB ,垂足为E ,DE 与AC 交于点F ,则DC/FC 的值为( ) A. 34 B. 43 C. 35 D. 45 6.若式子 √x−1x−2在实数范围内有意义,则 x 的取值范围是( )A. x ≥1 且 x ≠2B. x ≤1C. x >1 且 x ≠2D. x <17.古希腊人认为,最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 √5−12( √5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”雕像便是如此.若某人身材大致满足黄金分割比例,且其肚脐至足底的长度为105 cm ,则此人身高大约为( )A. 160 cmB. 170 cmC. 180 cmD. 190 cm8.若方程x 2﹣8x +m =0可通过配方写成(x ﹣n )2=6的形式,则x 2+8x +m =5可配方成( ) A. (x ﹣n +5)2=1 B. (x +n )2=1 C. (x ﹣n +5)2=11 D. (x +n )2=11 9.菱形ABCD 的一条对角线的长为6,边AB 的长是方程 x 2−7x +12=0 的一个根,则菱形ABCD 的周长为( )A. 16B. 12C. 12或16D. 无法确定10.在锐角三角形ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和ACFG,连接CE,BG 和EG,EG与HA的延长线交于点M,下列结论:①BG=C E;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(共6题;共7分)11.已知1是一元二次方程x2−3x+p=0的一个根,则p=________.12.使代数式√x−1有意义的x取值范围是________.13.已知两个相似三角形的相似比为4:3,则这两个三角形的对应高的比为________.14.如图,平行四边形ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:________可使其成为矩形(只填一个即可).15.(1)若(x2﹣3x﹣4)0=x2﹣3x﹣3,则x=________ ;(2)若(a2+b2﹣2)2=25,则a2+b2=________ .16.若成立,则x满足________三、计算题(共2题;共10分)17.化简:√−a3.√a4(−1a) .18.计算:√1+112+122+√1+122+132+√1+132+142+⋯+√1+120172+120182四、解答题(共4题;共20分)19.根据扬州市某风景区的旅游信息,A公司组织一批员工到该风景区旅游,支付给旅行社2800元. A公司参加这次旅游的员工有多少人?扬州市某风景区旅游信息表20. 已知 α , β 是关于x 的一元二次方程 x 2+(2m +3)x +m 2=0 的两个不相等的实数根,且满足 1α + 1β=−1 ,求m 的值.21.3.关于x 的方程 有实根.(1)若方程只有一个实根,求出这个根;(2)若方程有两个不相等的实根1x ,2x ,且 ,求k 的值.22.小刚和小亮想用测量工具和几何知识测量公园古树 AB 的高度,由于有围栏保护,他们无法到达底部 B ,如图,围栏 CD =29 米,小刚在 DC 延长线 E 点放一平面镜,镜子不动,当小刚走到点 F 时,恰好可以通过镜子看到树顶 A ,这时小刚眼睛 G 与地面的高度 FG =1.5 米, EF =2 米, EC =1 米;同时,小亮在 CD 的延长线上的 H 处安装了测倾器(测倾器的高度忽略不计),测得树顶 A 的仰角 ∠AHB =45° , DH =5 米,请根据题中提供的相关信息,求出古树 AB 的高度.五、综合题(共2题;共26分)23.如图所示,四边形 ABCD 中, AC ⊥BD 于点 O , AO =CO =12 , BO =DO =5 ,点 P 为线段 AC 上的一个动点.(1)求证: AB =BC =CD =AD .(2)过点 P 分别作 PM ⊥AD 于 M 点,作 PH ⊥DC 于 H 点。
鲁教版八年级数学上册期末测试题(附参考答案)

鲁教版八年级数学上册期末测试题(附参考答案)满分150分 考试时间120分钟一、选择题:本题共12个小题,每小题4分,共48分。
每小题只有一个选项符合题目要求。
1.下列因式分解正确的是( ) A .2a 2-4a +2=2(a -1)2 B .a 2+ab +a =a (a +b ) C .4a 2-b 2=(4a +b )(4a -b ) D .a 3b -ab 3=ab (a -b )22.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除3.分式x 2−xx−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或14.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50x D .75x =50x+55.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁6.如图,一束太阳光平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为( )A.41°B.51°C.42°D.49°7.如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是( )A.AD=BC B.∠ABD=∠BDCC.AB=AD D.∠A=∠C8.如图,□ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD的中点.若AD=4,CD=6,则EO的长为( )A.1 B.2C.3 D.49.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )10.在正数范围内定义一种运算“※”,其规则为a※b=1a +1b,如2※4=12+14,根据这个规则,方程3※(x-1)=1的解为( ) A.x=52B.x=-1C.x=12D.x=-311.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)12.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC二、填空题:本题共6个小题,每小题4分,共24分。
鲁教版(五四制)八年级数学下册期末达标测试卷含答案

鲁教版(五四制)八年级数学下册期末达标测试卷一、选择题(每题3分,共36分)1.若式子x-2x-3有意义,则x的取值范围是()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠32.解一元二次方程x2-2x=4,配方后正确的是()A.(x+1)2=6 B.(x-1)2=5C.(x-1)2=4 D.(x-1)2=83.已知二次根式2a-4化为最简二次根式后与2是同类二次根式,则a的值可以是()A.5 B.6 C.7 D.84.若x=2+1,则代数式x2-2x+2的值为()A.7 B.4 C.3 D.3-2 2 5.已知m,n是一元二次方程x2+2x-5=0的两个根,则m2+mn+2m的值为() A.0 B.-10 C.3 D.106.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是() A.3 B.2 2C.10 D.47.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运算,例如4*3=(4+3)×(4-3)-1=7-1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根8.临沂一体彩销售中心今年开业,一月份总销售额为12 000元,三月份总销售额为14 520元,且从一月份到三月份,每月总销售额的增长率相同,则每月总销售额的增长率为()A .8%B .9%C .10%D .11%9.如图,正方形ABCD 中,E ,F 是对角线BD 上的两点,BD =6,BE =DF =4,则四边形AECF 的面积为( ) A .12B .6C .10D .21010.如图,点A ,B 都在格点上,AB 与网格线交于点C ,若BC =2133,则AC 的长为( ) A .13B .4133C .213D .31311.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作CE ∥BD 交AB 的延长线于点E ,下列结论不一定正确的是( ) A .OB =12CE B .△ACE 是直角三角形 C .BC =12AED .BE =CE12.如图,在边长为3的正方形ABCD 中,点E 是边AB 上的点,且BE =2AE ,过点E 作DE 的垂线交正方形ABCD 的外角∠CBG 的平分线于点F ,交边BC 于点M ,连接DF 交边BC 于点N ,则MN 的长为( ) A .23B .56C .67D .1二、填空题(每题3分,共18分)13.若(2a +1)2=2a +1,则a 的取值范围是________.14.若关于x 的一元二次方程x 2-4x +m -1=0有两个不相等的实数根,则m 的取值范围是______________.15.已知x2=y3=z4≠0,则2x+2y+z3y-z=________,x+2y-3z3y-z=________.16.如图,在矩形ABCD中,E为AD的中点,连接CE,过点E作CE的垂线交AB于点F,交CD的延长线于点G,连接CF.已知AF=12,CF=5,则EF=________.17.如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺的宽BD为________.18.如图,菱形ABCD的边长为6 cm,∠BAD=60°,将该菱形沿AC方向平移2 3 cm,得到菱形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为________cm.三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.计算:(1)50×328-8;(2)12-313+27.20.解方程:(1)2x2-3x-1=0;(2)(x+3)2-4(x+3)-5=0.21.如图,在平面直角坐标中,△ABC的三个顶点的坐标分别为A(-1,3),B(-1,1),C(-3,2),以点O为位似中心,在第四象限内,画出△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的相似比为1:2,并写出点A1,B1,C1的坐标.22.如图,线段DE与AF分别为△ABC的中位线与中线.(1)求证:AF与DE互相平分.(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.23.如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF,连接DE,DF,BE,BF.(1)求证:△ADE≌△CBF;(2)若AB=42,AE=2,求四边形BEDF的周长.24.青岛市某茶叶专卖店销售某种茶叶,其进价为每千克240元,按每千克400元出售,平均每周可售出200千克,经过市场调查发现,每千克售价每降低10元,平均每周的销售量可增加40千克.(1)当售价定为每千克340元时,请计算平均每周的销售量和销售利润;(2)该专卖店销售这种茶叶要想平均每周获利41 600元,并尽可能让利于顾客,赢得市场,则每千克应降价多少元?25.在等腰三角形ABC中,AB=AC,D是AB的延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1n CE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中的结论还成立吗?试证明.答案一、1.D 2.B 3.B 4.C 5.A 6.C 7.C 8.C 9.B 10.B 11.D 点拨:∵四边形ABCD 是菱形,∴AO =12AC ,AC ⊥BD . ∴∠AOB =90°.由CE ∥BD ,易得△AOB ∽△ACE .∴∠ACE =∠AOB =90°,AB AE =OB CE =AO AC =12.∴△ACE 是直角三角形,OB =12CE ,点B 是AE 的中点, ∴BC =12AE .12.B 点拨:如图,过点F 作FH ⊥BG 于点H ,作FK ⊥BC 于点K .易证得四边形BHFK 是正方形, ∴BH =HF =FK =BK . ∵DE ⊥EF ,∠EHF =90°,∴∠DEA +∠FEH =90°,∠EFH +∠FEH =90°,∴∠DEA =∠EFH . 又∵∠A =∠EHF =90°, ∴△DAE ∽△EHF .∴AD HE =AE HF .∵正方形ABCD 的边长为3,BE =2AE ,∴AE =1,BE =2. 设HF =a ,则BK =FK =BH =a , ∴32+a =1a ,解得a =1. ∴BK =FK =1.易证得△DCN ∽△FKN , ∴DC FK =CN KN .∵BC =3,BK =1, ∴CK =BC -BK =2. 设CN =b ,则KN =2-b , ∴31=b 2-b ,解得b =32,∴CN =32. 易证得△ADE ∽△BEM , ∴AD BE =AE BM , ∴32=1BM ,解得BM =23.∴MN =BC -CN -BM =3-32-23=56.故选B. 二、13.a ≥-12 14.m <515.145;-4516.102 点拨:∵四边形ABCD 是矩形,∴∠A =∠EDC =90°. ∴∠EDG =90°.∵E 是AD 的中点,∴AE =DE . 在△AEF 和△DEG 中,⎩⎨⎧∠A =∠EDG =90°,AE =DE ,∠AEF =∠DEG ,∴△AEF ≌△DEG (ASA). ∴EF =EG ,DG =AF =12. 又∵CE ⊥FG ,∴CG =CF =5. ∵∠G =∠G ,∠EDG =∠CEG =90°, ∴△EDG ∽△CEG .∴EG CG =DG EG . ∴EG 2=DG •CG =52. ∴EG =102(负值舍去).∴EF =EG =102. 17.233 cm 点拨:由题意得DE =1 cm ,BC =3 cm.在Rt △ABC 中,∠A =60°,∠ABC =90°, ∴∠ACB =30°,∴AC =2AB . 设AB =x cm ,则AC =2x cm , 由勾股定理得x 2+32=(2x )2, ∴x =3(负值舍去),即AB = 3 cm. 由DE ∥BC ,易得△ADE ∽△ABC , ∴DE BC =AD AB ,即13=3-BD 3,解得BD =233 cm.18.2 点拨:如图,连接BD 交AC 于点G ,过点E 作EF ⊥AC 于点F .∵四边形ABCD 是菱形,边长为6 cm ,∴∠DAC =12∠BAD =30°,AD =AB =6 cm ,BD ⊥AC ,DG =12BD ,AG =12AC . 又∵∠BAD =60°, ∴△ABD 是等边三角形. ∴BD =AB =6 cm. ∴DG =3 cm.∴AG =AD 2-DG 2=3 3 cm. ∴AC =6 3 cm.由题意知AA ′=2 3 cm , ∴CA ′=AC -AA ′=4 3 cm.由平移的性质知AD ∥A ′E ,∴∠EA ′F =∠DAC =30°,∠CEA ′=∠CDA . ∴△A ′CE ∽△ACD . ∴A ′E AD =CA ′AC ,∴A ′E 6=4363.∴A ′E =4 cm.在Rt △A ′EF 中,∠EA ′F =30°, ∴EF =12A ′E =2 cm. 三、19.解:(1)原式=50×328-2 2=10 2-2 2 =8 2.(2)原式=2 3-3+3 3 =4 3.20.解:(1)这里a =2,b =-3,c =-1,∵Δ=(-3)2-4×2×(-1)=17>0, ∴x =-b ±b 2-4ac 2a =3±174,∴x 1=3+174,x 2=3-174.(2)分解因式,得(x +3-5)(x +3+1)=0, ∴x -2=0或x +4=0, ∴x 1=2,x 2=-4.21.解:如图,△A 1B 1C 1即为所求.A 1(2,-6),B 1(2,-2),C 1(6,-4).22.(1)证明:∵线段DE 与AF 分别为△ABC 的中位线与中线,∴D ,E ,F 分别是AB ,AC ,BC 的中点.∴线段DF 与EF 都为△ABC 的中位线.∴DF ∥AC ,EF ∥AB .∴四边形ADFE 是平行四边形.∴AF 与DE 互相平分.(2)解:当AF =12BC 时,四边形ADFE 为矩形.理由:∵线段DE 为△ABC 的中位线,∴DE =12BC .又∵AF =12BC ,∴AF =DE .由(1)知四边形ADFE 为平行四边形,∴四边形ADFE 为矩形.23.(1)证明:∵四边形ABCD 是正方形,∴AD =BC ,AD ∥BC .∴∠DAE =∠BCF .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =CF ,∴△ADE ≌△CBF (SAS).(2)解:∵四边形ABCD 是正方形,∴AD =AB =42,AC ⊥BD ,DO =BO =12BD =12AC =OA =OC ,∠DAB =90°.∴BD =AB 2+AD 2=8,∴DO =OA =OC =4.又∵CF =AE =2,∴OE =OF =4-2=2,∴四边形BEDF 为平行四边形.又∵EF ⊥BD ,∴平行四边形BEDF 为菱形.在Rt △DOE 中,DE =DO 2+OE 2=25,∴菱形BEDF 的周长为4DE =8 5.24.解:(1)200+110×(400-340)×40=440(千克),440×(340-240)=44 000(元).答:平均每周的销售量为440千克,销售利润为44 000元.(2)设每千克应降价x 元,根据题意得(400-240-x )•⎝ ⎛⎭⎪⎫200+40x 10=41 600, 整理得x 2-110x +2 400=0,解得x 1=30,x 2=80.∵要尽可能让利于顾客,赢得市场,∴x =80.答:每千克应降价80元.25.(1)证明:过点E 作EG ∥AB 交BC 于点G ,则∠ABC =∠EGC ,∠D =∠FEG .∵AB =AC ,∴∠ABC =∠C .∴∠EGC =∠C .∴EG =CE .又∵BD =CE ,∴BD =EG .又∵∠BFD =∠GFE ,∴△BFD ≌△GFE .∴DF =EF .(2)解:DF =1n EF .证明:过点E 作EM ∥AB 交BC 于点M ,则∠D =∠FEM . 又∵∠BFD =∠EFM ,∴△BFD ∽△MFE .∴BD EM =DF EF .∵BD =1n CE ,易得EM =CE ,∴BD =1n EM .∴DF =1n EF .(3)解:成立.证明:过点E 作EN ∥AB 交CB 的延长线于点N , 易得EN =CE ,△BFD ∽△NFE ,∴BD EN =DF EF .∵BD =1n CE ,∴BD =1n EN .∴DF =1n EF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学期末试卷
一、选择题
、CD、A、B、1、把化成最简二次根式得()、D)A2B、、、下列根式中,与是同类二次根式的是(C、
3、如图,CD是Rt△ACB斜边AB上的高,DE⊥BC于E,则图中与△ACB相似的三角形共有()。
A、4个
B、3个
C、2个
D、1个
)4、下列采用的调查方法中,合适的是(A、为了了解一批灯泡的寿命,采用普查的方式B、为了了解全国中学生的睡眠状况,采用普查的方式C、为了了解人们保护水资源的意识,采用抽样调查的方式”零部件的检查,采用抽样调查的方式、对载人航天飞船“神州七号D
、、)AC、B5、下列计算正确的是
(
D、、DB、、C正算确的是()A、6、下列运
分别是这',点O、OD∽四边形A'B'C''ABCD7、如图,四边形有共三角形,则图中的相似线两个
四边形的对角的交点、D、8对6对B、对CA()、4 10对
D、无解、C A8、分式方程的解是()B、、∥BC,AB、E分别
在、AC边上,且DEDABC9、如图,在等边△中,点
的周长为(,那么,△BC=8cm如果,AD:AB=1:4ADE)1 / 7 、cm
、cm DA、2cm B、6cm C、、CD10、计算为A、1 B、11、下列命题:①所有的矩形都相似;②所有的正方形都相似;③所有的菱形都相似;④所有的等腰梯形都相似。
其中真命题共有()A、1个B、2个C、3个D、4个
二、填空题
则的取值范围是_________。
12 、若二次根式在实数范围内有意义,
、计算:13。
点处,5m的C14、如图,身高1、6m的小华在距路灯杆。
为_______5m为2、,
则路灯的高度AB测得他在灯光下的影长CD于交CD中点,
AEBD、如图,在平行四边形15ABCD中,E为,_____________。
点O,则三、解答题套后,采用了新技术,使每天的工作效率提高到原来16、某服装厂准备加工300套演出服,在加工60天完成任务,求该厂原来每天加工多少套演出服。
倍,结果共用的29
有一根50MM17、如图①,一条河的两岸有一段是平行的,在河的南岸边每隔5有一棵树,在北岸每隔处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮的点电线杆。
小丽站在距南岸边15M P 住,并且在这两棵树之间还有三棵树,求河宽为多少M?(根据提供的简图②写出求解过程)
名学生参加,按团体总分多少排列名次,在规定时518、某校初三学生开展踢毽子比赛活动,每班派名学生的比赛数据(单位:5100100间内每人踢个以上(含个)为优秀。
下表是成绩最好的
经统计发现两班总分相等。
有学生建议,可以考查数据中的其他信息作为参考。
请你回答下列问题:)计算两班的优秀率;(1 )求两班比赛数据的中位数和极差;(2 )计算比较两班比赛数据的方差哪个小?(3 )你认为应该把冠军奖杯发给哪一个班级?简述理由。
(4 9分)25、(本小题,F,P,,BD,BC分别相交于点EAB上一点,连接中,点在等边△ABCD为ACBD,直线与。
且∠BPF=60°BPF相似的三角形,并选择其中一个给予证明;1)如图1,写出图中所有与△()中的结论是否仍然成立?若13的位置时(其他条件不变),(2(2)若直线向右平移到图、图成立,请写出来(不证明),若不成立,请说明理由。
分)26、(本小题10某百货商场经理对新进某品牌几种号码的男式跑步鞋的销售情况进行了一周的统计,得到一组数据后,绘制了频数(双)频率统计表和频数分布直方图如下:请你根据图表中提供的信息,解答以下问题:3 / 7
(1)求该周销售这几种号码跑步鞋的总数量m(双);
(2)写出表中的值;
(3)补全频数分布直方图;
(4)根据市场实际情况,该商场计划再进1000双这种跑步鞋,请你帮助商场经理估计一下需要进多少双41号的跑步鞋?
【试卷答案】
一、选择题
1、B
与是同类二次根式,故选B、解:由于,因此。
2
3、解:图中共有5个直角三角形,它们都相似,因此与△ACB相似的三角形共有4个,故选A。
4、C。
、解:由于,故答案选C。
5
、解:,因此D是正确的,故选6D。
7、解:所有对应的三角形都是相似的,有8对,故选C。
代入,它的值为0,解得,检验,把8、解:去分母,得,因此是增根,原方程无解,故选D。
4 / 7
9、解:等边△ABC的周长是24cm,由DE∥BC,可得△ADE∽△ABC,相似比为1:4,因此周长的比也是1:4,所以△ADE的周长为6cm。
故选B。
10、
故选A。
11、解:只有“②所有的正方形都相似”是真命题,故选A。
12、解:答案选D。
二、填空题
的取值范围是。
因此13 、解:由于,
14、解:由绘成的折线图可以看到,这段时间最低气温的最大值是6℃,最小值是1℃,因此这段时间最低气温的极差是6℃-1℃=5℃
15、
、解:(m16)
,相似比为,所以DOE∽△BOAABCD中,DC∥AB,可得△、解:在平行四边形17
,因此。
、解:18
,所以,又因为∠A=∠A19、解:由于,所以△ACD∽△ABC,所以∠ADC=∠ACB=180°-75°-35°=70°
三、解答题
5 / 7 )1 20、解:
()2
()3
()由于(4
所以21、解:如图:
、解:设该厂原来每天加工套演出服。
根据题意得:22,经检验,是所列方程的根。
,解得因此,该厂原来每天加工20套演出服。
23、解:如图③作PN⊥CD于N,交AB于M,由于AB∥CD,所以∠PAB=∠C,∠PBA=∠D,
所,因此,所以,所以以△PAB∽△PCD
所以)(M 22.5M。
因此河宽为
=。
)甲班的优秀率=;乙班的优秀率、解:(241(2)甲班的中位数是100,极差是110-89=21;乙班的中位数是97,极差是119-89=30。
(3)两个班比赛数据的平均数都是100,因此,
6 /
7 8
、[++++]=46=
2
、+++]=103=[+ 因此,甲班比赛数据的方差较小。
)由于甲班的优秀率高,方差小,成绩比较稳定,因此应该把冠军奖杯发给甲班。
(4 CBD,∠PBF=∠BCD∽△∽△EBF。
由于∠BPF=∠
C=60°,125、解:()△BPF )成立。
BCD。
(2BPF所以△∽△(双)。
、解:
(261=)),,(2 )
如图。
(3
)4((双)41双号的跑步鞋。
300因此商场经理需要进7 / 7。