双曲线的几何性质(6)

合集下载

双曲线的几何性质

双曲线的几何性质

焦点 F (c,0) F (0,c), F (c,0), F (0,c)
焦点位 看分母大小,哪个大 看 x2 , y2 的系数正负,
置判断: 就在对应的轴上
哪个为正就在哪个轴上
a,b,c 关系
c2 a2 b2
c2 a2 b2
双曲线的简单几何性质
x a或x a , y R y a或y a , x R
双曲线的简单几何性质
复习:
双曲线的定义:平面内与两个定点F1,F2的距
离的差的绝对值等于常数(小于︱F1F2︱)的点 的轨迹叫做双曲线.
MF1 MF2 2a F1F2
MF1 MF2 2a 右支
y
M
M
MF2 MF1 2a 左支
F1 O F2 x
双曲线与椭圆之间的区别与联系
椭圆
双曲线
定义 方程
MF1 MF2 2a F1F2
x2 a2

y2 b2
1(a
b
0)
MF1 MF2 2a F1F2
x2 y2 1(a 0,b 0) a2 b2
y2 a2

x2 b2
1(a
b
0)
y2 x2 1(a 0,b 0) a2 b2
x , y轴
0,0
A1 a ,0, A2 a ,0 A10,a, A2 0,a
实轴A1 A2 2a ,虚轴B1B2 2b
半实轴 a ,半虚轴 b
ybx a
e c a
1

b2 a2
e

ห้องสมุดไป่ตู้
1
ya x b
e ,开口变大 e ,开口变小

2020版高考理科数学(人教版)一轮复习讲义:第九章 第六节 双曲线 Word版含答案

2020版高考理科数学(人教版)一轮复习讲义:第九章 第六节 双曲线 Word版含答案

第六节双曲线1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于非零❶常数(小于|F 1F 2|)❷的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. 2.双曲线的标准方程和几何性质若将双曲线的定义中的“差的绝对值等于常数”中的“绝对值”去掉,则点的集合是双曲线的一支,具体是左支还是右支视情况而定.设双曲线上的点M 到两焦点F 1,F 2的距离之差的绝对值为2a ,则0<2a <|F 1F 2|,这一条件不能忽略.①若2a =|F 1F 2|,则点M 的轨迹是分别以F 1,F 2为端点的两条射线; ②若2a >|F 1F 2|,则点M 的轨迹不存在;③若2a =0,则点M 的轨迹是线段F 1F 2的垂直平分线.[熟记常用结论]1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min=c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( ) (4)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e22=1.()答案:(1)×(2)×(3)√(4)√二、选填题1.双曲线2x2-y2=8的实轴长是()A.2B.2 2C.4 D.4 2解析:选C双曲线2x2-y2=8的标准方程为x24-y28=1,故实轴长为4.2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为()A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D.(3,0)解析:选C∵原方程可化为x21-y212=1,∴a2=1,b2=12,∴c2=a2+b2=32,∴右焦点坐标为⎝⎛⎭⎫62,0.3.若方程x22+m-y2m+1=1表示双曲线,则m的取值范围是________.解析:因为方程x22+m-y2m+1=1表示双曲线,所以(2+m)(m+1)>0,即m>-1或m<-2.答案:(-∞,-2)∪(-1,+∞)4.若双曲线x2-y2m=1的离心率为3,则实数m=________.解析:由已知可得a=1,c=1+m,所以e=ca=1+m=3,解得m=2.答案:25.双曲线C的焦点分别为(-6,0),(6,0),且经过点(-5,2),则该双曲线的标准方程为____________________.解析:由题意得2a=|(-5+6)2+22-(-5-6)2+22|=45,所以a=25,又c=6,所以b2=c2-a2=36-20=16,所以双曲线的标准方程为x 220-y 216=1.答案:x 220-y 216=1考点一 双曲线的标准方程[基础自学过关][题组练透]1.(2019·绵阳联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±34x ,且其右焦点为(5,0),则双曲线C 的标准方程为( )A.x 29-y 216=1 B.x 216-y 29=1 C.x 23-y 24=1 D.x 24-y 23=1 解析:选B 由题意得b a =34,c 2=a 2+b 2=25,所以a =4,b =3,所以所求双曲线的标准方程为x 216-y 29=1.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线标准方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1解析:选B 法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0),因为双曲线过点P (2,1), 所以4a 2-1b2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线标准方程是x 22-y 2=1.法二:设所求双曲线标准方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入可得44-λ+11-λ=1, 解得λ=2(λ=-2舍去),所以所求双曲线标准方程为x 22-y 2=1.3.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 解析:选A 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1.4.经过点P (3,27),Q (-62,7)的双曲线的标准方程为____________.解析:设双曲线方程为mx 2+ny 2=1(mn <0),因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125.故所求双曲线标准方程为y 225-x 275=1.答案:y 225-x 275=15.焦点在x 轴上,焦距为10,且与双曲线y 24-x 2=1有相同渐近线的双曲线的标准方程是________________.解析:设所求双曲线的标准方程为y 24-x 2=-λ(λ>0),即x 2λ-y 24λ=1,则有4λ+λ=25,解得λ=5,所以所求双曲线的标准方程为x 25-y 220=1.答案:x 25-y 220=1[名师微点]求双曲线标准方程的2种方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. [提醒] 求双曲线的标准方程时,若焦点位置不确定,要注意分类讨论.也可以设双曲线方程为mx 2+ny 2=1(mn <0)求解.(如第4题)考点二 双曲线的定义及其应用 [师生共研过关][典例精析](1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.(3)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的一动点,则|PF |+|PA |的最小值为________.[解析] (1)如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B ,根据两圆外切的充要条件,得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |. 因为|MA |=|MB |,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2<6.这表明动点M 到两定点C 2,C 1的距离的差是常数2且小于|C 1C 2|.根据双曲线的定义知,动点M 的轨迹为双曲线的左支(点M 到C 2的距离大,到C 1的距离小),且a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),则其轨迹方程为x 2-y 28=1(x ≤-1).(2)∵由双曲线的定义有|PF 1|-|PF 2|=2a =22, |PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22, 则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.(3)因为F 是双曲线x 24-y 212=1的左焦点,所以F (-4,0),设其右焦点为H (4,0),则由双曲线的定义可得|PF |+|PA |=2a +|PH |+|PA |≥2a +|AH |=4+(4-1)2+(0-4)2=4+5=9.[答案] (1)x 2-y 28=1(x ≤-1) (2)34(3)9[解题技法]双曲线定义的应用策略(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题.(3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置.[过关训练]1.(2019·唐山模拟)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为( )A .1 B.52C .2D. 5解析:选A 不妨设|PF 1|=m ,|PF 2|=n ,则由双曲线的定义可知||PF 1|-|PF 2||=|m -n |=4.又因为∠F 1PF 2=90°,所以|PF 1|2+|PF 2|2=(2c )2=20,即m 2+n 2=20.又||PF 1|-|PF 2||2=|m -n |2=16,所以mn =2.所以△F 1PF 2的面积为S =12mn =1,故选A.2.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 内切圆的圆心在直线x =2上,则顶点C 的轨迹方程是( )A.x 24-y 221=1(x >2) B.y 24-x 221=1(y >2) C.x 221-y 24=1 D.y 24-x 22=1解析:选A 如图,△ABC 与内切圆的切点分别为G ,E ,F . |AG |=|AE |=7,|BF |=|BG |=3,|CE |=|CF |,所以|CA |-|CB |=7-3=4.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为4的双曲线的右支,方程为x 24-y 221=1(x >2).考点三 双曲线的几何性质[全析考法过关][考法全析]考法(一) 求双曲线的离心率(或范围)[例1] (1)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 作垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(2,1+2)D .(1,1+2)(2)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与双曲线C 在第二象限的交点为P ,O 为原点,|OP |=|OF |,则双曲线C 的离心率为( )A .5 B. 5 C.53D.54[解析] (1)若△ABE 是锐角三角形,只需∠AEF <45°,在Rt △AFE 中,|AF |=b 2a ,|FE |=a +c ,则b 2a <a +c ,即b 2<a 2+ac ,即2a 2-c 2+ac >0,则e 2-e -2<0,解得-1<e <2,又e >1,则1<e <2,故选B.(2)根据直线4x -3y +20=0与x 轴的交点F 为(-5,0),可知半焦距c =5,设双曲线C 的右焦点为F 2,连接PF 2,根据|OF 2|=|OF |且|OP |=|OF |可得,△PFF 2为直角三角形,如图,过点O 作OA 垂直于直线4x -3y +20=0,垂足为A ,则易知OA 为△PFF 2的中位线,又原点O 到直线4x -3y +20=0的距离d =4,所以|PF 2|=2d =8,|PF |=|FF 2|2-|PF 2|2=6,故结合双曲线的定义可知|PF 2|-|PF |=2a =2,所以a =1,故e =ca=5.[答案] (1)B (2)A考法(二) 求双曲线的渐近线[例2] (2019·武汉调研)已知双曲线C :x 2m 2-y 2n 2=1(m >0,n >0)的离心率与椭圆x 225+y 216=1的离心率互为倒数,则双曲线C 的渐近线方程为( )A .4x ±3y =0B .3x ±4y =0C .4x ±3y =0或3x ±4y =0D .4x ±5y =0或5x ±4y =0[解析] 由题意知,椭圆中a 2=25,b 2=16,∴椭圆的离心率e = 1-b 2a 2=35, ∴双曲线的离心率为 1+n 2m 2=53,∴n m =43,∴双曲线的渐近线方程为y =±n m x =±43x ,即4x ±3y =0.故选A.[答案] A考法(三) 求双曲线的方程[例3] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1 B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1 [解析] 由离心率为2,可知a =b ,c =2a , 所以F (-2a ,0),由题意知k PF =4-00-(-2a )=42a =1,所以2a =4,解得a =22, 所以双曲线的方程为x 28-y 28=1.[答案] B[规律探求][过关训练]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x解析:选A ∵e =ca =a 2+b 2a =3, ∴a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为y =±2x .2.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5B.2C. 3D. 2解析:选C 不妨设一条渐近线的方程为y =ba x ,则F 2到y =ba x 的距离d =|bc |a 2+b 2=b . 在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-ac ,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca= 3.3.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点.若MF 1―→·MF 2―→<0,则y 0的取值范围是( )A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223D.⎝⎛⎭⎫-233,233解析:选A 由题意知a =2,b =1,c =3, 设F 1(-3,0),F 2(3,0),则MF 1―→=(-3-x 0,-y 0), MF 2―→=(3-x 0,-y 0). ∵MF 1―→·MF 2―→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线C 上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.。

圆锥曲线专题二:双曲线(含详细答案)

圆锥曲线专题二:双曲线(含详细答案)

基础知识:一 双曲线的定义:在平面内,到两个定点21F F 、的距离之差的绝对值等于常数a 2(a 大于0且212F F a <)的动点P 的轨迹叫作双曲线.这两个定点21F F 、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数a 2应当满足的约束条件:21212F F a PF PF <=-,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:21212F F a PF PF <=-)0(>a ,则动点轨迹仅表示双曲线中靠焦点2F 的一支;若21122F F a PF PF <=-()0(>a ),则动点轨迹仅表示双曲线中靠焦点1F 的一支;3. 若常数满足约束条件:21212F F a PF PF ==-,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);4.若常数满足约束条件:21212F F a PF PF >=-,则动点轨迹不存在; 5.若常数0=a ,则动点轨迹为线段21F F 的垂直平分线。

二 双曲线的标准方程:1.当焦点在轴上时,双曲线的标准方程:)0,0(12222>>=-b a b y a x ,其中222b a c +=;2.当焦点在y 轴上时,双曲线的标准方程:)0,0(12222>>=-b a bx a y ,其中222b a c +=;3.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x ;如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x ;4. 共焦点的双曲线系方程12222=--+k b y k a x 或 12222=--+kb x k a y三 双曲线的几何性质:双曲线)0,0(12222>>=-b a by a x 的几何性质1.对称性:对于双曲线标准方程)0,0(12222>>=-b a by a x ,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以双曲线)0,0(12222>>=-b a by a x 是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

双曲线经典知识点总结-双曲线知识点总结

双曲线经典知识点总结-双曲线知识点总结

双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1.双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2.若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3.若常数满足约束条件:,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F 1F 2的垂直平分线。

知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a >0,b >0)的简单几何性质(1)对称性:对于双曲线标准方程(a >0,b >0),把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以双曲线(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。

(2)范围:双曲线上所有的点都在两条平行直线x=―a 和x=a 的两侧,是无限延伸的。

因此双曲线上点的横坐标满足x ≤-a 或x ≥a 。

(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(―a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。

双曲线的性质

双曲线的性质

PF1 − PF2 = 2a
{
2a < F1 F2
双曲线
2a = F1 F2
两条射线
2.双曲线的标准方程: 双曲线的标准方程 双曲线的标准方程 焦点在x轴上 焦点在 轴上F1(c,0)、 F2(-c,0) 轴上 、
x y − 2 = 1 (a, b > 0) 2 a b
2 2
焦点在y轴上 1(0, c)、 F2 (0, -c) 焦点在 轴上F 轴上 、 2 2 y x − 2 = 1 (a, b > 0) 其中 c2=a2+b2 2 a b
2 2
1.范围:|x|≥a, y∈R. 范围: ≥ , ∈ 范围
2.对称性: 对称性: 对称性 关于x轴 轴成轴对称 轴成轴对称; 关于 轴、y轴成轴对称; 关于原点成中心对称。 关于原点成中心对称。 原点——中心 原点 中心 3.顶点: 顶点: 顶点 A1(-a,0)、 A2(a,0); 、 ; B1(0,-b)、 B2(0,b)(不是顶点 不是顶点). 、 不是顶点 线段A 实轴; 焦点、顶点在实轴上) 线段 1A2——实轴; |A1A2|=2a(焦点、顶点在实轴上) 实轴 线段B 虚轴。 线段 1 B2——虚轴。 |B1B2|=2b 虚轴
a a a
y< x a
4.渐近线: 渐近线: 渐近线
焦点在x轴上的渐近线 焦点在 轴上的渐近线
b y = ± x a
焦点在y轴上的渐近线 焦点在 轴上的渐近线
x y − 2 = 0 2 a b
2Байду номын сангаас
2
a y = ± x b
y x − 2 = 0 2 a b
2
2
提问:等轴双曲线的渐近线方程为? 提问:等轴双曲线的渐近线方程为? 双曲线有唯一的渐近线,反之对吗? 双曲线有唯一的渐近线,反之对吗?

双曲线的简单几何性质教学讲义

双曲线的简单几何性质教学讲义

双曲线的简单几何性质教学讲义自主预习·探新知情景引入凉水塔的纵切面是双曲线,双曲线是非常优美的曲线,也是我们的生产生活经常用到的曲线,因此,我们有必要探究其有怎样的特性.新知导学1.双曲线的简单几何性质焦点位置焦点在x轴上焦点在y轴上双曲线方程__x2a2-y2b2=1(a>0,b>0)____y2a2-x2b2=1(a>0,b>0)__范围__x≤-a或x≥a____y≤-a或y≥a__对称性关于__x__轴对称,关于__y__轴对称,关于__原点__对称关于__x__轴对称,关于__y__轴对称,关于__原点__对称顶点__(-a,0)、(a,0)____(0,-a)、(0,a)__渐近线__y=±ba x____y=±ab x__离心率e>1e>1e越大,张口越大,e越小,张口越小(1)双曲线只有两个顶点,即实轴的两个端点,而椭圆有四个顶点,即长轴两端点与短轴两端点.(2)双曲线的实轴、虚轴与椭圆的长轴、短轴既有区别又有联系,勿将它们混淆.(3)两个特殊的双曲线①等轴双曲线:实轴与虚轴等长的双曲线叫做等轴双曲线.②共轭双曲线:实轴与虚轴互换的双曲线称为共轭双曲线,即x2a2-y2b2=1(a>0,b>0)与y2b2-x2a2=1(a>0,b>0)互为共轭双曲线.(4)双曲线的焦点总在实轴所在直线上,而椭圆的焦点总在长轴上.(5)双曲线中a、b、c的几何意义及特征三角形:①当双曲线焦点在x轴上时,a是实半轴长,b是虚半轴长,且c2=a2+b2,所以以a、b、c为三边长可构成直角三角形,如图,其中Rt △OA 2B 2称为双曲线的特征三角形.②当双曲线的焦点在y 轴上时,可得类似结论. (6)双曲线每一支上的所有点中顶点离焦点最近. 预习自测1.双曲线x 225-y 29=1的顶点坐标是( A )A .(±5,0)B .(±5,0)或(0,±3)C .(±4,0)D .(±4,0)或(0,±3)[解析] ∵双曲线的顶点在x 轴上,又a =5,∴选A .2.(2019·浙江卷,2)渐近线方程为x ±y =0的双曲线的离心率是( C ) A .22B .1C .2D .2[解析] 由题意可得ba=1,∴ e =1+b 2a2=1+12= 2.故选C .3.(2020·山东潍坊高二期末)双曲线方程为x 24-y 2=1,则渐近线方程为( A )A .y =±12xB .y =±2xC .y =±xD .y =12x[解析] ∵双曲线方程为x 24-y 2=1,则渐近线方程为x 24-y 2=0,即y =±12x ,故选A .4.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则该双曲线的离心率等于( B )A .34B .32C .3D .4[解析] 由题意得a 2+5=9,∴a 2=4,∴a =2.∴离心率e =c a =32.5.(2020·北京卷,12)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为__(3,0)__;C 的焦点到其渐近线的距离是[解析] 双曲线C :x 26-y 23=1中,c 2=6+3=9,∴c =3,则C 的右焦点的坐标为(3,0),C 的渐近线方程为y =±36x ,即y =±12x ,即x ±2y =0,则C 的焦点到其渐近线的距离d =33= 3.6.已知中心在原点的双曲线的渐近线方程是y =±3x ,且双曲线过点(2,3). (1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离.[解析] (1)设双曲线的方程为:3x 2-y 2=λ(λ≠0),点(2,3)代入得λ=3,所以所求双曲线方程为x 2-y 23=1. (2)由于双曲线的方程为x 2-y 23=1,所以它的焦点为(-2,0)、(2,0),点(-2,0)到直线y =±3x 的距离为d =|23|1+3= 3.则双曲线的焦点到渐近线的距离为 3.互动探究·攻重难互动探究解疑 命题方向❶根据双曲线方程研究其几何性质典例1 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路分析] 将双曲线方程化成标准方程,求出a 、b 、c 的值,然后依据各几何量的定义作答. [解析] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1,∴a =3,b =2,c =13, 因此顶点为A 1(-3,0),A 2(3,0), 焦点坐标为F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133,渐近线方程y =±b a x =±23x .作草图如图:『规律方法』 由双曲线的标准方程求双曲线的有关性质的步骤是:先将双曲线方程化为标准形式x 2a 2-y 2b 2=1(或y 2a 2-x 2b 2=1),再根据它确定a 、b 的值(注意它们的分母分别为a 2、b 2,而不是a 、b ),进而求出c ,再对照双曲线的几何性质得到相应的答案.画几何图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图. ┃┃跟踪练习1__■求双曲线4x 2-y 2=4的顶点坐标、焦点坐标、实半轴长、虚半轴长、离心率和渐近线方程,并作出草图. [解析] 将4x 2-y 2=4变形为x 2-y 24=1, 即x 212-y 222=1,∴a =1,b =2,c = 5. ∴顶点坐标为A 1(-1,0)、A 2(1,0), 焦点坐标为F 1(-5,0)、F 2(5,0), 实半轴长a =1,虚半轴长b =2, 离心率e =c a =51=5,渐近线方程为y =±bax =±2x ,作草图如图所示.命题方向❷利用几何性质求双曲线的标准方程典例2 求适合下列条件的双曲线的标准方程: (1)实轴长为8,离心率为54;(2)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,实轴长和虚轴长相等,且过点P (4,-10).[解析] (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),2a =8.由题意知c a =54且c 2=a 2+b 2,∴a =4,c =5,b =3,∴标准方程为x 216-y 29=1或y 216-x 29=1.(2)由2a =2b 得a =b ,所以可设双曲线方程为x 2-y 2=λ(λ≠0). ∵双曲线过点P (4,-10), ∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6. ∴双曲线的标准方程为x 26-y 26=1.『规律方法』 1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).┃┃跟踪练习2__■根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦点在x 轴上,离心率为53,且经过点M (-3,23);(3)双曲线的渐近线方程为2x ±3y =0,且两顶点间的距离是6.[解析] (1)设双曲线的方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a >0,b >0).由题意知,2b =12,e =c a =54. ∴b =6,c =10,a =8.∴双曲线的方程为x 264-y 236=1或y 264-x 236=1.(2)设所求双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0).∵e =53,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=259,∴b a =43. 由题意得⎩⎨⎧b a =439a 2-12b 2=1,解得⎩⎪⎨⎪⎧a 2=94b 2=4.∴所求的双曲线方程为x 294-y 24=1.(3)若焦点在x 轴上,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意知2a =6,b a =23,∴a =3,b =2.∴双曲线的方程为x 29-y 24=1.若焦点在y 轴上,设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0).由题意知2a =6,a b =23,∴a =3,b =92.∴双曲线的方程为y 29-4x 281=1.故所求双曲线方程为x 29-y 24=1或y 29-4x 281=1.命题方向❸双曲线的离心率典例3 (2019·全国卷Ⅱ理,11)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A .2B .3C .2D .5[思路分析] 利用双曲线和圆的性质,结合已知条件得到关于a ,c 的方程,进而求得双曲线的离心率.[解析] 设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 的坐标为(c,0).由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,如图,则|OP |=a ,|OM |=|MP |=c2.由|OM |2+|MP |2=|OP |2得⎝⎛⎭⎫c 22+⎝⎛⎭⎫c 22=a 2, 故ca=2,即e = 2.故选A . 『规律总结』 1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).┃┃跟踪练习3__■(1)若双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则它的离心率为( A )A .2B .32C .3D .2(2)若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( D )A .73B .54C .43D .53[解析] (1)由已知双曲线两条渐近线互相垂直, ∴b a ·(-ba )=-1,即a 2=b 2,即a =b , ∴此双曲线是等轴双曲线,故e = 2.(2)设a >0,b >0,因为双曲线渐近线方程为y =±b a x ,所以4=±b a ×3而a >0,b >0,∴a =34b ,a 2=916b 2,e =c 2a 2=a 2+b 2a 2=1+b 2a2=259=53,选D . 命题方向❹实际应用问题典例4 如图所示,某建筑工地要挖一个横截面为半圆的柱形土坑,挖出的土只能沿AP 、BP 运到P 处,其中|AP |=100 m ,|BP |=150 m ,∠APB =60°.怎样运土才能最省工?[思路分析] 半圆形横截面上的点可分三类:(1)沿AP 到P 较近;(2)沿BP 到P 较近;(3)沿AP 或BP 到P 等距离,其中第三类的点位于前两类点的分界线上.[解析] 设M 为分界线上任一点,则|MA |+|AP |=|MB |+|BP |,即|MA |-|MB |=|PB |-|P A |=50 m ,所以M 在以A 、B 为焦点的双曲线的右支上.易得|AB |2=17 500 m 2,建立如图所示的平面直角坐标系,得分界线所在的曲线方程为x 2625-y 23 750=1(x ≥25).故运土时,在双曲线左侧的土沿AP 运到P 处,右侧的土沿BP 运到P 处最省工. 『规律方法』 解决实际问题的主要方法是抽象出数学模型,用数学知识解决,最后再回归到实际问题中.要注意实际问题中变量的范围及数学模型求解结果的实际意义. ┃┃跟踪练习4__■A 、B 、C 是我方三个炮兵阵地,A 在B 正东6 km ,C 在B 北偏西30°,相距4 km ,P 为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远.因此4 s后,B、C才同时发现这一信号,此信号的传播速度为1 km/s,A若炮击P地,求炮击的方向角.[解析]如图,以直线BA为x轴,线段BA的中垂线为y轴建立平面直角坐标系,则B(-3,0),A(3,0),C(-5,23).因为|PB|=|PC|,所以点P在线段BC的垂直平分线上.设敌炮阵地坐标为(x,y),BC的中点为D,易求k BC=-3,D(-4,3),所以直线PD:y-3=13(x+4).①又|PB|-|P A|=4,故P在以A,B为焦点的双曲线的右支上,且方程为x24-y25=1(x>0).②联立①②,得x=8,y=53,所以P的坐标为(8,53).因此k P A=538-3= 3.故炮击的方向角为北偏东30°.命题方向❺直线与双曲线的位置关系典例5 已知曲线C:x2-y2=1和直线l:y=kx-1.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为2,求实数k的值.[思路分析]第一步,审题.审结论明确解题方向,求k的值或k的取值范围,应利用条件建立k的方程或不等式求解;审条件发掘解题信息,直线与曲线交于不同两点,可利用判别式法求解,△AOB的面积为2,可利用割补法和根与系数的关系求解.第二步,建立联系,探寻解题途径.第(1)问,可将l与C的方程联立,消元利用Δ>0求k的取值范围;第(2)问可由A、B向x轴作垂线,将三角形面积转化为梯形与三角形面积的差或和用直线AB与y轴的交点,分割为两个三角形面积的和,利用根与系数的关系求解.第三步,规范解答.[解析] (1)由⎩⎪⎨⎪⎧x 2-y 2=1y =kx -1,消去y 整理,得(1-k 2)x 2+2kx -2=0.由题意知⎩⎪⎨⎪⎧1-k 2≠0Δ=4k 2+8(1-k 2)>0,解得-2<k <2且k ≠±1.所以实数k 的取值范围为(-2,-1)∪(-1,1)∪(1,2). (2)设A (x 1,y 1),B (x 2,y 2),由(1)得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2. 又直线l 恒过点D (0,-1),则S △OAB =12|x 1-x 2|= 2.所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2, 即(-2k 1-k 2)2+81-k 2=8.解得k =0或k =±62,由(1)知上述k 的值符合题意,所以k =0或k =±62. ┃┃跟踪练习5__■ 过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A 、B 两点,若|AB |=4,则这样的直线l 有( C ) A .1条 B .2条 C .3条D .4条[解析] 设A (x 1,y 1),B (x 2,y 2),当直线l 的斜率不存在时,其方程为x =3,由⎩⎪⎨⎪⎧x =3x 2-y 22=1,得y =±2,∴|AB |=|y 1-y 2|=4满足题意.当直线l 的斜率存在时,其方程为y =k (x -3),由⎩⎪⎨⎪⎧y =k (x -3)x 2-y 22=1, 得(2-k 2)x 2+23k 2x -3k 2-2=0.当2-k 2≠0时,x 1+x 2=23k2k 2-2,x 1x 2=3k 2+2k 2-2,|AB |=1+k 2(x 1+x 2)2-4x 1x 2=1+k 2(23k 2k 2-2)2-12k 2+8k 2-2=1+k 216(k 2+1)(k 2-2)2=4(1+k 2)|k 2-2|=4,解得k =±22,故这样的直线有3条.学科核心素养 双曲线中的中点弦问题 解决双曲线中的弦的中点问题一是利用根与系数的关系及中点坐标来求解;二是利用“点差法”,找到斜率与中点坐标的关系来求解.如已知A (x 1,y 1),B (x 2,y 2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的两个不同的点,M (x 0,y 0)是线段AB 的中点,则⎩⎨⎧x 21a 2-y 21b2=1x 22a 2-y 22b 2=1,两式相减,得1a 2(x 21-x22)-1b 2(y 21-y 22)=0, 变形得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=b 2x 0a 2y 0.应用“点差法”时因不能确定直线与双曲线是否相交,因此,最后需将结果代回检验. 典例6 已知双曲线方程为2x 2-y 2=2.(1)过定点P (2,1)作直线交双曲线于P 1,P 2两点,当点P (2,1)是弦P 1P 2的中点时,求此直线方程.(2)过定点Q (1,1)能否作直线l ,使直线l 与此双曲线相交于Q 1,Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出直线l 的方程;若不存在,说明理由.[解析] (1)若直线斜率不存在,即弦P 1P 2⊥x 轴,则由双曲线的对称性知弦P 1P 2的中点在x轴上,不可能是点P (2,1),所以直线l 斜率存在. 故可设直线l 的方程为y -1=k (x -2), 即y =kx -2k +1.由⎩⎪⎨⎪⎧2x 2-y 2=2,y =kx -2k +1消去y 并化简, 得(2-k 2)x 2+2k (2k -1)x -4k 2+4k -3=0. 设直线l 与双曲线的交点P 1(x 1,y 1),P 2(x 2,y 2). 当2-k 2≠0,即k 2≠2时,有x 1+x 2=-2k (2k -1)2-k 2.又点P (2,1)是弦P 1P 2的中点, ∴-2k (2k -1)2-k 2=4,解得k =4.当k =4时,Δ=4k 2(2k -1)2-4(2-k 2)(-4k 2+4k -3)>0,当k 2=2,即k =±2时,此时,直线的斜率与渐近线的斜率相等,即k =±2的直线l 与双曲线不可能有两个交点.综上所述,所求直线方程为y =4x -7.(2)假设这样的直线l 存在,设Q 1(x 1,y 1),Q 2(x 2,y 2),则有x 1+x 22=1,y 1+y 22=1.∴x 1+x 2=2,y 1+y 2=2,且⎩⎪⎨⎪⎧2x 21-y 21=2,2x 22-y 22=2,两式相减,得(2x 21-2x 22)-(y 21-y 22)=0,∴2(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0, ∴2(x 1-x 2)-(y 1-y 2)=0.若直线Q 1Q 2⊥x 轴,则线段Q 1Q 2的中点不可能是点Q (1,1), ∴直线Q 1Q 2有斜率,于是k =y 1-y 2x 1-x 2=2.∴直线Q 1Q 2的方程为y -1=2(x -1),即y =2x -1.由⎩⎪⎨⎪⎧y =2x -1,2x 2-y 2=2,得2x 2-(2x -1)2=2, 即2x 2-4x +3=0,∴Δ=16-24<0.这就是说,直线l 与双曲线没有公共点,因此这样的直线不存在.『规律方法』 (1)设出直线方程与双曲线方程联立,应用根与系数的关系求解;(2)首先假设符合条件的直线存在,抓住中点这一条件求解;(3)有关中点弦问题,应用点差法往往比较简单,但注意验证直线是否满足条件. ┃┃跟踪练习6__■已知中心在原点的双曲线C 的右焦点为F (2,0),直线3x -2y =0与双曲线C 的一个交点的横坐标为2.(1)求双曲线C 的标准方程;(2)过点(0,1),倾斜角为135°的直线l 与双曲线C 相交于A 、B 两点,O 为坐标原点,求△OAB 的面积.[解析] (1)设双曲线C 的标准方程是x 2a 2-y 2b 2=1(a >0,b >0).由题意可知:点(2,3)在双曲线C 上,从而有⎩⎪⎨⎪⎧a 2+b 2=4,4a 2-9b 2=1,解得⎩⎪⎨⎪⎧a 2=1,b 2=3.所以双曲线C 的标准方程为x 2-y 23=1. (2)由已知得直线l 的方程为y =-x +1, 即x +y -1=0,所以原点O 到直线l 的距离为d =|0+0-1|12+12=12.联立⎩⎪⎨⎪⎧x 2-y 23=1,y =-x +1,消去y 可得x 2+x -2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1,x 1x 2=-2, 所以|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+12·(-1)2-4×(-2)=32,所以△OAB 的面积S =12|AB |·d=12×32×12=32. 易混易错警示 注意双曲线的焦点位置典例7 已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±34x ,求双曲线的离心率.[错解] 由题意得b a =34,∴b 2a 2=916,∴9a 2=16(c 2-a 2),∴25a 2=16c 2,∴e 2=2516,∴e =54.[错解分析] 错解的原因是审题不认真,误认为双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±bax 而导致错误.[正解] 由题意得a b =34,∴a 2b 2=916,∴16a 2=9(c 2-a 2),∴25a 2=9c 2,∴e 2=259,∴e =53.课堂达标·固基础1.下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( C ) A .x 2-y 24=1 B .x 24-y 2=1C .y 24-x 2=1D .y 2-x 24=1 [解析] 由题意,选项A ,B 表示的双曲线的焦点在x 轴上,故排除A ,B ;C 项表示的双曲线的渐近线方程为y =±2x ,D 项表示的双曲线的渐近线方程为y =±12x .故选C .2.(2020·安徽安庆市高二调研)“m =1”是“双曲线x 2m -y 23=1的离心率为2”的( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] ∵双曲线x 2m -y 23=1的离心率为2,∴a 2=m >0,b 2=3. ∵e =c a=1+b 2a2=1+3m=2,∴m =1.∴“m =1”是“双曲线x 2m -y 23=1的离心率为2”的充要条件.故选C .3.双曲线x 29-y 216=1有共同的渐近线,且经过点(-3,23)的双曲线方程为( D )A .x 24-4y 29=1B .y 24-4x 29=1C .4y 29-x 24=1D .4x 29-y 24=1[解析] 设所求双曲线方程为x 29-y 216=λ(λ≠0),把(-3,23)代入方程,得99-1216=λ.所以λ=14.故双曲线方程为x 29-y 216=14.即4x 29-y 24=1.故选D . 4.(2018·北京文,12)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =__4__.[解析] 由e =ca =a 2+b 2a 2知 a 2+4a 2=⎝⎛⎭⎫522=54, ∴a 2=16. ∵a >0,∴a =4.5.求双曲线y 2-2x 2=1的离心率和渐近线方程. [解析] 双曲线方程化为标准方程形式为y 21-x 212=1.所以a 2=1,b 2=12,焦点在y 轴上.所以a =1,b =22,c 2=32,c =62. 所以e =c a =62.渐近线方程为y =±2x .。

双曲线的几何性质

双曲线的几何性质

双曲线的几何性质
双曲线是几何学中非常有趣的一类曲线,它形状十分壮观,常被广泛应用到许多不同的领域,例如机械设计、工业设计和计算机图形学等。

双曲线之所以能受到人们的独特关注,是因为它具有着独特的几何性质,这些性质具体如下:
1、双曲线无论在何处取一点,边缘上总是相同的准则来决定它的方向,因此称之为曲线的确定性性质。

这种性质决定了双曲线的方向跟某一点的距离是固定的,任何时候对曲线做相同的位移等价于对某一点做相同的位移,因而看起来双曲线的每一段都是一模一样的。

2、双曲线的另一种性质是它的宽度性质。

在双曲线上确定一点,然后在此点向两方平行平移某一个距离,不可能让它离原点越来越远,如果再加上长度性质,可以发现双曲线不会变宽。

3、另外,双曲线是没有重复部分的,也就是说双曲线是一种不局限的曲线,具有无限性质,永远不会重复。

4、双曲线具有反射性,这就是说可以以一个定点作为基准点,以这个点左右对称地折叠,双曲线的两端点可以映射到另一条线上。

5、最后,双曲线的斜率具有渐变性质,斜率逐渐增加,直到极限是无穷大。

双曲线拥有非常独特的几何性质,而这些性质也使得双曲线在很多不同的领域有着重要的应用价值。

根据上述描述可以知道,双曲线不仅独特,而且还有多种优越的特性,有很大的实用价值。

双曲线的性质及计算方法

双曲线的性质及计算方法

双曲线的性质及计算方法在数学领域中,双曲线是一种重要的曲线形式,具有独特的性质和计算方法。

本文将介绍双曲线的定义、性质以及一些常见的计算方法。

一、双曲线的定义和基本性质双曲线是在平面直角坐标系中定义的曲线,其定义可以通过以下方程得到:(x^2 / a^2) - (y^2 / b^2) = 1 (当x>0时)(y^2 / b^2) - (x^2 / a^2) = 1 (当y>0时)其中,a和b为正实数,分别称为双曲线的半轴长度。

双曲线有两个分支,分别位于x轴上方和下方,对称于y轴。

1.1 双曲线的几何性质双曲线的几何性质使其在数学和物理的各种应用中扮演重要角色。

其中一些主要性质包括:(1)渐近线:双曲线有两条渐近线,分别与曲线的两个分支趋于平行。

这两条渐近线的方程为y = (b / a) * x 和 y = -(b / a) * x。

(2)顶点:双曲线的顶点位于原点,即(0,0)。

(3)焦点:双曲线有两个焦点,分别位于曲线的两个分支与x轴的交点。

焦点到原点的距离为c,满足c^2 = a^2 + b^2。

1.2 双曲线的方程变形通过对双曲线的方程进行一些变形和移动,可以得到不同形式的双曲线。

常见的方程变形有:(1)平移:通过加减常数的方式,可以将双曲线的位置移动到任意位置。

(2)旋转:通过变化坐标轴的方向,可以将双曲线旋转到倾斜的形态。

(3)缩放:通过乘以常数的方式,可以改变双曲线的尺寸。

二、双曲线的计算方法除了了解双曲线的性质,我们还需要了解一些常见的计算方法,以便在解决实际问题时能够应用这些方法。

2.1 双曲线的焦点和直线的关系双曲线的焦点对于计算和分析双曲线至关重要。

通过焦点和直线的关系,我们可以使用以下公式计算焦点坐标:对于双曲线的基本方程(x^2 / a^2) - (y^2 / b^2) = 1,焦点的坐标为(ae, 0)和(-ae, 0),其中e为焦点到原点的距离与半轴a的比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档