数字信号处理实验报告

数字信号处理实验报告
数字信号处理实验报告

前言

《数字信号处理》是信息电子,通信工程等本科专业及其他相近专业的一门专业必修课。通过本课程的学习,学生应掌握以下基本概念、理论和方法:采样定理、离散序列的变换、离散信号的频谱分析;离散系统的传递函数、频率响应、离散系统的基本分析方法;数字滤波器的设计理论、滤波器的软件实现;离散傅立叶变换理论、快速傅立叶变换方法;有限字长效应。

为了使学生更好地理解和深刻地把握这些知识,并在此基础上,训练和培养学生掌握离散系统的基本概念和分析方法,数字滤波器的设计和实现,以及如何利用快速傅立叶变换等DSP技术对数字信号进行分析、滤波等处理,设置了以下三个实验:

(1)离散时间序列卷积和MATLAB实现;

内容:使用任意的编程语言编制一个程序,实现两个任意有限序列的卷积和。

目的:理解线性非移变系统I/O关系和实现

要求:掌握使用计算机实现数字系统的方法

(2)FFT算法的MATLAB实现;

内容:使用MATLAB编程语言编制一个程序,实现任意有限序列的FFT。

目的:理解FFT算法的意义和实现

要求:掌握使用计算机实现FFT算法的方法

(3)数字滤波器的设计;

内容:使用MATLAB编程语言编制一个程序,实现FIR或IIR滤波器的设计目的:理解数字滤波器的设计技术

要求:掌握使用计算机进行数字滤波器设计的方法

(4)窗函数设计FIR滤波器;

内容:使用MATLAB编程语言编制一个程序,实现FIR或IIR滤波器的设计目的:理解数字滤波器的设计技术

要求:掌握使用计算机进行数字滤波器设计的方法

该实验指导书是参照该课程的教学大纲而编制的,适合于信息电子工程、通信工程等本科专业及其他相近专业。

数字信号知识预备:

一.典型的离散信号 1.单位抽样信号

??

?≠==0

00

1)(n n n δ

2.脉冲串序列p(n)

将)(n δ在时间轴上延迟k 个抽样周期,得

??

?≠==-k

n k

n k n 01)(δ

若k 从∞-变到∞+,则的所有移位可形成一个无限长的脉冲串序列p(n)

∑∞

-∞

=-=

k k n n p )()(δ

3.单位阶跃序列

??

?<≥=000

1)(n n n u 4.正弦序列 5.复正弦序列 6.指数序列

二.离散信号的运算 1.信号的延迟

给定离散信号x(n),若信号)(1n y ,)(2n y 分别定义为

)(1n y =x(n-k) )(2n y =x(n+k)

序列下x(n)在某一时刻k 时的值可用)(n δ的延迟来表示,即

)(k x =)(n x )(k n -δ

2.两个信号的相加和相乘

x(n)=x1(n)+x2(n)

y(n)=x1(n)x2(n)

y(n)=cx(n)

3.信号时间尺度的变化

y(t)=x(t/a),式中a>0

若a>1或a<1呢?

4.信号的分解

5.信号的变换

三.信号的分类

1.连续时间信号和离散时间信号

2.周期信号和非周期信号

3.确定性信号和随机信号

4.能量信号和功率信号

5.一维信号、二维信号及多通道信号

四.噪声

x(n)=s(n)+u(n)

x(n)=s(n) u(n)

五.离散时间系统的基本概念

y(n)=T[x(n)]

例:一个离散时间系统的输入、输出关系是y(n)=ay(n-1)+x(n)

求所给系统的单位抽样响应。

例:系统

∑=-

=

2

)

(

)

(

)

(

k

k

n

x

k

b

n

y

式中)0(b,)1(b,)2(b为常数。求所给系统的单位抽样响应

六.有关离散系统的几个重要定义

1.线性

对ax1(n)+bx2(n)的响应是ay1(n)+by2(n)

2.移不变性

T[x(n)]=y(n)

T[x(n-k)]=y(n-k)

3.因果性

4.稳定性

七.LSI系统的输入输出关系

例:令}1,1{

)}

1(

),

0(

{

)

(=

=h

h

n

h,}4,3,2,1{

)}

3(

)0(

{

)

(=

?

=x

x

n

x,,求)

(n

x和)

(n

h的线性卷积。

实验一:离散时间序列卷积和MATLAB 实现

实验学时:2 实验类型:验证

实验要求:必修

(一)实验目的:学会用MATLAB 对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。

(二)实验原理:

1、离散时间序列f1(k)和f2(k)的卷积和定义:

f(k)=f1(k)*f2(k)=

∑∞

-∞

=-?

i i k f i f )(2)(1

2、在离散信号与系统分析中有两个与卷积和相关的重要结论:

a 、f(k)=

∑∞

-∞

=-?i i k i f )()(δ=f(k)* δ

(k)即离散序列可分解为一系列

幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b 、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态

响应为y(k),则有:y(k)=

∑∞

-∞

=-?i i k h i f )()(

(三)实验内容:

conv.m 用来实现两个离散序列的线性卷积。其调用格式是:

y=conv(x,h)

若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M-1。

题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。 要求用subplot 和stem 画出x(n),h(n),y(n)与n 的离散序列图形。

题二:已知序列

f1(k)=??

?≤≤其它

201k

f2(k)=??????

?===其它

332211k k k

调用conv()函数求上述两序列的卷积和

题三:编写计算两离散序列卷积和f(k)=f1(k)*f2(k)的实用函数dconv().要求该程序在计算出卷积和f(k)的同时,还绘出序列f1(k),f2(k)和f(k)的时域波形图,并返回f(k)的非零样值点的对应向量。 function[f,k]=dconv(f1,f2,k1,k2)

%f1(k),f2(k)及f(k)的对应序号向量分别为k1,k2和k 。

题四:试用MATLAB 计算如下所示序列f1(k)与f2(k)的卷积和f(k),绘出它们的时域波形,并说明序列f1(k)与f2(k)的时域宽度与序列f(k)的时域宽度的关系。提示:可用上述dconv()的函数来解决。

f1(k)=??????

?==-=其它

110211

k k k f2(k)=??

?≤≤-其它

221

k

题五:已知某LTI 离散系统,其单位响应h(k)=e(k)-e(k-4),求该系统在激励为f(k)=e(k)-e(k-3)时的零状态响应,并绘出其时域波形图。 提示:可用dconv()的函数来解决。

(四)实验报告:

1.根据实验原理,编写代码,得出实验结果,并画出波形图。 2.归纳、总结实验结果。 3.心得体会及其他。

实验二:FFT 算法的MATLAB 实现

实验学时:3 实验类型:验证

实验要求:必修

(一)实验目的:理解离散傅立叶变换时信号分析与处理的一种重要变换,特别是FFT 在数字信号处理中的高效率应用。

(二)实验原理:

1、有限长序列x(n)的DFT 的概念和公式:

???

????-≤≤=-≤≤=∑∑-=--=1

01

01

0)(1)(1

0)()(N k kn N N n kn N N n W k x N n x N k W n x k x

)/2(N j N e W π-=

2、FFT 算法 调用格式是

X= fft(x)

或 X=fft(x,N)

对前者,若x 的长度是2的整数次幂,则按该长度实现x 的快速变换,否则,实现的是慢速的非2的整数次幂的变换;对后者,N 应为2的整数次幂,若x 的长度小于N ,则补零,若超过N ,则舍弃N 以后的数据。Ifft 的调用格式与之相同。

例1:

N=8; n=0:N-1;

xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) → Xk =

39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.000

0 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i

Xk与xn的维数相同,共有8个元素。

例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;

fs=100;N=128; %采样频率和数据点数

n=0:N-1;t=n/fs; %时间序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号

y=fft(x,N); %对信号进行快速Fourier变换

mag=abs(y); %求得Fourier变换后的振幅

f=n*fs/N; %频率序列

subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅

xlabel('频率/Hz');

ylabel('振幅');title('N=128');grid on;

subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');

ylabel('振幅');title('N=128');grid on;

%对信号采样数据为1024点的处理

fs=100;N=1024;n=0:N-1;t=n/fs;

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号

y=fft(x,N); %对信号进行快速Fourier变换

mag=abs(y); %求取Fourier变换的振幅

f=n*fs/N;

subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅

xlabel('频率/Hz');

ylabel('振幅');title('N=1024');grid on;

subplot(2,2,4)

plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅

xlabel('频率/Hz');

ylabel('振幅');title('N=1024');grid on;

运行结果:

fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT 变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。

(三)实验内容:

题一:若x(n)=cos(n*pi/6)是一个N=12的有限序列,利用MATLAB计算它的DFT并画出图形。

题二:一被噪声污染的信号,很难看出它所包含的频率分量,如一个由50Hz 和120Hz正弦信号构成的信号,受均值随机噪声的干扰,数据采样率为1000Hz,

通过FFT来分析其信号频率成分,用MATLAB实现。

题三:调用原始语音信号mtlb,对其进行FFT变换后去掉幅值小于1的FFT 变换值,最后重构语音信号。

(要求有四幅语音信号的频谱图在同一图形窗口以便比较:分别是1、原始语音信号;2、FFT变换;3去掉幅值小于1的FFT变换值;4、重构语音信号)

(四)实验报告:

1.根据实验原理,编写代码,得出实验结果,并画出波形图。

2.归纳、总结实验结果。

3.心得体会及其他。

实验三:数字滤波器的设计

实验学时:3 实验类型:设计

实验要求:必修

(一)实验目的:掌握IIR 数字低通滤波器的设计方法。

(二)实验原理: 1、滤波器的分类

滤波器分两大类:经典滤波器和现代滤波器。

经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。

现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。

经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。

IIR DF 的转移函数是:

∑∑=-=-+==

N k k

k M

r r

r z a z

b z X z Y z H 1

01)

()

()(

FIR DF 的转移函数是:

∑-=-=1

0)()(N n n z n h z H

FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求

低通滤波器:p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率

p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的

单位dB )

p Ω:通带上限角频率 s Ω:阻带下限角频率

(s p p T ω=Ω,s s s T ω=Ω)即 C p

p F ωπ

2=Ω C s

s

F ωπ2=Ω

3、IIR 数字滤波器的设计步骤:

1)按一定规则将给出的数字滤波器的技术指标转换魏模拟低通滤波器的技术指标。

2)根据转换后的技术指标设计模拟低通滤波器)(s G ; 3)再按一定的规则将)(s G 转换成)(z H 。

4)若是高通、带通或带阻数字滤波器则将它们的技术指标先转化为低通模拟滤波器的技术指标,然后按上述步骤2)设计出低通)(s G ,再将)(s G 转换为所需的)(z H 。

4.几种不同类型的滤波器的介绍:

因为我们设计的滤波器的冲击响应一般都为实数,所以有

2

*)()

()()()(s j s j G s G s G s G s G Ω=-=Ω=

这样,如果我们能由p α,p Ω,s α,s Ω求出2

)(Ωj G ,那么就容易得到所需要的)(s G 。 不同类型的2

)(Ωj G 的表达式,代表了几种不同类型的滤波器。 (1)巴特沃思(Butterworth)滤波器:

n

C j G )

(11

)(222

Ω+=

Ω C 为待定常数,N 为待定的滤波器阶次。 (2)切比雪夫I 型(Chebyshev – I )滤波器:

)

(11

)(2

22

Ω+=

Ωn C j G ε 5.巴特沃思模拟低通滤波器的设计

由于每一个滤波器的频率范围将直接取决于设计者的应用目的,因此必然是千差万别。为了使设计规范化,我们需要将滤波器的频率参数作归一化处理。设所给的实际频率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器,令

λ=p ΩΩ/

显然,1=p λ,p s s ΩΩ=/λ。又令归一化复数变量为p ,λj p =,显然

p p s j j p Ω=ΩΩ==//λ

所以巴特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求C 和N

11010/2-=P C α

s p s N λααlg 1

10

110lg

10

/10/--=

这样C 和N 可求。

若令p α=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时

N

p N

j G 222

)

/(11

11)(ΩΩ+=

+=

λλ (3)确定)(s G

因为λj p =,根据上面公式有

N

N N p

j p p G p G 22)1(11

)/(11)()(-+=+=

- 由

0)1(12=-+N N p 解得

)221

2exp(πN

N k j

p k -+=,k =1,2,···,2N 这样可得

1

)21

2cos(21

)

)((1

)(21+-+-=

--=

-+πN

N k p p p p p p p G k N k k

求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 6.用双线性Z 变换法设计IIR 数字低通滤波器 s 平面到z 平面的映射关系

1

1

2+-=

z z T s s

称为双线性Z 变换,由此关系求出

s

T s

T z s s )2/(1)2/(1-+=

及 )

2/cos()

2/sin(2ωωs T j

j =Ω

即 )2/tan(2

ωs

T =

Ω

)2/arctan(2s T Ω=ω

因为设计滤波器时系数s

T 2

会被约掉,所以又有 s

s

z -+=

11 )2/tan(ω=Ω

Ω=arctan 2ω

(三)实验内容:

题一:试用双线性Z 变换法设计一低通数字滤波器,给定技术指标是

100=p f Hz ,300=s f Hz ,3=p αdB ,20=s α dB ,抽样频率1000=s F Hz 。 提示:首先应该得到角频率ω,然后再

(1) 将数字滤波器的技术要求转换为模拟滤波器的技术要求。 (2) 设计低通滤波器)(s G

由λ=p ΩΩ/依次求出p λ,s λ,再求出N ,可得)(p G 然后由p

s

p p G s G Ω=

=)

()(转换成)(s G

(3) 由)(s G 求)(z H 设计步骤:

(1)求出角频率 s p

p F f w π

2= s s

s

F f w π2=

(2)对角频率做预畸变)2/tan(

p p ω=Ω )2/tan(s s ω=Ω (3)求出模拟低通滤波器的阶次,利用函数[N ,Wn]=buttord(Wp ,Ws ,Rp ,Rs ,’s’) 注意:Wp ,Ws 应该为(2)中的p Ω,s Ω。

(4)设计模拟低通原型滤波器)(p G ,其调用格式是 [z ,p ,k]=buttap(N)。 N 是欲设计的低通原型滤波器的阶次,z ,p ,k 分别是设计出的)(p G 的极点、零点及增益。

(5)求模拟低通原型滤波器)(p G 的分子分母系数,

[b,a]=zp2tf(z,p,k)。

(6)求出)(p G 的分子、分数系数。[B ,A]=lp2lp (b ,a ,Wo ) (7)求出)(z H 的分子、分母系数,利用bilinear 函数。 (8)求频率响应)(ωj e H ,利用Freqz 函数。 (9)画)(ωj e H 的图 。

(四)实验报告:

1.根据实验原理,编写代码,得出实验结果,并画出波形图。 2.归纳、总结实验结果。 3.心得体会及其他。

实验四 用窗函数法设计FIR 滤波器

实验学时:2 实验类型:验证

实验要求:必修

(一)实验目的

1. 掌握窗函数法设计FIR 滤波器的原理和方法,观察用几种常用窗函数设计的FIR 数字滤波器技术指标;

2. 掌握FIR 滤波器的线性相位特性;

3. 了解各种窗函数对滤波特性的影响。

(二)实验原理

如果所希望的滤波器的理想频率响应函数为Hd(e jω),则其对应的单位脉冲响

应为ωπ

ωπ

πω

d e e

H n h n j j d ?-

=

)(21)(,用窗函数wN(n)将hd(n)截断,并进行加权处理,

得到实际滤波器的单位脉冲响应h(n)=hd(n)wN(n),其频率响应函数为

n j N n j e n h e H ωω

--=∑=1

0)()(。如果要求线性相位特性,则h(n)还必须满足

)1()(n N h n h --±=。可根据具体情况选择h(n)的长度及对称性。

(三)实验内容

题一:生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。

题二:根据下列技术指标,设计一个FIR 数字低通滤波器:wp=0.2π,ws=0.4π,ap=0.25dB , as=50dB ,选择一个适当的窗函数,确定单位冲激响应,绘出所设计的滤波器的幅度响应。

提示:根据窗函数最小阻带衰减的特性表,可采用海明窗可提供大于50dB 的衰减,其过渡带为6.6π/N ,因此具有较小的阶次。

(四)实验用到的MATLAB函数

可以调用MATLAB工具箱函数fir1实现本实验所要求的线性相位FIR-DF的设计,调用一维快速傅立叶变换函数fft来计算滤波器的频率响应函数。

fir1是用窗函数法设计线性相位FIRDF的工具箱函数,调用格式如下:

hn=fir1(N, wc, ‘ftype’, window)

fir1实现线性相位FIR滤波器的标准窗函数法设计。

hn=fir1(N,wc)可得到6 dB截止频率为wc的N阶(单位脉冲响应h(n)长度为N+1)FIR 低通滤波器,默认(缺省参数windows)选用hammiing窗。其单位脉冲响应h(n)满足线性相位条件:h(n)=h(N-1-n)

其中wc为对π归一化的数字频率,0≤wc≤1。

当wc=[wc1, wc2]时,得到的是带通滤波器。

hn=fir1(N,wc,’ftype’)可设计高通和带阻滤波器。

当ftype=high时,设计高通FIR滤波器;

当ftype=stop时,设计带阻FIR滤波器。

应当注意,在设计高通和带阻滤波器时,阶数N只能取偶数(h(n)长度N+1为奇数)。不过,当用户将N设置为奇数时,fir1会自动对N加1。

hn=fir1(N,wc,window)可以指定窗函数向量window。如果缺省window参数,则fir1默认为hamming窗。可用的其他窗函数有Boxcar, Hanning, Bartlett, Blackman, Kaiser和Chebwin窗。例如:

hn=fir1(N,wc,bartlett(N+1))使用Bartlett窗设计;

hn=fir1(N,wc,chebwin(N+1,R))使用Chebyshev窗设计。

hn=fir1(N,wc,’ftype’,window)通过选择wc、ftype和window参数(含义同上),可以设计各种加窗滤波器。

(五)实验报告:

1.根据实验原理,编写代码,得出实验结果,并画出波形图。

2.归纳、总结实验结果。

3.心得体会及其他。

1、fft.m

调用格式是

X= fft(x) 或X=fft(x,N)

对前者,若x的长度是2的整数次幂,则按该长度实现x的快速变换,否则,实现的是慢速的非2的整数次幂的变换;对后者,N应为2的整数次幂,若x 的长度小于N,则补零,若超过N,则舍弃N以后的数据。Ifft的调用格式与之相同。

2、randn

本文件可用来产生均值为零、方差为1、服从高斯(正态)分步的白噪声信号u(n),其调用格式是

u=randn(N) 或randn=(M,N)

前者表示u为N维向量,后者表示u为M*N的矩阵。

3、Buttord.m

本文件用来确定数字低通或模拟低通滤波器的阶次,其调用格式分别是

1)[N,Wn]=buttord(Wp,Ws,Rp,Rs)

2)[N,Wn]=buttord(Wp,Ws,Rp,Rs,’s’)

格式1)对应数字滤波器,式中Wp,Ws分别是通带和阻带的截止频率,实际上它们是归一化频率,其值在0~1之间,1对应抽样频率的一半。对低通和高通滤波器,Wp,Ws都是标量,对带通和带阻滤波器,Wp,Ws都是1×2的向量。Rp,Rs分别是通带和阻带的衰减,单位为dB。N是求出的相应低通滤波器的阶次,Wn是求出的3dB频率,它和Wp稍有不同。格式2)对应模拟滤波器,式中各个变量的含义和格式1)相同,但Wp,Ws及Wn的单位为rad/s ,因此,它们实际上式频率 。

4、Buttap.m

本文件用来设计模拟低通原型滤波器)

(p

G,其调用格式是

[z,p,k]=buttap(N)

N是欲设计的低通原型滤波器的阶次,z,p,k分别是设计出的)

(p

G的极点、零点及增益。

5、Lp2lp.m

7、Lp2bp.m 8、Lp2bs.m

从文件名可以看出,上述4个文件的功能分别是将模拟低通原型滤波器)(p G 转换为实际的低通、高通、带通及带阻滤波器,其调用格式分别为: (1)[B ,A]=lp2lp (b ,a ,Wo ) 或 [B ,A]=lp2hp (b ,a ,Wo ) (2)[B ,A]=lp2bp (b ,a ,Wo )

或 [B ,A]=lp2bs (b ,a ,Wo )

式中b ,a 分别是模拟低通原型滤波器)(p G 的分子、分母多项式的系数向量,B ,A 分别是转换后的)(s H 的分子、分母多项式的系数向量;在(1)中,Wo 是低通或高通滤波器的截止频率;在(2)中,Wo 是带通或带阻滤波器的中心频率,Bw 是其带宽。 9、Bilinear.m

本文件实现双线性变换,即由模拟滤波器)(s H 得到数字滤波器)(z H ,而s 和z 的关系由1

1

2+-=

z z T s s 给出。其调用格式是:

[Bz ,Az]= bilinear (B ,A ,Fs )

式中B ,A 分别是)(s H 的分子、分母多项式的系数向量,Bz ,Az 分别是)(z H 的分子、分母多项式的系数向量, Fs 是抽样频率。 10、

Freqz.m

本文件用来在已知)(z B ,)(z A 的情况下求出系统的频率响应)(ωj e H ,格式是 [H ,w]=freqz (b ,a ,N ,’whole’,Fs )

其中N 是频率轴的分点数,建议N 为2的整次幂;w 是返回频率轴坐标向量,

供绘图用;Fs 是抽样频率,若Fs =1,频率轴给出归一化频率;whole 指定计算的频率范围是从0~Fs ,缺省时是从0~Fs/2 11、

Zp2tf.m

[b,a]=zp2tf(z,p,k) 零极点型传递函数转换到一般传递函数,它用于在极零点已知时求出)(z B 和)(z A 的系数。

Plot Stm Subplot Lable Conv

x=[1 2 3 4 5]; >> Lx=length(x); >> h=[6 2 3 6 4 2]; Lh=length(h); >> y=conv(x,h); Ly=length(y);

>> subplot(131);stem(1:1:Lx,x);title('x(n)与n 的离散序列图形'); >> subplot(132);stem(1:1:Lh,h);title('h(n)与n 的离散序列图形'); >> subplot(133);stem(1:1:Ly,y);title('y(n)与n 的离散序列图形');

12345

x(n)与n 的离散序列图形0

2

4

6

5

10

y(n)与n 的离散序列图形

数字图像处理实验报告

数字图像处理实验报告 实验一数字图像基本操作及灰度调整 一、实验目的 1)掌握读、写图像的基本方法。 2)掌握MATLAB语言中图像数据与信息的读取方法。 3)理解图像灰度变换处理在图像增强的作用。 4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方 法。 二、实验内容与要求 1.熟悉MATLAB语言中对图像数据读取,显示等基本函数 特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。 1)将MATLAB目录下work文件夹中的forest.tif图像文件读出.用到imread, imfinfo 等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。将这个图像显示出来(用imshow)。尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。 2)将MATLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray() 将其 转化为灰度图像,记为变量B。 2.图像灰度变换处理在图像增强的作用 读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。 3.绘制图像灰度直方图的方法,对图像进行均衡化处理 请自己编程和调用Matlab函数完成如下实验。 1)显示B的图像及灰度直方图,可以发现其灰度值集中在一段区域,用 imadjust函 数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰

度直方图与原灰度直方图的区别。 2) 对B 进行直方图均衡化处理,试比较与源图的异同。 3) 对B 进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。 图1.1 分段线性变换函数 三、实验原理与算法分析 1. 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。 1) 图像反转 灰度级范围为[0, L-1]的图像反转可由下式获得 r L s --=1 2) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围, 如直接使用原图,则一部分细节可能丢失。解决的方法是对原图进行灰度压缩,如对数变换: s = c log(1 + r ),c 为常数,r ≥ 0 3) 幂次变换: 0,0,≥≥=γγc cr s 4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求 局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 其对应的数学表达式为:

图像处理实验报告

重庆交通大学 学生实验报告 实验课程名称数字图像处理 开课实验室数学实验室 学院理学院年级信息与计算科学专业 2 班学生姓名李伟凯学号631122020203 开课时间2014 至2015 学年第 1 学期

实验(一)图像处理基础 ?实验目的 学习Matlab软件的图像处理工具箱,掌握常用的一些图像处理命令;通过编程实现几种简单的图像增强算法,加强对图像增强的理解。 ?实验内容 题目A.打开Matlab软件帮助,学习了解Matlab中图像处理工具箱的基本功能;题目B.掌握以下常见图像处理函数的使用: imread( ) imageinfo( ) imwrite( ) imopen( ) imclose( ) imshow( ) impixel( ) imresize( ) imadjust( ) imnoise( ) imrotate( ) im2bw( ) rgb2gray( ) 题目C.编程实现对图像的线性灰度拉伸y = ax + b,函数形式为:imstrech(I, a, b); 题目D.编程实现对图像进行直方图均衡化处理,并将实验结果与Matab中imhist 命令结果比较。 三、实验结果 1).基本图像处理函数的使用: I=imread('rice.png'); se = strel('disk',1); I_opened = imopen(I,se); %对边缘进行平滑 subplot(1,2,1), imshow(I), title('原始图像') subplot(1,2,2), imshow(I_opened), title('平滑图像') 原始图像平滑图像

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

数字图像处理实验报告 (2)

目录 实验一:数字图像的基本处理操作 (2) 1.1:实验目的 (2) 1.2:实验任务和要求 (2) 1.3:实验步骤和结果 (2) 1.4:结果分析 (6) 实验二:图像的灰度变换和直方图变换 (7) 2.1:实验目的 (7) 2.2:实验任务和要求 (7) 2.3:实验步骤和结果 (7) 2.4:结果分析 (11) 实验三:图像的平滑处理 (11) 3.1:实验目的 (11) 3.2:实验任务和要求 (11) 3.3:实验步骤和结果 (12) 3.4:结果分析 (15) 实验四:图像的锐化处理 (16) 4.1:实验目的 (16) 4.2:实验任务和要求 (16) 4.3:实验步骤和结果 (16) 4.4:结果分析 (18)

实验一:数字图像的基本处理操作 1.1:实验目的 1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用; 2、实现图像的读取、显示、代数运算和简单变换。 3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。 1.2:实验任务和要求 1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分 成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分 别显示,注上文字标题。 3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换, 显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。 4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里 叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的 对应关系。 1.3:实验步骤和结果 1.对实验任务1的实现代码如下: a=imread('d:\tp.jpg'); i=rgb2gray(a); I=im2bw(a,0.5); subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像'); 结果如图1.1 所示:

图像处理实验报告

实验报告 实验课程名称:数字图像处理 班级:学号:姓名: 注:1、每个实验中各项成绩按照10分制评定,每个实验成绩为两项总和20分。 2、平均成绩取三个实验平均成绩。 2016年 4 月18日

实验一 图像的二维离散傅立叶变换 一、实验目的 掌握图像的二维离散傅立叶变换以及性质 二、实验要求 1) 建立输入图像,在64?64的黑色图像矩阵的中心建立16?16的白色矩形图像点阵, 形成图像文件。对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。 2) 调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中 心化)都显示于屏幕上,比较变换结果。 3) 调整输入图像中白色矩形的尺寸(40?40,4?4),再进行变换,将原始图像及变 换图像(三维、中心化)都显示于屏幕上,比较变换结果。 三、实验仪器设备及软件 HP D538、MATLAB 四、实验原理 傅里叶变换作为分析数字图像的有利工具,因其可分离性、平移性、周期性和共轭对称性可以定量地方分析数字化系统,并且变换后的图像使得时间域和频域间的联系能够方便直观地解决许多问题。实验通过MATLAB 实验该项技能。 设),(y x f 是在空间域上等间隔采样得到的M ×N 的二维离散信号,x 和y 是离散实变量,u 和v 为离散频率变量,则二维离散傅里叶变换对一般地定义为 ∑∑ -=-=+-= 101 )],( 2ex p[),(1 ),(M x N y N yu M xu j y x f MN v u F π,1,0=u …,M-1;y=0,1,…N-1 ∑∑-=-=+=101 )],( 2ex p[),(),(M x N y N uy M ux j v u F y x f π ,1,0=x …,M-1;y=0,1,…N-1 在图像处理中,有事为了讨论上的方便,取M=N ,这样二维离散傅里叶变换对就定义为 ,]) (2ex p[),(1 ),(101 ∑∑ -=-=+- = N x N y N yu xu j y x f N v u F π 1,0,=v u …,N-1 ,]) (2ex p[ ),(1 ),(101 ∑∑-=-=+= N u N v N vy ux j v u F N y x f π 1,0,=y x ,…,N-1 其中,]/)(2exp[N yv xu j +-π是正变换核,]/)(2exp[N vy ux j +π是反变换核。将二维离散傅里叶变换的频谱的平方定义为),(y x f 的功率谱,记为 ),(),(|),(|),(222v u I v u R v u F v u P +== 功率谱反映了二维离散信号的能量在空间频率域上的分布情况。 五、实验步骤、程序及结果: 1、实验步骤: (1)、编写程序建立输入图像; (2)、对上述图像进行二维傅立叶变换,观察其频谱 (3)、改变输入图像中白框的位置,在进行二维傅里叶变换,观察频谱;

matlab图像处理综合实验实验报告

《数字图像处理》 实验报告 学院: 专业: 班级: 姓名: 学号: 实验一 实验名称:图像增强 实验目的:1.熟悉图像在Matlab下的读入,输出及显示; 2.熟悉直方图均衡化; 3.熟悉图像的线性指数等; 4.熟悉图像的算术运算及几何变换. 实验仪器:计算机,Matlab软件 实验原理: 图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。空间域的增强主要有:灰度变换和图像的空间滤波。 图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。 实验内容如下: I=imread('E:\cs.jpg');%读取图像 subplot(2,2,1),imshow(I),title('源图像') J=rgb2gray(I)%灰度处理 subplot(2,2,2),imshow(J) %输出图像 title('灰度图像') %在原始图像中加标题 subplot(2,2,3),imhist(J) %输出原图直方图

title('原始图像直方图') I=imread('E:\cs.jpg');%读取图像 subplot(1,2,1),imshow(I); subplot(2,2,1),imshow(I),title('源图像') J=rgb2gray(I)%灰度处理 subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J)); subplot(2,2,3),imshow(J1,[]),title('对数变换后') 指数运算: I=imread('E:\dog.jpg'); f=double(I); g=(2^2*(f-1))-1 f=uint8(f); g=uint8(g); subplot(1,2,1);subimage(f),title('变换一') 00100200 源图像灰度变换后图像对数变换后

数字图像处理实验报告

数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对

图像处理 实验报告

摘要: 图像处理,用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。图像处理一般指数字图像处理。 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 设计要求 可视化界面,采用多幅不同形式图像验证系统的正确性; 合理选择不同形式图像,反应各功能模块的效果及验证系统的正确性 对图像进行灰度级映射,对比分析变换前后的直方图变化; 1.课题目的与要求 目的: 基本功能:彩色图像转灰度图像 图像的几何空间变换:平移,旋转,剪切,缩放 图像的算术处理:加、减、乘 图像的灰度拉伸方法(包含参数设置); 直方图的统计和绘制;直方图均衡化和规定化; 要求: 1、熟悉图像点运算、代数运算、几何运算的基本定

义和常见方法; 2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法 3、掌握在MATLAB中进行插值的方法 4、运用MATLAB语言进行图像的插值缩放和插值旋转等 5、学会运用图像的灰度拉伸方法 6、学会运用图像的直方图设计和绘制;以及均衡化和规定化 7、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际2.课题设计内容描述 1>彩色图像转化灰度图像: 大部分图像都是RGB格式。RGB是指红,绿,蓝三色。通常是每一色都是256个级。相当于过去摄影里提到了8级灰阶。 真彩色图像通常是就是指RGB。通常是三个8位,合起来是24位。不过每一个颜色并不一定是8位。比如有些显卡可以显示16位,或者是32位。所以就有16位真彩和32位真彩。 在一些特殊环境下需要将真彩色转换成灰度图像。 1单独处理每一个颜色分量。 2.处理图像的“灰度“,有时候又称为“高度”。边缘加强,平滑,去噪,加 锐度等。 3.当用黑白打印机打印照片时,通常也需要将彩色转成灰白,处理后再打印 4.摄影里,通过黑白照片体现“型体”与“线条”,“光线”。 2>图像的几何空间变化: 图像平移是将图像进行上下左右的等比例变化,不改变图像的特征,只改变位置。 图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴按比例缩放fy倍,从而获得一幅新的图像。如果fx=fy,即在x轴方向和y轴方向缩放的比率相同,称这样的比例缩放为图像的全比例缩放。如果fx≠fy,图像的比例缩放会改变原始图象的像素间的相对位置,产生几何畸变。 旋转。一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。

数字图像处理实验报告

数字图像处理实验 报告 学生姓名:学号: 专业年级: 09级电子信息工程二班

实验一常用MATLAB图像处理命令 一、实验内容 1、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 实验结果如右图: 代码如下: Subplot (1,3,1) i=imread('E:\数字图像处理\2.jpg') imshow(i) title('RGB') Subplot (1,3,2) j=rgb2gray(i) imshow(j) title('灰度') Subplot (1,3,3) k=im2bw(j,0.5) imshow(k) title('二值') 2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (3,2,1) i=imread('E:\数字图像处理 \16.jpg') x=imresize(i,[250,320]) imshow(x) title('原图x') Subplot (3,2,2) j=imread(''E:\数字图像处理 \17.jpg') y=imresize(j,[250,320]) imshow(y) title('原图y') Subplot (3,2,3) z=imadd(x,y) imshow(z)

title('相加结果');Subplot (3,2,4);z=imsubtract(x,y);imshow(z);title('相减结果') Subplot (3,2,5);z=immultiply(x,y);imshow(z);title('相乘结果') Subplot (3,2,6);z=imdivide(x,y);imshow(z);title('相除结果') 3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (2,2,1) i=imread('E:\数字图像处理 \23.jpg') imshow(i) title('原图') Subplot (2,2,2) J = imadjust(i,[],[],3); imshow(J) title('变暗') Subplot (2,2,3) J = imadjust(i,[],[],0.4) imshow(J) title('变亮') Subplot (2,2,4) J=255-i Imshow(J) title('变负') 二、实验总结 分析图像的代数运算结果,分别陈述图像的加、减、乘、除运算可能的应用领域。 解答:图像减运算与图像加运算的原理和用法类似,同样要求两幅图像X、Y的大小类型相同,但是图像减运算imsubtract()有可能导致结果中出现负数,此时系统将负数统一置为零,即为黑色。 乘运算实际上是对两幅原始图像X、Y对应的像素点进行点乘(X.*Y),将结果输出到矩阵Z中,若乘以一个常数,将改变图像的亮度:若常数值大于1,则乘运算后的图像将会变亮;叵常数值小于是,则图像将会会暗。可用来改变图像的灰度级,实现灰度级变换,也可以用来遮住图像的某些部分,其典型应用是用于获得掩膜图像。 除运算操作与乘运算操作互为逆运算,就是对两幅图像的对应像素点进行点(X./Y), imdivide()同样可以通过除以一个常数来改变原始图像的亮度,可用来改变图像的灰度级,其典型运用是比值图像处理。 加法运算的一个重要应用是对同一场景的多幅图像求平均值 减法运算常用于检测变化及运动的物体,图像相减运算又称为图像差分运算,差分运算还可以用于消除图像背景,用于混合图像的分离。

图形图像处理实验报告

第四次实验报告 实验课程:图像图像处理实验人:尹丽(200921020047) 实验时间:2012年4月19日实验地点:5-602 指导老师:夏倩老师成绩: 一、实验内容: ⑴图像的锐化:使用Sobel,Laplacian 算子分别对图像进行运算,观察并体会运算结果。 ⑵综合练习:对需要进行处理的图像分析,正确运用所学的知识,采用正确的步骤,对图像进行各类处理,以得到令人满意的图像效果。 二、实验目的: 学会用Matlab中的下列函数对输入图像按实验内容进行运算;感受各种不同的图像处理方法对最终图像效果的影响。(imfilter;fspecial;) 三、实验步骤:

1、仔细阅读Matlab 帮助文件中有关以上函数的使用说明,能充分理解其使用方法并能运用它们完成实验内容。 2、将Fig3.41(c).jpg 图像文件读入Matlab ,使用filter2函数分别采用不同的算子对其作锐化运算,显示运算前后的图像。 3、算子的输入可采用直接输入法。其中Sobel ,Laplacian ,也可用fspecial 函数产生。 4、各类算子如下: ???? ??????---121000121 ??????????-111181111 5、将Fig3.46(a).jpg 图像文件读入Matlab ,按照以下步骤对其进行处理: (1)用带对角线的Laplacian 对其处理,以增强边缘。 (2)用imadd 函数叠加原始图像。可以看出噪声增强了,应想法降低。 (3)获取Sobel 模板并用filter2对其进行5×5邻域平均,以减少噪声。 5(1)实验代码如图: 对角线Laplacian Sobel 垂直梯度

武汉科技大学 数字图像处理实验报告讲解

二○一四~二○一五学年第一学期电子信息工程系 实验报告书 班级:电子信息工程(DB)1102班姓名 学号: 课程名称:数字图像处理 二○一四年十一月一日

实验一图像直方图处理及灰度变换(2学时) 实验目的: 1. 掌握读、写、显示图像的基本方法。 2. 掌握图像直方图的概念、计算方法以及直方图归一化、均衡化方法。 3. 掌握图像灰度变换的基本方法,理解灰度变换对图像外观的改善效果。 实验内容: 1. 读入一幅图像,判断其是否为灰度图像,如果不是灰度图像,将其转化为灰度图像。 2. 完成灰度图像的直方图计算、直方图归一化、直方图均衡化等操作。 3. 完成灰度图像的灰度变换操作,如线性变换、伽马变换、阈值变换(二值化)等,分别使用不同参数观察灰度变换效果(对灰度直方图的影响)。 实验步骤: 1. 将图片转换为灰度图片,进行直方图均衡,并统计图像的直方图: I1=imread('pic.jpg'); %读取图像 I2=rgb2gray(I1); %将彩色图变成灰度图 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('灰度图'); subplot(3,2,4); imhist(I2); %统计直方图 title('统计直方图'); subplot(3,2,5); J=histeq(I2); %直方图均衡 imshow(J); title('直方图均衡'); subplot(3,2,6); imhist(J); title('统计直方图');

原 图 灰度图 01000 2000 3000统计直方图 100200直方图均衡 0统计直方图 100200 仿真分析: 将灰度图直方图均衡后,从图形上反映出细节更加丰富,图像动态范围增大,深色的地方颜色更深,浅色的地方颜色更前,对比更鲜明。从直方图上反应,暗部到亮部像素分布更加均匀。 2. 将图片进行阈值变换和灰度调整,并统计图像的直方图: I1=imread('rice.png'); I2=im2bw(I1,0.5); %选取阈值为0.5 I3=imadjust(I1,[0.3 0.9],[]); %设置灰度为0.3-0.9 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('阈值变换'); subplot(3,2,5); imshow(I3); title('灰度调整'); subplot(3,2,2); imhist(I1); title('统计直方图'); subplot(3,2,4);

东北大学图像处理实验报告

计算机图像处理实验报告 哈哈哈哈哈哈实验台31 1.应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及 彩色图像的程序,并进行相互之间的转换 1)彩色图像转换为灰度图像、索引图像、二值图像 A=imread('F:\colorful.jpg'); subplot(221);imshow(A);title('彩色图像'); I1=rgb2gray(A); subplot(222);imshow(I1);title('灰度图像'); [X1,map]=rgb2ind(A,256); subplot(223);imshow(X1);title('索引图像'); BW=im2bw(A); subplot(224);imshow(BW);title('二值图像'); 彩色图像灰度图像 索引图像二值图像

2)灰度图像转换为索引图像、二值图像 clear A=imread('F:\colorful.jpg'); B=rgb2gray(A); subplot(131);imshow(B);title('灰度图像'); [X2,map]=gray2ind(B,128); subplot(132);imshow(X2);title('索引图像'); BW2=im2bw(B); subplot(133);imshow(BW2);title('二值图像'); 灰度图像索引图像二值图像 3)索引图像转为灰度图像、二值图像、彩色图像 clear A=imread('F:\colorful.jpg'); [X,map]=rgb2ind(A,256); subplot(221);imshow(X);title('索引图像'); I3=ind2gray(X,map); subplot(222);imshow(I3);title('灰度图像'); BW3=im2bw(X,map,0.5); subplot(223);imshow(BW3);title('二值图像'); RGB=ind2rgb(X,map); subplot(24);imshow(RGB);title('还原彩色图像'); 索引图像灰度图像 二值图像还原彩色图像

数字图像处理实验报告

- 院系:计算机科学学院专业:计算机科学与技术年级: 2012级 课程名称:数字图像处理组号: 姓名(学号): 指导教师:高志荣 2015年 5月 25日

实验原理(算法流程)2.运行结果 1-1-1图查看2012213500.png图片的基本信息和显示图片过程 1-1-2图将2012213500.png图片保存为2012213500.bmp图片3.实验分析

实验原理(算法流程) 先用imread()函数将2012213500.png存入I数组中,可见1-1-1图右上角的Workspace中的I。然后用imfinfo()函数和ans函数读取该图像的大小、类型等信息,具体在1-1-1图的Command Window中可见。至于图片格式的转换,就是用rgb2gray()函数将保存在I数组中的数据转换成灰度格式保存在原来的数组I中。最后将变换所得到的数据保存于2012213500.bmp文件中。 实验(2): 1.代码实现 I=imread(2012213500.bmp');%读取灰度图片 subplot(221),imshow(I,[]),title('256*256,256') I=I(1:2:end,1:2:end);%图片采样 subplot(222),imshow(I,[]),title('128*128,256') I=I(1:2:end,1:2:end);%图片采样 subplot(223),imshow(I,[]),title('64*64,256') I=I(1:2:end,1:2:end);%图片采样 subplot(224),imshow(I,[]),title('32*32,256') 2.运行结果 1-2 图图片空间分辨率对图片的影响 3.实验分析 由1-2图可以看出,在保持灰度级数一定的条件下,随着图片空间分辨率的减半,即256*256,128*128,64*64,32*32的图像,图中的各个区域边缘处的棋盘模式越来越明显,并且全图的像素颗粒越来越粗。证明了空间分辨率是影响图片清晰度的因素之一。 实验(3): 1.代码实现 I=imread('2012213500.bmp');%读取灰度图片 subplot(221),imshow(I,256),title('256*256,256')%灰度级为256 subplot(222),imshow(I,50),title('256*256,50') %灰度级为50 subplot(223),imshow(I,10),title('256*256,10') %灰度级为10 subplot(224),imshow(I,5),title('256*256,5') %灰度级为5

图像处理实验报告

武汉大学新闻与传播学院实验教学中心实验报告 专业:网络传播专业2010年10 月25 实验名称图像处理指导教师洪杰文 姓名华滢年级08 学号2008300710123 成绩 一、预习部分 1、实验目的 2、实验基本原理 3、主要仪器设备(含必要的元器件、工具) 1、实验目的:(1)熟悉和掌握数字图像的基本概念和技术指标,掌握色彩模式、图像分辨率、图像深度、图像文件格式与图像的显示效果、文件容量的关系。 (2)了解和掌握数字图像压缩的概念,观察不同的压缩比对图像的影响。 (3)了解和掌握图像中色彩的确定及选取方法,掌握前景色和背景色的概念及调整方法,掌握色彩填充的基本概念及应用。 (4)了解和掌握图像处理软件Photoshop的基本功能和基本使用方法,熟练掌握图层与选择区的基本使用方法。 (5)通过创造性的构图和对布局及色彩等的巧妙处理,一幅好的图画可以将一个主题以含蓄而又深刻的方式予以提示,并往往具有比单纯的语言文字更强的表现力。在掌握图像处理基本概念和Photoshop基本使用方法的基础上,对已有的数字图像做一些基本的创意设计和编辑处理。 2、实验基本原理:基于photoshop软件的图像处理。 3、主要仪器设备(含必要的元器件、工具):Adobe Photoshop 二、实验操作部分 1、实验操作过程 2、实验数据、观察到的实验现象 1、实验操作过程: 1.图像的基本变换 (1)自选一幅不小于400×400pixel的彩色数字图像。在Photoshop中打开该图像,记录其技术参数:文件格式、文件容量,图像尺寸(pixel和cm)、分辨率、色彩模式等。

文件格式:JPEG 图像;文件容量:59.7kb;图像尺寸(pixel和cm):600×600pixel;分辨率:72像素/英寸;色彩模式:RGB模式。 (2)对该图像重采样,要求采样后的图像分辨率为150dpi,图像尺寸为300×300pixel。色彩模式分别变换成灰度、Indexed和RGB模式,按BMP格式分别保存成不同名称的图像文件;重新打开并观察变换后的显示效果,并记录各个文件的容量。 灰度:容量大小为:88.9kb Indexed;容量大小为:88.9kb

数字图像处理实验报告

数 字 图 像 处 理 II 实 验 报 告 课程名称:数字图像处理 II 专业:印刷工程班级: 学生姓名:学号: 指导教师:

一.直方图的定义、性质?打开图像,调整直方图,然后看有什么效果? 答:直方图定义:颜色直方图是在许多图像检索系统中被广泛采用的颜色特征。它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适于描述那些难以进行自动分割的图像。 直方图的性质:直方图中的数值都是统计而来,描述了该图像中关于颜色的数量特征,可以反映图像颜色的统计分布和基本色调;直方图只包含了该图像中某一颜色值出现的频数,而丢失了某象素所在的空间位置信息;任一幅图像都能唯一的给出一幅与它对应的直方图,但不同的图像可能有相同的颜色分布,从而就具有相同的直方图,因此直方图与图像是一对多的关系;如将图像划分为若干个子区域,所有子区域的直方图之和等于全图直方图;一般情况下,由于图像上的背景和前景物体颜色分布明显不同,从而在直方图上会出现双峰特性,但背景和前景颜色较为接近的图像不具有这个特性。 在PS上进行调整: 原图: 调整直方图:

二.说明什么是平滑与锐化?说明分别的原理及其应用中各个参数的意义? 答:平滑:压制、弱化或消除图像中的细节、突变、边缘和噪声, 平滑原理:图像平滑是对图像作低通滤波,可在空间域或频率域实现。空问域图像平滑方法主要用低通卷积滤波、中值滤波等;频率域图像平滑常用的低通滤波器有低通梯形滤波器、低通高斯滤波器、低通指数滤波器、巴特沃思低通滤波器等。 锐化:图像锐化(image sharpening)就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。 锐化原理:图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。 在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。 模糊的参数和作用 1 动感模糊 作用:模拟了摄像中拍摄运动物体时间接曝光的功能,从而使图像产生一种动态效果。 参数:①角度:控制图像的模糊方向。 ②距离:控制图像的模糊强度。 2 高斯模糊 作用:根据高斯钟形曲线调节像素色值,控制模糊效果,甚至能造成难以辨认的

数字图像处理实验报告

数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张 图显示在同一图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形 成的效果,要求在同一窗口中显示。

3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选 项,如零填充、’replicate’、’symmetric’、’circular’)进 行低通滤波,显示处理后的图像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波, 查看其特点, 显示均值处理后的图像(提示:利用 fspecial 函数 的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图 像做处理,要求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图 像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算 子,如5 ×5的拉普拉斯算子

数字图像处理实验报告 (2)

数字图像处理试验报告 实验二:数字图像得空间滤波与频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26日 1、实验目得 1、掌握图像滤波得基本定义及目得. 2、?理解空间域滤波得基本原理及方法。 3、掌握进行图像得空域滤波得方法。 4、?掌握傅立叶变换及逆变换得基本原理方法。 5、?理解频域滤波得基本原理及方法。 6、掌握进行图像得频域滤波得方法。 2、实验内容与要求 1、?平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同 一图像窗口中。 2)?对加入噪声图像选用不同得平滑(低通)模板做运算,对比不同模板所形成得效果, 要求在同一窗口中显示。 3) 使用函数 imfilter时,分别采用不同得填充方法(或边界选项,如 零填充、’replicate'、'symmetric’、’circular')进行低通滤波,显 示处理后得图像. 4)运用for循环,将加有椒盐噪声得图像进行10 次,20 次均值滤波,查瞧其特点,显示均值处理后得图像(提示:利用fspecial函数得’average’ 类型生成均值滤波器)。 5)?对加入椒盐噪声得图像分别采用均值滤波法,与中值滤波法对有噪声得图像做处理, 要求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后得图像。 2、锐化空间滤波 1)?读出一幅图像,采用3×3得拉普拉斯算子 w = [ 1, 1, 1;1– 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 得拉普拉斯算子, 如 5 ×5得拉普拉斯算子 w =[ 1 1 1 1 1 1 1 1 1 1 1 1 —24 1 1 1 1 1 1 1 1 1 1 1 1] 3)?分别采用5×5,9×9,15×15与25×25大小得拉普拉斯算子对blurry_moon、tif

数字图像处理实验报告实验三

数字图像处理实验报告实验三

中南大学数字图像处理实验报告 实验三数学形态学及其应用

实验三 数学形态学及其应用 一.实验目的 1.了解二值形态学的基本运算 2.掌握基本形态学运算的实现 3.了解形态操作的应用 二.实验基本原理 腐蚀和膨胀是数学形态学最基本的变换,数学形态学的应用几乎覆盖了图像处理的所有领域,给出利用数学形态学对二值图像处理的一些运算。 膨胀就是把连接成分的边界扩大一层的处理。而收缩则是把连接成分的边界点去掉从而缩小一层的处理。 二值形态学 I(x,y), T(i,j)为 0/1图像Θ 腐蚀:[]),(&),(),)((),(0,j i T j y i x I AND y x T I y x E m j i ++=Θ== 膨胀:[]),(&),(),)((),(0 ,j i T j y i x I OR y x T I y x D m j i ++=⊕== 灰度形态学 T(i,j)可取10以外的值 腐蚀: []),(),(min ),)((),(1 ,0j i T j y i x I y x T I y x E m j i -++=Θ=-≤≤ 膨胀: []),(),(max ),)((),(1 ,0j i T j y i x I y x T I y x D m j i +++=⊕=-≤≤ 1.腐蚀Erosion: {}x B x B X x ?=Θ: 1B 删两边 2B 删右上 图5-1 剥去一层(皮) 2.膨胀Dilation: {}X B x B X x ↑⊕:= 1B 补两边 2B 补左下 图5-2 添上一层(漆) 3.开运算

相关文档
最新文档