随机信号分析课程设计报告
实验四 随机信号分析

实验四随机信号分析生物医学工程系罗融编一、实验目的:1.理解随机信号的各种数字特征及相关函数。
2.学习用MATLAB语言编写数字特征及相关函数计算程序。
3.观察脑电信号的数字特征及相关函数。
二、实验内容:1.产生1千点的白噪声信号,并计算它的均值、均方值、均方根值、方差。
(产生白噪声可用语句n=10^3;x=randn(1,n))2.计算一白噪声加10Hz正弦信号构成的随机信号并作图显示该随机信号与它的自相关函数。
(白噪声加10Hz正弦信号可用语句x2=x+sin(2*pi*10*[0:999]/250);其中抽样率fs=250Hz)3.计算白噪声的自相关函数并作图显示白噪声与它的自相关函数。
4.计算脑电信号的均值、均方值、均方根值、方差,计算脑电信号的自相关函数并作图显示脑电信号与它的自相关函数。
5.计算含有噪声的心电信号的自相关函数并作图显示含有噪声的心电信号与它的自相关函数。
含有噪声的心电信号与脑电信号由数据文件shiyansi.mat提供,用load shiyansi命令后,shiyansi数据文件中的变量zshecg与eeg即在matlab工作空间中,可用plot(zshecg)语句观察该含有噪声的心电信号,用plot(eeg)语句观察脑电信号。
三、报告要求:报告格式要求同实验一。
报告内容应包含实验名称,实验目的,实验内容,实验程序代码及结果,实验结果分析与讨论等附录:1)均值:3)均方:4)相关函数:2.MATLAB语言说明:1)mean函数:2)var函数:(2)option为’biased’时,计算有偏互相关估计(3)option为’unbiased’时,计算无偏互相关估计。
随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。
随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。
实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。
实验原理:随机信号可以分为离散随机信号和连续随机信号。
离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。
常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。
实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。
实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。
2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。
3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。
4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。
5.计算统计特性:计算随机信号的均值、方差等统计特性。
6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。
实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。
通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。
通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。
通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。
结论:本实验通过对随机信号的分析,加深了对随机信号的理解。
通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。
2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。
随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随即信号分析课程设计报告

随即信号分析课程设计报告学院信息电子技术专业电子信息工程班级学籍号姓名指导教师2016年0月00日随即信号分析课程设计设计题目一一、课程设计内容编制一个程序,产生三组互相独立的均匀分布随机数,画出教材46页题 1.6中n分别为1,2,3时的直方图,并与题1.6中得到的概率密度比较。
二、任务分析、设计方案在随机数检验时,先将随机数变量的取值区间分为K个相等的子区间,然后求产生的随机数落在所有子区间的个数。
将k个子区间落入随机数的个数画成图,称为直方图。
三、具体实现过程程序:n=1时:>> clear all>> x1=unifrnd(0,1)x1 =0.2028>> bar(x1)>> title('n=1时的直方图')n=2时:>> c lear all>> x3=unifrnd(0,1,1,3)x3 =0.0579 0.3529 0.8132>> clear all>> x2=unifrnd(0,1,1,2)x2 =0.0099 0.1389>> bar(x2)>> title('n=2时的直方图')n=3时:>> clear all>> x3=unifrnd(0,1,1,3)x3 =0.9169 0.4103 0.8936>> bar(x3)>> title('n=3时的直方图')四、仿真、实验验证过程及硬件结果、现象图一 n=1时的直方图图二 n=2时的直方图图三 n=3时的直方图设计题目二一、课程设计内容编制一个产生均值为1,方差为4的高斯分布随机数程序,求最大值、最小值、均值和方差,并与理论值相比较并分析其结论。
二、任务分析、设计方案用高斯分布随机变量函数传入均值和方差,并且产生的值传给一个变量,最后把这个变量分别传给最大值、最小值、均值和方差函数。
《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一熟悉MATLAB勺随机信号处理相关命令一、实验目的1、熟悉GUI格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程二、实验原理1、语音的录入与打开在MATLAB^, [y,fs,bits]=wavread('Blip',[N1 N2]); 用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2、均匀分布白噪声在matlab中,有x=rand (a,b)产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。
3、均值随机变量X的均值也称为数学期望,它定义为e+oc对于离散型随机变量,假定随机变量X有N个可能取值,各个取值的概率为- p y --1则均值定义为£(X) = £.r fPf/=1上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
4、方差定义为随机过程<r >的方差。
方差通常也记为D【X(t)】,随机过程的方差也是时间t的函数,由方差的定义可以看岀,方差是非负函数。
5、自相关函数设任意两个时刻t1,t2,定义::::R X (叩2)= E[X(tJX(t2)] = Jq JX1X2 f (X1, X2,t1,t2)dX1dX2为随机过程X(t)的自相关函数,简称为相关函数。
自相关函数可正,可负,其绝对值越大表示相关性越强。
6. 哈明(hamming)窗0.54+0.46(10.100)0,- (10.101)B = 1.3 △ f , A = -43dB , D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。
随机信号分析第四版课程设计

随机信号分析第四版课程设计1. 课程简介随机信号分析是现代通信技术中不可或缺的一部分。
本课程主要介绍随机信号的基本概念、特性以及在通信系统中的应用。
通过本课程的学习,学生将了解各种随机信号模型及其分析方法,了解随机过程及其在通信系统中的应用。
2. 教学目标•了解随机信号的基本概念、特性及其在通信系统中的应用•掌握各种随机信号模型及其分析方法•熟悉随机过程及其在通信系统中的应用•培养学生独立分析、解决问题的能力3. 教学内容3.1 随机信号基础•随机信号的定义和特性•随机变量、随机过程的概念及应用•矩、自相关函数、功率谱密度、自回归模型等概念及相关分析方法3.2 随机过程分析及应用•马尔可夫过程及其性质•随机过程的时间平均与期望平均、稳态平均等性质及其应用•广义随机过程、增量随机过程的概念及相关分析方法•随机过程的仿真和识别3.3 随机过程在通信系统中的应用•噪声和信噪比•抗干扰性能分析•微波通信系统中的噪声分析和设计应用•无线通信系统中的噪声分析和设计应用4. 教学方式本课程以理论讲授为主,结合实例分析,帮助学生深入理解各种随机信号模型及其分析方法。
同时,教师将引导学生独立完成相关理论分析和仿真实验,并通过互动授课和在线讨论等方式促进学生交流和思考,提升其研究能力和解决问题的能力。
5. 课程作业课程作业旨在帮助学生深刻理解课程内容,培养学生的分析思维和解决问题的能力。
具体作业要求如下:1.独立完成一份随机信号分析的实验报告,具体内容包括实验目的、实验原理、实验步骤、实验数据分析及结论等。
2.独立完成一份随机过程仿真实验报告,具体内容包括仿真目的、仿真模型建立、仿真参数选取、仿真结果分析及结论等。
6. 考核方式本课程采用闭卷考试和作业评分相结合的考核方式,其中闭卷考试占总成绩的50%。
作业将根据任务完成情况、报告质量等综合评分,占总成绩的50%。
7. 参考书目1.Shynk, J. J. Introduction to Random Signals and AppliedKalman Filtering, 3rd ed. John Wiley&Sons, 2018.2.Kay, S. M. Fundamentals of Statistical Signal Processing,vol. 1: Estimation Theory. Prentice Hall, 1993.3.Papoulis, A. Probability, Random Variables, and StochasticProcesses, 4th ed. McGraw-Hill, 2002.以上参考书目仅供学生参考,详细阅读范围请参考相关教学资料。
随机信号分析实验报告

随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)背景: (2)实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)实验设计: (4)实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。
理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。
在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。
关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。
定义2:不同频率、不同强度无规则地组合在一起的声音。
如电噪声、机械噪声,可引伸为任何不希望有的干扰。
第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。
而第二种定义则相对抽象一些,大部分应用于机械工程当中。
在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。
为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。
实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。
三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
随机信号分析教学设计

随机信号分析教学设计概述随机信号分析常常涉及到概率论和数理统计的知识,在电子工程、通信工程等领域有广泛的应用。
本教学设计旨在帮助学生了解随机信号分析的基础概念及相关数学工具,掌握信号的统计性质,算法及其应用。
教学目标1.了解随机信号的特征、分类及概率论的基本概念;2.掌握随机过程的基本概念、性质及其特点;3.熟悉几种重要的随机过程模型,包括马尔可夫过程、随机游走等;4.能够根据所学的知识,分析并解决随机信号分析的实际问题。
教学内容第一部分:概率论基础1.随机事件及其概率2.随机变量及其概率分布3.大数定律和中心极限定理第二部分:随机过程基础1.马尔可夫过程及其特征2.随机游走及其应用3.正态随机过程及其性质第三部分:随机信号分析1.基本概念及信号的分类2.随机信号的自相关函数和功率谱密度3.信号的时间平均和集合平均4.一些简单的随机过程应用,如傅立叶级数和傅立叶变换第四部分:应用案例1.随机过程参数估计2.微波通信信号的功率谱密度估计3.信道建模和统计特性分析教学方法1.理论授课:介绍相关的基础概念,引导学生建立正确的思维方式。
2.课程设计:为学生设计一些实例,让学生从实践中获得经验并巩固所学知识。
3.课堂讨论:引导学生分析解决一些实际问题,加深学生的理解。
4.课程作业:难度适当的作业可以促进学生加深所学内容。
评估方法1.作业成绩占 30%。
2.期中考试成绩占 30%。
3.期末考试成绩占 40%。
参考资料1.徐兰吉,张栋福等编著. 随机信号分析[M]. 北京:机械工业出版社,2006.2.Papoulis A. Probability, Random Variables, and StochasticProcesses[M]. New York: McGraw-Hill, 2002.3.Gallager R G. Stochastic Processes: Theory forApplications[M]. Cambridge University Press, 2013.总结本教学设计的主要目标是让学生掌握随机信号分析的基础概念和数学工具,在实际应用中解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析课程设计
报告
标准化工作室编码[XX968T-XX89628-XJ668-XT689N]
随机信号分析课程设计报告
题目
学院信息电子技术
专业电子信息工程
班级 15级1班
学籍号 1
姓名朱李伟
指导教师刘文科
信息电子技术学院
2018年6月18日
实验二随机过程的模拟与数字特征
一、实验目的
1. 学习利用MATLAB模拟产生随机过程的方法。
2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。
二、实验原理
1.正态分布白噪声序列的产生
MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白
噪声序列的函数为randn。
函数:randn
用法:x = randn(m,n)
功能:产生 m×n 的标准正态分布随机数矩阵。
如果要产生服从N (,) 分布的随机序列,则可以由标准正态随机序列
产生。
如果X ~ N(0,1),则N (,)。
2.相关函数估计
MATLAB提供了函数 xcorr用于自相关函数的估计。
函数:xcorr
用法:c= xcorr (x,y)
c= xcorr (x)
c= xcorr (x,y ,'opition')
c= xcorr (x, ,'opition')
功能:xcorr(x,y) 计算X (n ) 与Y (n)的互相关,xcorr(x)计算X (n )的自相关。
option 选项可以设定为:
'biased' 有偏估计。
'unbiased' 无偏估计。
'coeff' m = 0 时的相关函数值归一化为1。
'none' 不做归一化处理。
3.功率谱估计
对于平稳随机序列X(n),如果它的相关函数满足那么它的功率谱定义为自相关函数R X(m)的傅里叶变换:
功率谱表示随机信号频域的统计特性,有着重要的物理意义。
我们实际所
能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。
功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。
(1)自相关法
先求自相关函数的估计X(m),然后对自相关函数做傅里叶变换
其中N 表示用于估计样本序列的样本个数。
(2)周期图法
先对样本序列x(n)做傅里叶变换
其中0n N-1,则功率谱估计为
MATLAB函数 periodogram实现了周期图法的功率谱估计。
函数:periodogram
用法:[Pxx,w] = periodogram(x)
[Pxx,w] = periodogram(x,window)
[Pxx,w] = periodogram(x,window,nfft)
[Pxx,f] = periodogram(x,window,nfft,fs)
periodogram(...)
功能:实现周期图法的功率谱估计。
其中:
Pxx为输出的功率谱估计值;
f为频率向量;
w为归一化的频率向量;
window代表窗函数,这种用法种对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,表列出了产生常用窗函数的MATLAB函数
nfft设定 FFT算法的长度;
fs表示采样频率;
如果不指定输出参数(最后一种用法),则直接会出功率谱估计的波形。
三、实验内容
1. 按如下模型产生一组随机序列
x(n)=(n-1)(n)
其中(n)是均值为1,方差为 4的正态分布白噪声序列。
估计过程的自相关函数和功率谱。
(1)实验程序
文件如下:
#输入变量p表示x(n)里n的数值#
function f=func1(p)
w=randn(1,p)*2+1;
#或 f=normrnd(1,2,1000,1)#
x=zeros(1,p);
for n = 2:1:p
x(n)=*x(n-1)+ w(n);
end
figure(1)
plot(x);
c=xcorr(x);
plot(c);
figure(2);
title(' 'x(n)的自相关函数');
figure(3);
periodogram(x);
title('x(n)的功率谱');
end
(2)实验过程及结果:
在command命令栏里输入:
func1(5000)
得到三个图的结果:
2. 设信号为
x(n)=(n) n=0,1,,N-1
其中f1=0 .05,f2=0 .12为正态分布白噪声序列,试在N =256和N= 1024点时,分别产生随机序列x(n),画出x(n)的波形并估计x(n)的相关函数和功率谱。
(1)实验程序:
写出m.文件
#输入变量p表示x(n)里n的数值#
function f=func2(p)
f1 = ;
f2 = ;
w=randn(1,p);
x = zeros(1,p);
for n=0:1:p-1
x(n+1) = sin(2*pi*f1*n) + 2*cos(2*pi*f2*n) + w(n+1);
end
figure(1);
plot(x);
title(' N=p时x(n)的波形');
c = xcorr (x);
figure(2);
subplot(1,2,1);
plot(c);
title(' N=p时x(n)的相关函数 ');
subplot(1,2,2);
periodogram(x);
end
(2)实验过程及结果
在command命令栏里输入:
Func2(256)
得到三个图的结果:
在command命令栏里输入:
Func2(1024)
得到三个图的结果:
四、实验报告要求
1.实验报告要求格式规范,排版整齐美观。
2.给出实验的程序代码及相应的实验结果,编写的程序中应加上必要的注释。
3.第 1 题中样本序列的长度自行选择。
4.对第 2 题得到的功率谱估计结果做适当的解释和分析。
5.实验中产生的样本序列及计算得到的相关函数、功率谱要求以图形的方式表示。
6.总结实验中遇到的难点及解决方法、实验的体会和建议等。
五、实验小结
(1)学会了应用matlab产生随机数的方法,并且可以利用matlab实现随机序列的数字特征的估计。
(2)通过对试验结果的分析,用这种方法在计算机上生成伪随机数,但通过增大样本量,可以使其数字特征逼近理论值。