考点6 二次函数

合集下载

二次函数知识点总结及练习题

二次函数知识点总结及练习题

二次函数考点1、二次函数的概念定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 注意: (1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0, 而b 、c 为任意实数。

(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。

(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)例1: 函数y=(m +2)x 22-m +2x -1是二次函数,则m= _______.例2:已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a____时,是二次函数;当a______,b_____时,是一次函数;当a_______,b_______,c_________时,是正比例函数.例3:函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数 例4: 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=2x1+x . A .1个 B .2个 C .3个 D .4个考点2、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0), 对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x1)(x-x2)(a ≠0),对称轴:直线x=22x1x + (其中x1、x2是二次函数与x 轴的两个交点的横坐标).例1:抛物线822--=x x y 的顶点坐标为____________;对称轴是___________。

二次函数【考点精讲】- 中考数学考点总复习高分导航(全国通用)(原卷版)

  二次函数【考点精讲】- 中考数学考点总复习高分导航(全国通用)(原卷版)

考点1:二次函数的图象和性质1.二次函数的一般形式:(a,b,c是常数,a≠0)注:未知数的最高次数是2,a≠0,b,c是任意实数。

2.函数图象和性质函数二次函数y=ax2+bx+c(a,b,c为常数,a≠0)图象a>0a<0性质①当a>0时,抛物线开口向上,并向上无限延伸.①对称轴是abx2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--abacab4422,.①在对称轴的左侧,即当x<ab2-时,y随x的增大而减小;在对称轴的右侧,即当x>ab2-时,①当a<0时,抛物线开口向下,并向下无限延伸.①对称轴是abx2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--abacab4422,.①在对称轴的左侧,即当x<ab2-时,y随x的增大而增大;在对称轴的右侧,即当x>ab2-时,y随x的增大而减小,简记为左增右减.专题10 二次函数知识导航知识精讲y随x的增大而增大,简记为左减右增.①抛物线有最低点,当x=ab2-时,y有最小值,y最小值=abac442-.①抛物线有最高点,当x=ab2-时,y有最大值,y最大值=abac442-.【例1】(山东中考真题)一次函数()0y ax b a=+≠与二次函数()20y ax bx c a=++≠在同一平面直角坐标系中的图象可能是()A.B.C.D.【例2】(四川中考真题)如图,已知抛物线2y ax bx c=++(a,b,c为常数,0a≠)经过点()2,0,且对称轴为直线12x=,有下列结论:①0abc>;①0a b+>;①4230a b c++<;①无论a,b,c取何值,抛物线一定经过,02ca⎛⎫⎪⎝⎭;①2440am bm b+-≥.其中正确结论有()A.1个B.2个C.3个D.4个抛物线y=ax2+bx+c中a,b,c的作用(1)a决定开口方向及开口大小,这与y=ax2中的a完全一样.方法技巧a >0时,抛物线开口向上;a <0时,抛物线开口向下;a 的绝对值越大,开口越小. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线y =ax 2+bx +c 的对称轴是直线abx 2-=,故:①b =0时,对称轴为y 轴;①abx 2-=>0(即a,b 同号) 时,对称轴在y 轴左侧;①abx 2-=<0(即a,b 异号)时,对称轴在y 轴右侧.(口诀:“左同右异”)【注意问题】(1)二次函数的图象与系数的关系;(2)会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换.1.(湖南中考真题)若二次函数2(0)y ax bx c a =++≠的图象如图所示,则一次函数y ax b =+与反比例函数cy x=-在同一个坐标系内的大致图象为( )A .B .C .D .2.(福建中考真题)二次函数()220y ax ax c a =-+>的图象过1234()()3,,1,,2(),,)4,(A y B y C y D y --四个点,下列说法一定正确的是( ) A .若120y y >,则340y y > B .若140y y >,则230y y > C .若240y y <,则130y y <D .若340y y <,则120y y <3.(湖北中考真题)二次函数()20y ax bx c a =++≠的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;①420a b c ++<;①80a c +<;①若抛物线经过点()3,n -,则关于针对训练x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个考点2:二次函数的平移1.抛物线y=a (x -h )2+k 与y=ax 2的关系(1)二者的形状相同,位置不同,y=a (x -h )2+k 是由y=ax 2通过平移得来的,平移后的顶点坐标为(h,k). (2)y=ax 2的图象y=a (x -h )2的图象y=a (x -h )2+k 的图象.口诀:上加下减,左加右减【例3】(广东)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式( ) A .y =x 2+2 B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3图像平移规律:由函数y =ax 2平移得到y =a (x -h )2+k 满足“h 值正右移,负左移;k 值正上移,负下移”,概括成八个字,即:“左加右减,上加下减”.1.(上海中考真题)将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是( ) A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变2.(绥化)将抛物线y =2(x ﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物方法技巧针对训练右左 上下线的解析式是( ) A .y =2(x ﹣6)2 B .y =2(x ﹣6)2+4 C .y =2x 2D .y =2x 2+43.(哈尔滨)将抛物线y =x 2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线 为( ) A .y =(x +3)2+5 B .y =(x ﹣3)2+5 C .y =(x +5)2+3 D .y =(x ﹣5)2+3考点3:二次函数与方程、不等式的关系 1.二次函数与一元二次方程的关系二次函数图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点。

二次函数

二次函数

返回目录
(1)∵f(1+x)=f(1-x), ∵ 关于直线x=1对称 对称, ∴函数f(x)关于直线 函数 关于直线 对称 的最大值为15, 又f(x)的最大值为 的最大值为 故可设f(x)=a(x-1)2+15(a<0). 故可设 ∴f(x)=ax2-2ax+a+15,
15 ∴x1+x2=2,x1x2=1+ a ,
a +2 = 1.即a=-4,而函数 是定义在[ ] 即 ,而函数f(x)是定义在[a,b] 是定义在 2 a +b 上的, 关于x=1对称 ∴ 2 = 1 .∴b=6. 对称.∴ 上的,即a,b关于 关于 对称 ∴
返回目录
解法二: 二次函数的对称轴为 解法二:∵二次函数的对称轴为x=1, 与原函数表达式对比可得a+2 ∴f(x)=(x-1)2+c与原函数表达式对比可得 与原函数表达式对比可得 =-2, ∴a=-4,又 又 ∴b=6.
返回目录
3.二次函数的三种表示形式 二次函数的三种表示形式 一般式: 一般式 y=ax2+bx+c(a≠0) . 顶点式: 顶点式 y=a(x-h)2+k(a≠0) ,其中 其中 (h,k) 为抛
物线的顶点坐标. 物线的顶点坐标 两根式: 两根式: y=a(x-x1)(x-x2) ,其中 ,其中 x1,x2 是
1 (2)试比较 试比较f(0)·f(1)-f(0)与 16 的大小 并说明理由 的大小,并说明理由 并说明理由. 试比较 与
【分析】可利用二次函数中根与系数的关系列出不 分析】 等关系,从而确定参数 的取值范围 等关系 从而确定参数a的取值范围 从而确定参数 的取值范围.
返回目录
【解析】 (1)令g(x)=f(x)-x=x2+(a-1)x+a, 解析】 令 ∆>0

二次函数必背知识点(精辟)

二次函数必背知识点(精辟)
同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐
标相等,设纵坐标为 k ,则横坐标是 ax 2 bx c k 的两个实数根.
(5)一次函数 y kx nk 0的图像 l 与二次函数 y ax2 bx ca 0的图像
(2)函数 y ax 2 的图像与 a 的符号关系. ①当 a 0 时 抛物线开口向上 顶点为其最低点; ②当 a 0 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 y 轴的抛物线的解析式形式为 y ax 2(a 0).
3.二次函数 y ax2 bx c 的图像是对称轴平行于(包括重合) y 轴的抛物线.
y最小 ax22 bx2 c 。
考点四、二次函数的性质 (6~14 分) 1、二次函数的性质
二次函数
函数
y ax2 bx c(a,b,ห้องสมุดไป่ตู้c是常数,a 0)
a>0
a<0
y y
图像
0
x
0
x
(1)抛物线开口向上,并向上无限延伸;
(1)抛物线开口向下,并向下无限延伸;
(2)对称轴是 x= b ,顶点坐标是( b , (2)对称轴是 x= b ,顶点坐标是
性质
2a
2a
2a
4ac b2
);
4a

b
4ac b2

);
2a 4a
相信你会成功。加油!!
5
适合任何版本的数学教材,希望能帮到你。
(3)在对称轴的左侧,即当 x< b 时,y 随 2a
x 的增大而减小;在对称轴的右侧,即当 x>

专题09 二次函数的图象与性质(6大考点)(学生版)

专题09 二次函数的图象与性质(6大考点)(学生版)

第三部分函数专题09二次函数的图象与性质(6大考点)核心考点核心考点一二次函数的图象与性质核心考点二与二次函数图象有关的判断核心考点三与系数a、b、c有关的判断核心考点四二次函数与一元二次方程的关系核心考点五二次函数图象与性质综合应用核心考点六二次函数图象的变换新题速递核心考点一二次函数的图象与性质(2022·浙江宁波·统考中考真题)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2B.32m>C.1m<D.322m<<(2021·江苏常州·统考中考真题)已知二次函数2(1)y a x=-,当0x>时,y随x增大而增大,则实数a的取值范围是()A.a>B.1a>C.1a≠D.1a<(2022·江苏徐州·统考中考真题)若二次函数2=23y x x--的图象上有且只有三个点到x轴的距离等于m,则m的值为________.知识点:二次函数的概念及表达式1.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2.二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:()()12y a x x x x =--,其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.知识点:二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2ba,244ac b a -)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2b a 时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2b a 时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小【变式1】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式2】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式3】(2022·江苏盐城·滨海县第一初级中学校考三模)如图1,对于平面内的点A 、P ,如果将线段P A 绕点P 逆时针旋转90°得到线段PB ,就称点B 是点A 关于点P 的“放垂点”.如图2,已知点()4,0A ,点P 是y 轴上一点,点B 是点A 关于点P 的“放垂点”,连接AB 、OB ,则OB 的最小值是______.【变式4】(2022·吉林长春·校考模拟预测)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点()0,2A ,点()2,0C ,则互异二次函数()2y x m m =--与正方形OABC 有公共点时m 的最大值是__________.【变式5】(2021·湖北随州·一模)如图,抛物线2(0,0)y ax k a k =+><与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且14PC OC =.过点P 作DE AB ∥,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示)(2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若90ODC ∠=︒,4k =-,求a 的值.核心考点二与二次函数图象有关的判断(2021·广西河池·统考中考真题)点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是()A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >(2021·湖南娄底·统考中考真题)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是()A .0104x <≤B .01142x <≤C .01324x <≤D .0314x <≤(2020·广西贵港·中考真题)如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.知识点、抛物线的三要素:开口方向、对称轴、顶点.①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.知识点、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是,(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★知识点、直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y nkx y 2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121【变式1】(2022·四川泸州·校考模拟预测)二次函数2y ax bx c =++(0a ≠)的自变量x 与函数y 的部分对应值如下表:x…1-01234…2y ax bx c =++…8301-03…则这个函数图像的顶点坐标是()A .()2,1-B .()12-,C .()1,8-D .()4,3【变式2】(2022·山东日照·校考一模)设()12,A y -,()21,B y ,()32,C y 是抛物线()212y x =-++上的三点,则1y ,2y ,3y 的大小关系为()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>【变式3】(2021·陕西西安·校考模拟预测)在同一坐标系中,二次函数211y a x =,222y a x =,233y a x =的图象如图,则1a ,2a ,3a 的大小关系为______.(用“>”连接)【变式4】(2022·广西·统考二模)如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则a 的取值范围是______.【变式5】(2022·河南南阳·统考三模)在平面直角坐标系中,已知抛物线242y ax ax =-+.(1)抛物线的对称轴为直线_______,抛物线与y 轴的交点坐标为_______;(2)若当x 满足15x ≤≤时,y 的最小值为6-,求此时y 的最大值.核心考点三与系数a、b、c 有关的判断(2022·湖北黄石·统考中考真题)已知二次函数2y ax bx c =++的部分图象如图所示,对称轴为直线=1x -,有以下结论:①<0abc ;②若t 为任意实数,则有2a bt at b -≤+;③当图象经过点(1,3)时,方程230ax bx c ++-=的两根为1x ,2x (12x x <),则1230x x +=,其中,正确结论的个数是()A .0B .1C .2D .3(2022·山东日照·统考中考真题)已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为32x =,且经过点(-1,0).下列结论:①3a +b =0;②若点11,2y ⎛⎫⎪⎝⎭,(3,y 2)是抛物线上的两点,则y 1<y 2;③10b -3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有()A .1个B .2个C .3个D .4个(2021·贵州遵义·统考中考真题)抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)经过(0,0),(4,0)两点.则下列四个结论正确的有___(填写序号).①4a +b =0;②5a +3b +2c >0;③若该抛物线y =ax 2+bx +c 与直线y =﹣3有交点,则a 的取值范围是a 34≥;④对于a 的每一个确定值,如果一元二次方程ax 2+bx +c ﹣t =0(t 为常数,t ≤0)的根为整数,则t 的值只有3个.知识点、二次函数图象的特征与a,b,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y 轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,h x =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。

二次函数考点、知识点、例题(全)

二次函数考点、知识点、例题(全)

二次函数考点1 二次函数的概念一般地,形如① (a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a、b、c分别为函数表达式的二次项系数、一次项系数和常数项.【易错提示】二次函数的增减性一定要分在对称轴的左侧或右侧两种情况讨论.【易错提示】(1)用顶点式代入顶点坐标时横坐标容易弄错符号;(2)所求的二次函数解析式最后要化成一般式. 考点5 二次函数与一元二次方程以及不等式之间的关系考点6 二次函数的应用1.二次函数y=(x-h)2+k的图象平移时,主要看顶点坐标的变化,一般按照“横坐标加减左右移”、“纵坐标加减上下移”的方法进行.2.二次函数的图象由对称轴分开,在对称轴的同侧具有相同的性质,在顶点处有最大值或最小值,如果自变量的取值中不包含顶点,那么在取最大值或最小值时,要依据其增减性而定.3.求二次函数图象与x轴的交点的方法是令y=0解关于x的方程;求函数图象与y轴的交点的方法是令x=0得y的值,最后把所得的数值写成坐标的形式.命题点1 二次函数的图象和性质例1 (2013·昭通)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.a>0B.3是方程ax2+bx+c=0的一个根C.a+b+c=0D.当x<1时,y随x的增大而减小方法归纳:解决此类问题应注意观察所给抛物线的特征,逐个排除不符合的选项.1.(2014·上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( )A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)22.(2012·巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是( )A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=-13.(2014·云南)抛物线y=x2-2x+3的顶点坐标为 .4.(2014·珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为 .5.(2014·滨州)已知二次函数y=x2-4x+3.(1)用配方法求其函数的顶点C的坐标,并描述该函数的函数值随自变量的增减而增减的情况;(2)求函数图象与x轴的交点A,B的坐标(A在B的左侧),及△ABC的面积.命题点2 二次函数的图象与系数的关系例2 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是( )A.b 2-4ac <0 B.abc <0 C.-2ba<-1 D.a-b+c <0方法归纳:解决此类问题应当了解a,b,c,Δ=b2-4ac,a+b+c,a-b+c 的符号判定的方法,同时还要观察对称轴x=2b a-.1.(2014·黔东南)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列4个结论:①abc <0;②b <a+c ;③4a+2b+c >0;④b 2-4ac >0. 其中正确结论的有( )A.①②③B.①②④C.①③④D.②③④2.(2014·陕西)二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列结论中正确的是( ) A.c >-1 B.b >0 C.2a+b ≠0 D.9a+c >3b3.(2014·巴中)已知二次函数y=ax 2+bx+c 的图象如图,则下列叙述正确的是( )A.abc <0B.-3a+c <0C.b 2-4ac ≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax 2+c 命题点3 确定二次函数的解析式例3 (2013·泰州)如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A,C 分别在x 轴、y 轴的正半轴上,二次函数y=23-x 2+bx+c 的图象经过B,C 两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x 的取值范围. 【思路点拨】(1)通过正方形的边长得出点B,C的坐标,然后代入函数解析式列方程求解;(2)求出函数图象与x轴的交点坐标,结合图象求解.【解答】方法归纳:求二次函数的解析式,通常采用待定系数法,根据题目给出的条件选择不同的函数表达式,这样便于计算.1.(2013·安徽)已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.2.(2014·宁波)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.1.(2013·益阳)抛物线y=2(x-3)2+1的顶点坐标是( )A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)2.(2014·宿迁)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-33.(2013·泰安)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y34.(2014·东营)若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-25.(2014·毕节)抛物线y=2x2,y=-2x2,y=12x2共有的性质是( )A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小6.(2014·黄石)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>37.(2014·新疆)对于二次函数y=(x-1)2+2的图象,下列说法正确的是( )A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点8.(2014·淄博)如图,二次函数y=x2+bx+c的图象过点B(0,-2).它与反比例函数y=8x的图象交于点A(m,4),则这个二次函数的解析式为( )A.y=x2-x-2B.y=x2-x+2C.y=x2+x-2D.y=x2+x+29.(2013·广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=0,③b2-4ac<0,④4a+2b+c>0.其中正确的是( )A.①③B.只有②C.②④D.③④10.(2014·长沙)抛物线y=3(x-2)2+5的顶点坐标是 .11.(2013·北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式 .12.已知函数y=-3(x-2)2+4,当x= 时,函数取得最大值为 .13.(2013·河南)点A(2,y1),B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1<y2(填“>”“<”或“=”).14.(2014·安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为 .15.(2013·温州)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C.过点C作CD∥x轴交抛物线的对称轴于点D,连接BD.已知点A的坐标为(-1,0).(1)求抛物线的解析式;(2)求梯形COBD的面积.16.(2014·龙东)如图,二次函数y=ax2+bx+3的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C,点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出D点的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.1.(2014·荆州)将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-32.(2014·黔东南)已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2 014的值为( )A.2 012B.2 013C.2 014D.2 0153.(2014·长沙)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是( )4.(2014·泰安)已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=mxn的图象可能是( )5.(2014·凉山)下列图形中阴影部分的面积相等的是( )A.②③B.③④C.①②D.①④6.(2014·枣庄)已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y轴B.直线x=52C.直线x=2D.直线x=327.(2014·烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:其中正确的结论有( )①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x的值的增大而增大.A.1个B.2个C.3个D.4个8.(2014·齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.9.(2014·徐州)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?参考答案考点解读①y=ax2+bx+c ②上③下④减小⑤增大⑥增大⑦减小⑧上⑨下⑩小⑪y ⑫左⑬右⑭原点⑮正⑯负○17唯一○18两个不同○19没有○20a+b+c○21a-b+c ○22>○23<○24y=ax2+bx+c ○25y=a(x-h)2+k ○26y=a(x-x1)(x-x2) ○27x○28横○29>○30<各个击破例1 B解析:根据抛物线的开口向下,可判断a<0,故A错误;由抛物线与x轴的交点(-1,0)和对称轴x=1可知抛物线与x轴的另一个交点是(3,0),故B正确;由当x=1时,y=a+b+c≠0,故C错误;从图象即可看出,当x<1时,y 随x的增大而增大,故D错误.故选B.题组训练1.C2.C3.(1,2)4.直线x=25.(1)y=x2-4x+3=x2-4x+4-1=(x-2)2-1,∴其函数的顶点C的坐标为(2,-1),∴当x≤2时,y随x的增大而减小;当x>2时,y随x的增大而增大.(2)令y=0,则x2-4x+3=0,解得x1=1,x2=3,∴A(1,0),B(3,0),AB=|1-3|=2.过点C作CD⊥x轴于D,则△ABC的面积=12AB·CD=12×2×1=1.例2 C 解析:由图象与x 轴有2个交点可判断A错误;根据图象的开口方向、对称轴、与y 轴的交点可判断a <0,2ba-<-1,c >0,即abc >0,故B 错误,C 正确;由当x=-1时,y=a-b+c >0可判断D 错误.故答案选C. 题组训练1.B2.D3.B例3 (1)由题意可得:B (2,2),C (0,2),将B,C 坐标代入y=23-x 2+bx+c ,得c=2,b=43, ∴二次函数的解析式是y=23-x 2+43x+2.(2)解23-x 2+43x+2=0,得x 1=3,x 2=-1.由图象可知:y>0时x 的取值范围是-1<x <3.题组训练1.设二次函数的解析式为y=a (x-1)2-1(a ≠0), ∵函数图象经过原点(0,0),∴a (0-1)2-1=0,解得a=1,∴该函数解析式为y=(x-1)2-1.2.(1)∵二次函数y=ax 2+bx+c 的图象过B (0,-1),∴二次函数解析式为y=ax 2+bx -1.∵二次函数y=ax 2+bx -1的图象过A (2,0)和C (4,5)两点,∴42101641 5.a b a b +-=⎧⎨+-=⎩,解得1,21.2a b ⎧=⎪⎪⎨⎪=⎪⎩-∴y=12x 2-12x -1. (2)当y=0时,12x 2-12x -1=0,解得x=2或x=-1,∴D (-1,0).(3)如图,当-1<x <4时,一次函数的值大于二次函数的值.整合集训 基础过关1.A2.B3.A4.D5.B6.D7.C8.A9.C10.(2,5) 11.y =x 2+1 12.2 4 13.< 14.y=a(1+x)215.(1)把A (-1,0)代入y=a(x -1)2+4,得0=4a+4,∴a=-1.∴y=-(x -1)2+4.(2)当x=0时,y=3,∴OC=3.∵抛物线y=-(x -1)2+4的对称轴是直线x=1,∴CD=1.∵A (-1,0),∴B (3,0),∴OB=3.∴S 梯形COBD =13)32+⨯(=6. 16.(1)D (-2,3).(2)把点A,B 代入y=ax 2+bx+3中,得9330,30.a b a b -+=⎧⎨++=⎩解得1,2.a b =-⎧⎨=-⎩ ∴二次函数的解析式为y=-x 2-2x+3.(3)x <-2或x >1.能力提升1.B2.D3.D4.C5.A6.D7.B 提示:∵抛物线的对称轴为直线x=2b a-=2,∴b=-4a ,即4a+b=0,故①正确; ∵当x=-3时,y <0,∴9a-3b+c <0,即9a+c <3b ,故②错误;∵抛物线与x 轴的一个交点为(-1,0),∴a-b+c=0,而b=-4a ,∴a+4a+c=0,即c=-5a ,∴8a+7b+2c=8a-28a-10a=-30a ,∵抛物线开口向下,∴a <0,∴8a+7b+2c >0,故③正确;观察图象,④明显错误,即正确的结论是①③2个.8.(1)∵抛物线顶点坐标为(1,4),∴设y=a(x-1)2+4,由于抛物线过点B(0,3),∴3=a(0-1)2+4,解得a=-1.∴解析式为y=-(x-1)2+4,即y=-x 2+2x+3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P.设AE 解析式y=kx+b ,则4,3.k b b +=⎧⎨=-⎩解得7,3.k b =⎧⎨=-⎩∴y AE =7x-3.当y=0时,x=37,∴点P坐标为(37,0).9.(1)y=ax2+bx-75图象过点(5,0),(7,16),∴255750, 4977516.a ba b+-=⎧⎨+-=⎩解得1,20.ab=-⎧⎨=⎩y=-x2+20x-75的顶点坐标是(10,25).当x=10时,y最大=25.答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元.(2)∵函数y=-x2+20x-75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=-x2+20x-75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.。

考点06 高中数学-二次函数与幂函数-考点总结及习题

考点06 高中数学-二次函数与幂函数-考点总结及习题

考点06二次函数与幂函数【命题趋势】此知识点也是高考中的常考知识点,注意:(1)了解幂函数的概念.(2)结合函数12321,,,y x y x y x y y x x=====的图象,了解它们的变化情况.【重要考向】一、求二次函数和幂函数的解析式二、幂函数的图像与性质的应用三、二次函数的图像与性质的应用二次函数与幂函数的解析式1.幂函数(1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较函数y =xy =x 2y =x 3y =12xy =x-1图象性质定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点(1,1)2.二次函数的概念形如2()(0)f x ax bx c a =++≠的函数叫做二次函数.3.表示形式(1)一般式:f (x )=ax 2+bx +c (a ≠0).(2)顶点式:f (x )=a (x −h )2+k (a ≠0),其中(h ,k )为抛物线的顶点坐标.(3)两根式:f (x )=a (x −x 1)(x −x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴交点的横坐标.【巧学妙记】1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.【答案】f (x )=x 2-2x +3解析由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.2.已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________.【答案】x 2+2x解析设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .3.若函数()f x 是幂函数,且满足()()432f f =,则12f ⎛⎫= ⎪⎝⎭A .13B .3C .13-D .−3【答案】A【解析】由题意可设()(f x x αα=为常数),因为满足()()432f f =,所以432αα=,所以2log 3α=,所以()2log 3f x x =,所以2log 311223f -⎛⎫== ⎪⎝⎭.故选A .幂函数的图像与性质①α的正负:当α>0时,图象过原点,在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.②幂函数的指数与图象特征的关系当α≠0,1时,幂函数y =x α在第一象限的图象特征如下:αα>10<α<1α<0图象特殊点过(0,0),(1,1)过(0,0),(1,1)过(1,1)凹凸性下凸上凸下凸单调性递增递增递减举例y =x 212y x =1y x -=、12y x-=【巧学妙记】4.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是()A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c 【答案】B【解析】由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B.5.已知幂函数f (x )=(n 2+2n -2)23n nx -(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为()A .-3B .1C .2D .1或2【答案】B【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B.6.若(a+1)13-<(3-2a)13-,则实数a的取值范围是____________.【答案】(-∞,-1)【解析】不等式(a+1)13-<(3-2a)13-等价于a+1>3-2a>0或3-2a<a+1<0或a+1<0<3-2a,解得a<-1或23<a<32.二次函数图像与性质的应用函数解析式2()(0)f x ax bx c a=++>2()(0)f x ax bx c a=++<图象(抛物线)定义域R值域24[,)4ac ba-+∞24(,]4ac ba--∞对称性函数图象关于直线2bxa=-对称顶点坐标24(,)24b ac ba a--奇偶性当b=0时是偶函数,当b≠0时是非奇非偶函数单调性在(,]2ba-∞-上是减函数;在[,)2ba-+∞上是增函数.在(,]2ba-∞-上是增函数;在[,)2ba-+∞上是减函数.最值当2bxa=-时,2min4()4ac bf xa-=当2bxa=-时,2max4()4ac bf xa-=【巧学妙记】7.一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是()【答案】C【解析】若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a<0,而二次函数的对称轴在y 轴的右侧,故应排除B ,选C.8.函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是()A .[-3,0)B .(-∞,-3]C .[-2,0]D .[-3,0]【答案】D【解析】当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].9.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.【答案】(-∞,-1)【解析】设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m -54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.1.已知[1,1]a ∈-时不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)2.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭C.(),3-∞ D.3,7⎛⎫+∞⎪⎝⎭3.已知函数2()2()f x x ax a R =-+∈在区间[1,+∞)上单调递增,则a 的取值范围为()A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]4.函数()22f x x ax =++在()3,+∞上单调递增,则实数a 的取值范围是()A.6a =- B.6a ≥- C.6a >- D.6a ≤-5.已知幂函数a y k x =⋅的图象过点(4,2),则k a +等于()A.32B.3C.12D.26.若幂函数f (x )的图象过点21,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2 B.()(),02,-∞+∞ C.()2,0- D.()(),20,-∞-+∞ 7.若四个幂函数a y x =,b y x =,c y x =,d y x =在同一坐标系中的部分图象如图,则a 、b 、c 、d 的大小关系正确的是()A.1a b >>B.1a b >>C.0b c>> D.0d c>>8.已知幂函数()y f x =的图象过点13(,)33,则3log (81)f 的值为()A.12B.12-C.2D.2-9.(多选题)已知点2(1)A ,在函数()3f x ax =的图象上,则过点A 的曲线():C y f x =的切线方程是()A.640x y --=B.470x y -+=C.470x y -+=D.3210x y -+=二、填空题10.已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.11.已知直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是___________.12.已知函数23()(1)m f x m m x +=+-是幂函数,且该函数是偶函数,则m 的值是____13.幂函数()24222m y m m x --=--在(0,+∞)上为增函数,则实数m =_______.14.已知幂函数223()()m m f x x m Z +-=∈是奇函数,且()51f <,则m 的值为___________.一、单选题1.(2013·浙江高考真题(文))已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则()A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =02.(2007·湖南高考真题(文))函数244 1(){431x x f x x x x -≤=-+>,,的图象和函数2()log g x x =的图象的交点个数是A .1B .2C .3D .43.(2008·江西高考真题(文))已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是A .[4,4]-B .(4,4)-C .(,4)-∞D .(,4)-∞-4.(2011·上海高考真题(文))下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为()A .2y x-=B .1y x-=C .2y x=D .13y x=二、填空题5.(2017·北京高考真题(文))已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.6.(2012·山东高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m x =-在[0,)+∞上是增函数,则a =______.三、解答题7.(2014·辽宁高考真题(文))设函数()211f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈⋂时,证明:221()[()]4x f x x f x +≤.一、单选题1.(2021·北京高三二模)下列函数中,在区间(0,)+∞上单调递增的是()A .12xy ⎛⎫= ⎪⎝⎭B .1y x -=C .2(1)y x =-D .ln y x=2.(2021·新疆高三其他模拟(文))若实数m ,n 满足m n >,且0mn ≠,则下列选项正确的是()A .330m n ->B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()lg 0m n ->D .11m n<3.(2021·全国高三月考(文))已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =()A .221x x -+B .221x x ++C .2221x x -+D .2221x x +-4.(2021·江西新余市·高三二模(文))已知a ,b 是区间[0,4]上的任意实数,则函数2()1f x ax bx =-+在[2,)+∞上单调递增的概率为()A .18B .38C .58D .785.(2021·全国高一课时练习)已知函数()()2ln 23f x x x =--+,则()f x 的增区间为()A .(–∞,–1)B .(–3,–1)C .[–1,+∞)D .[–1,1)6.(2021·安徽合肥市·合肥一中高三其他模拟(文))若120x x <<,则下列函数①()f x x =;②2()f x x =;③3()f x x =;④()f x x =;⑤1()f x x=满足条件()()()121221()022f x f x x x f x x ++>>的有()A .1个B .2个C .3个D .4个7.(2021·江西高三二模(文))设ln 2a =,0.1b =,0.1c =,则下列关系中正确的是()A .b a c>>B .c b a>>C .c a b>>D .b c a>>8.(2021·江西高三其他模拟(文))已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是()A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题9.(2021·全国高一课时练习)有如下命题,其中真命题的标号为()A .若幂函数()y f x =的图象过点12,2⎛⎫ ⎪⎝⎭,则()132f >B .函数()(110x f x aa -=+>且)1a ≠的图象恒过定点()1,2C .函数()21f x x =-在()0,∞+上单调递减D .若函数()224f x x x =-+在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2三、填空题10.(2021·全国高一课时练习)已知偶函数()24a af x x -=在()0∞+,上是减函数,则整数a 的值是________.11.(2021·黑龙江哈尔滨市·哈尔滨三中高二月考(文))已知2()31f x ax x =-+,若对任意的[1,1]a ∈-,总有()0f x ≥,则x 的范围是______.12.(2021·千阳县中学高三其他模拟(文))给出以下几个不等式:①0.30.70.40.1<;②45log 3log 4<;③131sin sin 223<;④16181816<.其中不等式中成立序号为______.四、解答题13.(2020·上海高一专题练习)幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.参考答案跟踪训练1.【答案】:C 【分析】根据题意,转化为关于a 的函数()2(2)44f a x a x x =-+-+,得出()0f a >对于任意[1,1]a ∈-恒成立,即可求解.【详解】由题意,因为[1,1]a ∈-时不等式2(4)420x a x a +-+->恒成立,可转化为关于a 的函数()2(2)44f a x a x x =-+-+,则()0f a >对于任意[1,1]a ∈-恒成立,则满足()()2215601320f x x f x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得1x <或3x >,即x 的取值范围为(,1)(3,)-∞+∞ .故选:C.【点睛】本题主要考查了不等式的恒成立问题,其中解答中根据条件转化为关于a 的函数,结合其图象特征,列出不等式组是解答的关键,着重考查转化思想,以及运算与求解能力.2.【答案】:A 【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.3.【答案】:D 【分析】直接根据二次函数性质,由对称轴和区间的位置关系即可得解.【详解】依题意对称轴12ax =≤,解得2a ≤,故选:D .【点睛】本题主要考查了二次函数的单调性,属于基础题.4.【答案】:B 【分析】根据函数()22f x x ax =++在()3,+∞上单调递增,则根据函数的图象知:对称轴必在x=3的左边,列出不等式求解即可.【详解】∵函数()22f x x ax =++在()3,+∞上单调递增,x=2a -∴32a-≤,即6a ≥-故选B【点睛】本题考查了二次函数的性质,二次函数的对称轴的求法与应用,属于基础题.5.【答案】:A 【分析】根据题意,由幂函数的定义可得1k =,将点(4,2)的坐标代入解析式,计算可得α的值,相加即可得答案.【详解】解:根据题意,函数y k x α=⋅为幂函数,则1k =,若其图象过点(4,2),则有24α=,解可得12α=,则32k α+=;故选:A .【点睛】本题考查幂函数的定义以及解析式的求法,注意幂函数解析式的形式,属于基础题.6.【答案】:A 【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点1,22⎛⎫ ⎪ ⎪⎝⎭,则2122α⎛= ⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x x xx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.7.【答案】:B 【分析】根据幂函数的图象与性质,即可求解,得到答案.【详解】由幂函数的图象与性质,在第一象限内,在1x =的右侧部分的图象,图象由下至上,幂指数依次增大,可得100a b c d >>>>>>.故选:B.【点睛】本题主要考查了幂函数的图象与性质的应用,其中熟记幂函数在第一象限的图象与性质是解答的关键,属于基础题.8.【答案】:C 【分析】设幂函数的解析式为()()f x x R αα=∈,根据幂函数的图象过点13()33,求得()12f x x =,结合对数的运算性质,即可求解.【详解】由题意,设幂函数的解析式为()()f x x R αα=∈,根据幂函数的图象过点13()33,可得31(33α=,解得12α=,即()12f x x =,所以12333log (81)log 81log 92f ===.故选:C .9.【答案】AD 【分析】先根据点2(1)A ,在函数()3f x ax =的图象上,可求出a ,再设出切点()00,P x y ,求出在点P处的切线方程,然后根据点A 在切线上,即可解出.【详解】因为点2(1)A ,在函数()3f x ax =的图象上,所以2a =.设切点()00,P x y ,则由()32f x x =得,()26f x x '=,即206k x =,所以在点P 处的切线方程为:()3200026y x x x x -=-,即230064y x x x =-.而点2(1)A ,在切线上,∴2300264x x =-,即()()()()222000002111210x x x x x ---=-+=,解得01x =或012x =-,∴切线方程为:640x y --=和3210x y -+=.故选:AD .【点睛】本题主要考查过某点的曲线的切线方程的求法,意在考查学生的数学运算能力,属于基础题.二、填空题10.【答案】:[)4,+∞【分析】求出二次函数的对称轴方程,根据二次函数的单调区间,确定对称轴与区间的关系,即可求解.【详解】()223f x x ax =-++对称轴方程为x a =,()f x 在区间(),4-∞上是增函数,所以4a ≥.故答案为:[)4,+∞.【点睛】本题考查函数的单调性求参数,熟练掌握初等简单函数的性质是解题的关键,属于基础题.11.【答案】:514a <<【分析】直线1y =与曲线2y x x a =-+有四个交点等价于方程21x x a =-+有四个解,即满足y a =和21y x x =-++有四个交点,画出函数图象即可求出.【详解】直线1y =与曲线2y x x a =-+有四个交点等价于方程21x x a =-+有四个解,则21a x x =-++,满足y a =和21y x x =-++有四个交点,画出函数图象如下,观察图象可知,要使y a =和21y x x =-++有四个交点,需满足514a <<故答案为:514a <<.【点睛】本题考查利用函数图象求参数,属于基础题.12.【答案】:1【分析】由幂函数的定义可得211m m +-=,解出方程,最后根据该函数是偶函数确定m 的值.【详解】∵函数23()(1)m f x m m x +=+-是幂函数,∴211m m +-=,解得2m =-或1m =,又∵该函数是偶函数,当2m =-时,函数()f x x =是奇函数,当1m =时,函数4()f x x =是偶函数,即m 的值是1,故答案为1.【点睛】本题主要考查幂函数的定义与简单性质,函数奇偶性的判断,属于基本知识的考查.13.【答案】:-1【分析】利用幂函数定义和单调性可得2221m m --=且420m -->,联立求解即可.【详解】由幂函数定义得2221m m --=,解得:3m =或1m =-因为在()24222m y m m x--=--()0+∞,上为增函数,所以420m -->,即12m <-,所以1m =-故答案为:1-【点睛】本题考查了幂函数定义和单调性,属于基础题.14.【答案】:0【分析】由(5)1f <和m Z ∈,可确定1m =-或0m =,由()f x 是奇函数,可舍掉1m =-,即可得到本题答案.【详解】因为22323(5)5123012m m f m m m +-=<⇒+-<⇒-<<,又因为m Z ∈,所以1m =-或0m =,当1m =-时,2232m m +-=-,不符合题意,舍去;当0m =时,2233m m +-=-,符合题意.故答案为:0真题再现1.A 【分析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项.【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选:A.【点睛】本题考查二次函数的对称轴,单调性,属于基础题.2.C 【详解】试题分析:解:在同一坐标系中画出函数的图象和函数g (x )=log 2x 的图象,如下图所示:由函数图象得,两个函数图象共有3个交点,故选C.考点:1.函数的图象与图象变化;2.零点个数.3.C 【详解】当2160m ∆=-<时,显然成立当4,(0)(0)0m f g ===时,显然不成立;当24,()2(2),()4m f x x g x x =-=+=-显然成立;当4m <-时12120,0x x x x +,则()0f x =两根为负,结论成立故4m <,故选C.4.A 【详解】试题分析:由偶函数定义知,仅A,C 为偶函数,C.2y x =在区间(0,)+∞上单调递增函数,故选A .考点:本题主要考查奇函数的概念、函数单调性、幂函数的性质.点评:函数奇偶性判定问题,应首先考虑函数的定义域是否关于原点对称.5.1[,1]2【详解】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22x y +的取值范围为1[,1]2.【名师点睛】本题考查了转化与化归的能力,除了像本题的方法,即转化为二次函数求取值范围,也可以转化为几何关系求取值范围,即0,0x y ≥≥,1x y +=表示线段,那么22x y+的几何意义就是线段上的点到原点距离的平方,这样会更加简单.6.14【详解】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意7.(1)4|03M x x ⎧⎫=≤≤⎨⎬⎩⎭;(2)详见解析.【详解】试题分析:(1)由所给的不等式可得当1x ≥时,由()331f x x =-≤,或当1x <时,由()11f x x =-≤,分别求得它们的解集,再取并集,即得所求.(2)由4g x ≤(),求得N ,可得3{|0}4M N x x ⋂=≤≤.当x ∈M∩N 时,f (x )=1-x ,不等式的左边化为211()42x --,显然它小于或等于14,要证的不等式得证.(1)33,[1,)(){1,(,1)x x f x x x -∈+∞=-∈-∞当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤;当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<;所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4M N x x ⋂=≤≤.当x M N ∈⋂时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +=+2111()(1)()424xf x x x x ==-=--≤.考点:1.其他不等式的解法;2.交集及其运算.模拟检测1.D【分析】根据基本初等函数的性质依次判断选项即可.【详解】对于A 选项:指数函数12x y ⎛⎫= ⎪⎝⎭,底数112<,所以函数12xy ⎛⎫= ⎪⎝⎭在(,)-∞+∞上单调递减;对于B 选项:幂函数1y x -=,10-<,所以幂函数1y x -=在(0,)+∞上单调递减;对于C 选项:二次函数2(1)y x =-,对称轴为1x =,所以二次函数2(1)y x =-在(0,1)上单调递减,在(1)+∞,上单调递增;对于D 选项:对数函数ln y x =,底数1e >,所以对数函数ln y x =在(0,)+∞上单调递增.故选:D.【点睛】本题主要考查基本初等函数的单调性,基本初等函数的函数性质是整个高中数学知识的奠基,和很多专题知识都有交融,是整个数学学习的基础.2.A【分析】利用幂函数、指数函数单调性和对数的运算可求解.【详解】解:∵函数3y x =,在R x ∈时单调递增,且m n >,∴330m n ->,故A 正确;∵函数1()2xy =,在R x ∈时单调递减,且m n >,∴11(()22m n <,故B 错误;当11,2m n ==时,()1lg lg 02m n -=<,故C 错误;当,11m n ==-时,1111m n=>=-,故D 错误;故选:A.3.B【分析】设()()20f x ax bx c a =++≠,根据已知条件可得出关于a 、b 、c 的方程组,解出这三个未知数的值,即可得出函数()f x 的解析式.【详解】设()()20f x ax bx c a =++≠,则()2f x ax b '=+,由()()21f x x f x '=+-可得()2221ax bx c x ax b ++=++-,所以,121a b a c b =⎧⎪=⎨⎪=-⎩,解得121a b c =⎧⎪=⎨⎪=⎩,因此,()221f x x x =++.故选:B.4.D【分析】利用函数单调性求得a ,b 关系,结合几何概型即可求解.【详解】因为a ,b 是区间[0,4]上的任意实数,则函数2()1f x ax bx =-+在[2,)+∞上单调递增所以242≤⇒≤b b a a如图所示阴影部分:则所要求的概率为14414147244168⨯-⨯⨯===⨯P 故选:D5.B【分析】先求出函数的定义域,然后由复合函数的单调性可得出答案.【详解】由2230x x --+>,得31x -<<,当31x -<<-时,函数223y x x =--+单调递增,所以函数2()ln(23)f x x x =--+单调递增;当11x -<<时,函数223y x x =--+单调递减,所以所以函数2()ln(23)f x x x =--+单调递减,故选:B.6.D【分析】条件121221()()(0)22x x f x f x f x x ++⎛⎫≤>> ⎪⎝⎭表明函数应是上凹函数或者是一次函数,结合幂函数的图象可作答.【详解】只有上凹函数或者是一次函数才满足题中条件,所以只有①②③⑤满足.故选:D.7.D【分析】利用指对函数的性质,结合中间量比较大小【详解】ln 2ln 1a e =<=Q,0.10.101b c =>=>=,b c a ∴>>.故选:D8.D【分析】由幂函数的性质求参数a 、b ,根据点在直线上得2m n +=,有14111n m m +=-++且02m <<,进而可求11n m ++的取值范围.【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<,∴11(,3)13n m +∈+.故选:D.【点睛】关键点点睛:根据幂函数的性质求参数,再由点在线上确定m 、n 的数量关系,进而结合目标式,应用分式型函数的性质求范围.9.BD【分析】由()f x 所过点可求得幂函数()f x 解析式,由此得到()132f <,知A 错误;由()12f =恒成立可知()f x 过定点()1,2,知B 正确;由二次函数的性质可知C 错误;由二次函数的最值可确定自变量的范围,即可确定m 的范围,知D 正确.【详解】对于A ,令()f x x α=,则122α=,解得:1α=-,()1f x x -∴=,()11332f ∴=<,A 错误;对于B ,令10x -=,即1x =时,()1112f =+=,()f x ∴恒过定点()1,2,B 正确;对于C ,()f x 为开口方向向上,对称轴为0x =的二次函数,()f x ∴在()0,∞+上单调递增,C 错误;对于D ,令()4f x =,解得:0x =或2x =;又()()min 13f x f ==,∴实数m 的取值范围为[]1,2,D 正确.故选:BD.10.2【分析】由()24aa f x x -=在()0+∞,上是减函数,可得04a <<,进而可得结果.【详解】因为()24a a f x x -=在()0+∞,上是减函数,所以240a a -<,解得04a <<,又函数为偶函数,且a Z ∈,当1a =时,()-3f x x =为奇函数当2a =时,()4f x x -=为偶函数当3a =时,()3f x x -=为奇函数;所以2a =故答案为:211.31331322x +-+-≤≤【分析】把函数f (x )视为关于参数a 的一次型函数,在端点-1,1处的函数值不小于0,建立不等式组求解即得.【详解】令g (a )=x 2·a -3x +1,则g (a )是一次型函数,它在闭区间上图象为线段,则在闭区间上函数值不小于0,即对应图象不在x 轴下方,只需端点不在x 轴下方即可,22310[1,1],()0[1,1],()0310x x a f x a g a x x ⎧-+≥∴∀∈-≥⇔∀∈-≥⇔⎨--+≥⎩,解2310x x -+≥得:352x ≤或352x ≥,解2310x x --+≥得:31331322x --+≤≤,所以有3322x +-+-≤≤.答案为:3322x +-+-≤≤【点睛】在参数范围给定的含该参数的函数问题中,转换“主”、“辅”变元的位置是解题的关键.12.②③④【分析】利用幂函数的单调性可判断①的正误;利用对数函数的单调性结合作差法、基本不等式可判断②的正误;利用函数()sin x f x x=的单调性可判断③的正误;利用对数函数()ln x g x x=可判断④的正误.【详解】对于①,()()0.10.10.330.170.10.40.40.0640.10.0000001==>=,①错误;对于②,()()22245ln 3ln 5ln 4ln 3ln 5ln 4ln 3ln 42log 3log 4ln 4ln 5ln 4ln 5ln 4ln 5+⎛⎫- ⎪-⎝⎭-=-=<(()22ln 40ln 4ln 5-=<,所以,45log 3log 4<,②正确;对于③,令()sin x f x x =,其中()0,1x ∈,则()2cos sin x x x f x x -'=,令()cos sin h x x x x =-,其中()0,1x ∈,则()sin 0h x x x '=-<,所以,函数()h x 在()0,1上单调递减,当()0,1x ∈时,()0h x <,则()0f x '<,所以,函数()f x 在()0,1上单调递减,因为110132<<<,则1123f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即112sin 3sin 23<,故131sin sin 223<,③正确;对于④,设()ln x g x x =,其中0x >,则()21ln x g x x-'=,当x e >时,()0g x '<,即函数()g x 在(),e +∞上单调递减,所以,()()1618g g >,即ln16ln181618>,所以,1816ln16ln18>,因此,16181816<,④正确.故答案为:②③④.【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个:(1)判断各个数值所在的区间;(2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.13.25()f x x =或85()f x x =.【分析】根据幂函数的定义和性质得到关于t 满足的式子,即可求得t 的值.【详解】因为幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,所以322117320732t t t t t t ⎧-+=⎪+->⎨⎪+-⎩是偶数,解得1t =或1t =-,当1t =时,25()f x x =,当1t =-时,85()f x x =.【点睛】关键点点睛:该题考查的是有关幂函数的问题,能够正确解题的关键是熟练掌握幂函数的定义和幂函数的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档