焊接接头的性能及其影响因素
焊接工艺对焊接接头性能的影响

焊接工艺对焊接接头性能的影响焊接工艺在现代制造业中扮演着重要的角色,它对于焊接接头的质量和性能有着直接的影响。
正确选择和控制焊接工艺对于确保焊接接头的稳定性和可靠性至关重要。
本文将探讨焊接工艺对焊接接头性能的影响,旨在帮助读者更好地理解焊接工艺与焊接接头性能之间的关系。
1.影响力和需求1.1 焊接工艺的选择焊接工艺的选择需要考虑焊接接头的要求以及焊接材料的特点。
例如,在高温条件下,TIG焊接工艺可能更适合。
而在焊接薄板时,激光焊接工艺可能是更好的选择。
因此,选择合适的焊接工艺可以确保焊接接头的性能符合需求。
1.2 焊接接头的应力分布焊接工艺对焊接接头的应力分布有直接的影响。
如果焊接工艺不当,可能导致焊接接头的应力集中在某个区域,从而降低焊接接头的强度和耐久性。
因此,正确选择和控制焊接工艺可以帮助分散应力,提高焊接接头的强度和韧性。
2.焊接工艺的参数选择2.1 焊接电流和电压焊接电流和电压是影响焊接接头性能的重要参数。
电流的大小决定焊接接头的强度,而电压的调节则可以影响焊接接头的均匀性。
过小的电流可能导致焊接接头强度不够,过大的电流则会使焊接接头发生烧穿等缺陷。
因此,在具体应用中要根据焊接接头的要求选择合适的电流和电压。
2.2 焊接速度焊接速度是控制焊接接头性能的关键参数之一。
速度过快会导致焊接接头的强度降低,质量下降。
过慢则可能导致过热区域扩大,产生焊接缺陷。
因此,确定合适的焊接速度对于确保焊接接头质量至关重要。
3.3.1 构型和形状焊接工艺直接影响焊接接头的构型和形状。
不同的焊接工艺可能导致不同的接头形状和尺寸,从而进一步影响焊接接头的性能。
例如,激光焊接工艺可以实现深度焊接,适用于有特殊要求的接头。
3.2 组织和晶粒生长焊接工艺会对焊接接头的组织和晶粒生长产生直接影响。
不同的工艺参数可能导致晶粒尺寸和组织的变化,从而影响接头的力学性能和耐腐蚀性能。
因此,合理选择和控制焊接工艺对于控制焊接接头组织和晶粒生长至关重要。
焊接接头的组成

1、焊接接头的组成,影响焊接接头组织和性能的因素。
(1)接头组成:包括焊缝、熔合区和热影响区。
(2)组织1)焊缝区接头金属及填充金属熔化后,又以较快的速度冷却凝固后形成。
焊缝组织是从液体金属结晶的铸态组织,晶粒粗大,成分偏析,组织不致密。
但是,由于焊接熔池小,冷却快,化学成分控制严格,碳、硫、磷都较低,还通过渗合金调整焊缝化学成分,使其含有一定的合金元素,因此,焊缝金属的性能问题不大,可以满足性能要求,特别是强度容易达到。
2)熔合区熔化区和非熔化区之间的过渡部分。
熔合区化学成分不均匀,组织粗大,往往是粗大的过热组织或粗大的淬硬组织。
其性能常常是焊接接头中最差的。
熔合区和热影响区中的过热区(或淬火区)是焊接接头中机械性能最差的薄弱部位,会严重影响焊接接头的质量。
3)热影响区被焊缝区的高温加热造成组织和性能改变的区域。
低碳钢的热影响区可分为过热区、正火区和部分相变区。
(1)过热区最高加热温度1100℃以上的区域,晶粒粗大,甚至产生过热组织,叫过热区。
过热区的塑性和韧性明显下降,是热影响区中机械性能最差的部位。
(2)正火区最高加热温度从Ac3至1100℃的区域,焊后空冷得到晶粒较细小的正火组织,叫正火区。
正火区的机械性能较好。
(3)部分相变区最高加热温度从Ac1至Ac3的区域,只有部分组织发生相变,叫部分相变区。
此区晶粒不均匀,性能也较差。
在安装焊接中,熔焊焊接方法应用较多。
焊接接头是高温热源对基体金属进行局部加热同时与熔融的填充金属熔化凝固而形成的不均匀体。
根据各部分的组织与性能的不同,焊接接头可分为三部分。
,在焊接发生熔化凝固的区域称为焊缝,它由熔化的母材和填充金属组成。
而焊接时基体金属受热的影响(但未熔化)而发生金相组织和力学性能变化的区域称为热影响区。
熔合区是焊接接头中焊缝金属与热影响区的交界处,熔合区一彀很窄,宽度为0.1~0.4mm。
(3)影响焊接接头性能的因素焊接材料焊接方法焊接工艺2、减少焊接应力常采用的措施有哪些?(1)选择合理的焊接顺序(2)焊前预热(3)加热“减应区”(4)焊后热处理3焊接变形的基本形式有哪些?消除焊接变形常用的措施有哪些?(1)焊接变形1)收缩变形2)角变形3)弯曲变形4)波浪形变形5)扭曲变形(2)措施1)合理设计焊接构件2)采取必要的技术措施①反变形法②加裕量法③刚性夹持法④选择合理的焊接顺序⑤采用合理的焊接方法4、为什么要对焊接冶金过程进行保护?采用的保护技术措施有哪些?焊接冶金过程特点:电弧焊时,被熔化的金属、熔渣、气体三者之间进行着一系列物理化学反应,如金属的氧化与还原,气体的溶解与析出,杂质的去除等。
焊接材料的性能及其影响因素分析

焊接材料的性能及其影响因素分析焊接是一种常见的金属连接方法,通过熔化金属材料并使其冷却后重新凝固,实现金属工件的连接。
而焊接材料的性能对焊接质量和连接强度有着重要的影响。
本文将对焊接材料的性能及其影响因素进行分析。
首先,焊接材料的性能包括力学性能、化学性能和物理性能等方面。
力学性能是指焊接材料在外力作用下的变形和破坏特性,如强度、韧性和硬度等。
焊接材料的强度是指其抵抗外力破坏的能力,而韧性则是指焊接材料在受力时的塑性变形能力。
硬度则是指焊接材料的抗压能力,通常用于评估焊接接头的耐磨性。
化学性能是指焊接材料在不同环境下的耐腐蚀性能,如抗氧化性、耐酸碱性等。
物理性能则包括焊接材料的导热性、导电性和热膨胀系数等。
其次,焊接材料的性能受多种因素影响。
首先是焊接材料的成分。
焊接材料通常由基体金属和填充金属组成,其成分对焊接接头的性能有着重要影响。
例如,填充金属的成分可以调整焊接接头的强度和韧性。
其次是焊接材料的热处理状态。
焊接材料经过热处理可以改变其晶体结构和性能,如提高强度和韧性。
此外,焊接过程中的热输入也会对焊接材料的性能产生影响。
过高的焊接温度可能导致焊接材料发生烧结、热裂纹等缺陷,从而影响焊接接头的质量。
再次,焊接材料的性能还受焊接工艺的影响。
焊接工艺包括焊接方法、焊接参数和焊接环境等。
不同的焊接方法对焊接材料的性能有着不同的要求。
例如,氩弧焊适用于焊接不锈钢等高合金材料,而电阻焊适用于焊接低碳钢等材料。
焊接参数,如焊接电流、焊接速度和焊接压力等,也会对焊接材料的性能产生影响。
过高或过低的焊接参数可能导致焊接接头的质量下降。
焊接环境的气氛对焊接材料的化学性能有着重要的影响。
例如,在氧气存在下进行焊接可能导致氧化反应,从而降低焊接接头的质量。
最后,焊接材料的性能评价方法多种多样。
常用的评价方法包括金相显微镜观察、拉伸试验、冲击试验和硬度测试等。
金相显微镜观察可以用于观察焊接接头的显微组织和缺陷情况。
焊接工艺对微合金钢焊接接头组织性能的影响

焊接工艺对微合金钢焊接接头组织性能的影响【摘要】本文研究了焊接工艺对微合金钢焊接接头组织性能的影响。
首先介绍了微合金钢的特性和应用,然后探讨了焊接工艺对焊接接头组织和性能的影响。
研究表明,不同焊接工艺参数会对微合金钢焊接接头的组织性能产生影响。
进一步进行了材料机械性能测试及分析,总结了焊接工艺对微合金钢焊接接头组织性能的影响。
最后展望了未来研究方向,并得出结论。
研究结果为该领域的进一步研究提供了参考,并对焊接工艺优化和微合金钢焊接接头的性能提升具有一定的指导意义。
【关键词】焊接工艺、微合金钢、焊接接头、组织性能、焊接参数、机械性能、研究方向、结论1. 引言1.1 研究背景微合金钢是一种材料,具有高强度、高韧性和良好的焊接性能,因此在工程领域得到广泛应用。
焊接是一种常见的连接技术,但焊接工艺对微合金钢焊接接头的组织性能有着重要影响。
在焊接过程中,热影响区、熔合区和冷却区的组织结构会发生变化,直接影响着焊接接头的性能。
研究焊接工艺对微合金钢焊接接头组织性能的影响,能够指导实际工程中的焊接操作,提高焊接接头的质量和性能。
1.2 研究目的研究目的是通过深入探讨焊接工艺对微合金钢焊接接头组织性能的影响,揭示不同焊接工艺参数对接头性能的影响规律,为优化微合金钢焊接工艺提供科学依据。
具体目的包括:1. 分析不同焊接工艺对微合金钢焊接接头组织结构的影响机制,探讨焊接过程中晶粒生长、相转变、形貌演变等变化规律;2. 研究焊接工艺对焊接接头性能(如强度、韧性、硬度等)的影响规律,验证其对微合金钢焊接接头性能的影响程度;3. 探讨不同焊接工艺参数(如焊接电流、焊接速度、预热温度等)对微合金钢焊接接头组织性能的影响,为进一步优化焊接工艺提供指导;4. 结合材料机械性能测试及分析,全面评估焊接工艺对微合金钢焊接接头性能的影响,为相关领域的研究提供参考和借鉴。
通过以上研究目的的实现,旨在提高微合金钢焊接接头的质量和性能,推动焊接工艺技术的发展与应用。
《锅炉压力容器压力管道焊工考试习题集》分析

《锅炉压力容器压力管道焊工考试习题集》三、金属材料判断题1. ()普通碳素结构钢的强度等级是指钢的屈服强度等级。
2. ()含炭量小于2.11%的铁碳合金称为钢,大于2.11%的铁碳合金称为生铁。
3. ()制造锅炉受压元件的金属材料可以用沸腾钢。
4. ()钢中磷会使钢产生热脆性,硫会使钢产生冷脆性。
5. ()钢中硫和磷含量越高,钢的焊接性越差。
6. ()钢中的碳含量越高,则钢的强度和硬度随之提高,其塑性和韧性也随之越高。
7. ()16Mn钢是优质炭素结构钢。
8. ()耐热钢中铬元素的主要作用是提高钢的抗氧化能力。
9. ()20G钢中的“G”表示锅炉用钢板。
10.()Q235-A钢是高级优质钢。
11.()45钢是中碳钢,70钢是高碳钢。
12.()普通低合金结构钢中的“低”与低碳钢中的“低”含义相同。
13.()低碳钢接头焊后热处理的目的是以改善金相组织为主。
14.()锅炉压力容器压力管道试件钢号分为碳素钢、低合金钢、马氏体钢、铁素体不锈钢共III类。
15.()预热的作用是减小焊接应力、降低焊后冷却速度。
16.()不易淬火钢热影响区的正火区是该焊接接头中综合机械性能最好的区域。
17.()金属材料在外力作用下,产生永久变形而不断裂的能力称为塑性。
18.()钢材的试样在拉断以后,标距的伸长量与原始标距长度的百分比称为伸长率。
19.()钢材的电阻系数越大,其导电性越好。
20.()在常用钢材中不锈钢的耐腐蚀性是最好的。
单选题1.常见金属晶格类型有()和密排六方三种。
A.体心立方、多面立方B.体心立方、面心立方C.铁素体、奥氏体2.钢材能传导热量的性能是()。
A.导热性B.导电性C.热膨胀性3.钢材在一定温度和介质条件下,抵抗氧化的能力,称为()。
A.耐腐蚀性B.抗氧化性C.长期组织稳定性4.钢材在一定温度及外力作用下,抵抗变形及断裂的能力,称为()。
A.物理性能B.力学性能C.加工工艺性能5.常规力学性能包括:强度、塑性、韧性及()。
可焊性的影响因素

可焊性的影响因素可焊性是指金属材料在焊接过程中的焊接性能,主要包括焊缝的质量、连接的强度以及焊接过程中材料的变形等。
可焊性的影响因素主要有以下几个方面:1.材料的化学成分:材料的化学成分对可焊性有很大的影响。
例如,含有大量氧化物的材料容易在焊接过程中产生氧化层,阻碍了焊缝的形成;含硫和含磷杂质的材料容易产生气孔,降低焊接接头的强度。
2.材料的热导率和热容量:材料的热导率和热容量决定了焊接过程中的热传导速度和热影响区的大小。
热导率高的材料,热传导速度快,容易产生温度梯度过大的问题;热容量大的材料,吸收的热量多,容易引起材料的热膨胀和变形。
3.材料的热稳定性:材料的热稳定性指的是材料在高温下的性能稳定性。
热稳定性差的材料容易在焊接过程中发生相变、晶界溶解和晶粒长大等现象,使焊接接头易产生裂纹和变形。
4.材料的晶粒度和晶界特征:材料的晶粒度和晶界特征对可焊性也有较大的影响。
晶粒度小且均匀的材料,晶界的强度高,抗拉强度和焊接接头的强度会相对较高;晶粒度大和非均匀的材料,晶界的强度低,容易在焊接过程中发生晶界断裂和晶粒生长,导致焊接接头的强度降低。
5.材料的冷热变形性能:材料的冷热变形性能对焊接过程中的变形量和残余应力有很大的影响。
冷热变形性能好的材料,在焊接过程中的变形量较小,残余应力较低,能够保持较好的工件形状和尺寸稳定性。
6.焊接工艺参数:焊接工艺参数对可焊性也有很大的影响。
包括焊接电流、电压、焊接速度、焊接角度等。
不同的焊接工艺参数会产生不同的热输入和冷却速率,从而影响焊缝的形成和焊接接头的质量。
7.表面预处理:材料的表面预处理对可焊性也有重要影响。
例如,在焊接过程中,如果材料表面存在油污、氧化物或其他杂质,会阻碍焊缝的形成和焊接接头的强度。
综上所述,可焊性的影响因素是多方面的,包括材料的化学成分、热导率和热容量、热稳定性、晶粒度和晶界特征、冷热变形性能、焊接工艺参数和表面预处理等。
只有综合考虑这些因素并采取相应的措施,才能够保证焊接接头的质量和强度。
影响焊接接头性能的因素

4 影响焊接接头性能的因素
焊接材料:焊丝和药皮,影响焊缝的化学成份。
焊接方法:不同的焊接方法其热影响区的宽度不同。
焊接工艺:焊接速度快,电流小,则热影响区窄。
5 改善接头性能的方法:采用合适的焊接材料,以保证焊缝的化学成份;
焊接方法和工艺:采用热影响区小的焊接方法,工艺上可用细焊条,多层焊。
调整焊接规范;减小焊接电流,加快焊接速度
以减少热输入;
焊后热处理。
三焊接应力和变形
1 焊接应力和变形产生的原因:
2 焊接变形的基本形式:
3 减少和消除变形、应力的措施:a 合理设计焊接结构:
减少焊缝长度、数量和断面积;
焊缝对称布置;
避免交叉焊缝;
收缩变形角变形弯曲变形扭曲变形波浪变形
b 工艺措施:
反变形法;
加余量法;加0.1~0.2%的补缩量。
刚性固定;
合理的焊接顺序;先条后块原则。
焊接接头的组织和性能

.
24
以上就是低合金高强钢焊缝金属可能存在 的几种组织。概括而言,我们希望得到较 多的针状细晶铁素体,不希望得到侧板条 铁素体,先共析铁素体,如果合金成分能 显著增加奥氏体稳定性,降低其分解温度, 这一愿望即可实现。试验表明Mn含量0.8~ 1.0%、Si0.1~0.25%,而Mn/ Si=3~6时,即 可得到细晶铁素体和针状铁素体。我们还 希望得到的贝氏体为下贝氏体,而不希望 产生上贝氏体或粒状贝氏体,以及孪晶高 碳马氏体,其办法是控制
.
25
冷却速度;使在600~450℃区间(贝氏体转变的 高温段)停留时间尽量短,以尽量减少形成粒 状贝氏体和上贝氏体的机会(可控制t8-5来实 现)、降低含C量,使一且发生马氏体转变时
能形成板条状位错型马氏体,它的存在有利 而无害。有资料表明,焊缝含有微量Ti、B有
利形成针状铁素体,而抑制先共析铁素体的 形成,Ti与B同时加入最佳,因为Ti优先和氧 反应对B不被氧化起到保护作用。B凝聚在A
学性能。
.
9
2、焊缝金属的显微组织与性能
低碳钢是亚共析钢,在焊接熔池冷却凝固 的一次结晶完成后,在一定温度下将发生 二次结晶即固态相变,这时的组织应该是 铁素体加少量珠光体。其组织质量分数的 不同和性能的不同取决于冷却速度,即冷 却速度越大,铁素体含量越少,
.
10
珠光体越高,硬度强度也随之增高,且组织 细小。反之则组织变粗,铁素体越多珠光体 越少、硬度强度降低。需要注意的是铁素体 的形态,在不同冷却速度下也是不同的。且 对性能有影响。
低温压力容器、锅炉专业用低合金高强度钢 标准。
.
18
1、低合金高强度钢的焊缝合金化
我们以焊条电弧焊为例来讨论。其实从焊条标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.基本要素
(1) 加热速度 (2)最高加热温度 (3)高温停留时间 (4)冷却速度
精品课件
3.焊接热循环特性指标
反映焊接热循环特性的指标主要有2个:t 过和t8/5。 t时过间:,焊其接值接越头大在,11焊0接0℃接以头上的高组温织的与停性留能 越差。 需t 8的/时5:间焊,接这接个头温由度80区0域℃是冷焊却缝到金50属0固℃态所 相变过程,其值大小,对焊缝金属的充分 转变、过热过程或淬硬倾向均有一定影响。
精品课件
二.焊接接头的特点:
(1)具有组织和性能的不均匀性, (2)易产生各种焊接缺陷, (3)存在着应力集中、焊接残余应 力、焊接变形等。
精品课件
第二节 焊接热循环
一、焊接热循环的特点
1.概念 焊接热循环是指在焊接热源的作用下,
焊件上某点的温度随着时间由低而高、又 由高而低的变化过程。
在加热和冷却过程中,焊件上不同位置 所经受的热循环状态是不同的,靠焊缝越 近的位置,被加热的最高温度越高,反之, 越远的位置被加热的最高温度越低。
1.焊接方法 焊接方法不同,加热速度、高温停留时间和焊 后冷却速度都会有所不同。气焊加热速度慢, 冷却速度也慢,高温停留时间长;而钨极氩弧 焊,则加热速度快,冷却速度也快,高温停留 时间较短。
精品课件
2。焊接规范及线能量的影响
焊接规范指焊接时的主要工艺参数,也就是保证焊接质量而选 定的各物理量,如焊接电流、电弧电压、焊接速度、线能量等。
一般通过焊接规范来调整焊接线能量,不同的焊接方法,在常规规 范条件下,焊接线能量的差别较大,埋弧焊时焊接线能量较大,手 工电弧焊次之、钨极氩弧焊最小。
精品课件
3.预热与层间温度的影响
焊接性差的钢材,一般要采取预热和保持层 间温度的技术措施,以降低焊接接头的冷却速 度,降低焊接过程的淬硬倾向,防止裂纹的产 生。
精品课件
4.焊接热循环的主要特点
1)急剧加热且温度高,熔池(焊缝)附近 最高加热温度比一般热处理加热温度都高, 故发生过热,致使该区晶粒长大粗化严重。 2)急速冷却且速度快,从而致使焊接接头 容易发生淬硬,形成淬硬组织,加剧了焊 接冷裂纹的产生。
精品课件
二、影响焊接热循环的因素
影响焊接热循环的因素主要有焊接方法、 焊接规范、焊接线能量、预热和层间温度、焊 件厚度和接头型式及材料本身的导热性等。
精品课件
一、焊接熔池的一次结晶
1.结晶过程的特点
(1)熔池的体积小、冷却速度快; (2)液态金属温度高; (3)运动状态下结晶; (4)以散热方向向焊缝中呈柱状生长。
精品课件
2.组织特征与组织偏析
柱状晶是一次结晶的组织特征。 由于冷却速度极快,相内的成分来不及趋于 一致,所以保持着结晶先后而产生成分不均 匀性,这种不均匀性就是晶内偏析,
第八章
焊接接头的性能及其影响因素
精品课件
主要内容
第一节
焊 接 接头
第二节
焊 接 热循环
第三节 焊缝的金属组织和性能
第四节 熔合区和热影响区的组织和性 能
第 五节 影响焊接接头性能的因素及其 处理方法
精品课件
第一节 焊 接 接 头
焊接接头是基本金属或基本金属和填 充金属在高温热源的作用下,经过加热和 冷却过程而形成不同组织和性能的不均匀 体。
精品课件
第三节 焊缝的金属组织和性能 熔池中的金属从液态变为固态的这种过 程称为熔池的一次结晶。 熔池凝固后的焊缝金属从高温冷却到室 温时,还会发生固态的相变,产生不同 的组织。焊缝的这种固态相变过程称为 焊缝金属的二次结晶。 焊缝金属组织除与化学成分有关外,在 很大程度上取决于这两次结晶的特征, 而焊缝金属的性能与其组织有密切关系。
在熔化焊的条件下,焊缝及其邻近的
母材组织及性能发生变化的区域共同组成
焊接接头。
精品课件
一.焊接接头的组成
焊接接头一般由三个区域组成: (1)焊缝 (2)熔合区 (3)热影响区
精品课件
1.焊缝
焊缝是焊接接头的主体, 焊缝金属是焊接时由填充金属(焊 条、焊丝)和部分基本金属经过熔 化、结晶凝固而形成的。 焊缝区的宽度取决于坡口型式和焊 接线能量。
精品课件
Hale Waihona Puke 4.连接结构和钢材性能的影响
焊缝处的连接结构是由焊件厚度和接头型式 决定的,焊件厚度越大,焊接接头的相对冷却 速度越大,t8/5越小;当焊缝为角接接头时, 其冷却速度比对接接头速度要大,t8/5比对接 接头焊缝要小
钢材的导热性能对焊接热循环具有直接的 影响,导热性不同的钢材在相同的线能量条件 下,焊接接头的t过和t8/5是不同的,导热性好 的钢材t过和t8/5都小于导热性差的钢材。
精品课件
二、焊缝金属的二次结晶 焊缝熔池金属一次结晶后的组织基本是 柱状奥氏体,在冷却至室温的过程中, 焊缝金属还会发生组织转变,这就是焊 缝金属的二次结晶。。
精品课件
1.低碳钢的焊缝组织 低碳钢的焊缝组织含碳量低,组织一般 为粗大的柱状铁素体和少量珠光体,如 果高温停留时间过长(如气焊、电渣焊) 焊缝还会出现魏氏组织。多层多道焊时, 后一层焊道对前一层焊道有热处理作用, 部分柱状晶可转化为细小的等轴晶,其 金属组织为细小的铁素体和少量的珠光 体。
金属材料预热温度一般不超过350℃,在低 温(600℃)时对冷却速度能起到显著的降低作 用,对t过值影响不大,所以预热对焊接线能量 不起增强作用,对焊接热循环是有利的。
在多层多道焊接中,层间温度一般等于或略 高于预热温度,控制层间温度的目的在于降低 焊接接头在低温时的冷却速度,有利于焊接热 循环的作用。
焊接线能量是单位长度焊缝内输入的焊接能量,对电弧焊常用 下式表示:
Q= IU/υ
Q-----线能量,J/cm υ—焊速,cm/s
I----焊接电流,A U-焊接电压,V
焊接线能量越大,热影响区越宽,加热到1100℃以上高温区域 也就越宽,而且t过和t8/5越大,焊接线能量偏小时,不利于焊缝的 熔透和成形,因此焊接线能量必须在一个合理的范围才能保证焊接 接头具有良好的性能。
精品课件
2.热影响区
受焊接热循环作用,组织和性能 发生变化的基本金属部分。 热影响区的宽度主要取决于焊接 线能量的大小。
精品课件
3.熔合区
熔合区是焊缝区和热影响区的交 界处,在焊接过程中,处于固、 液状态的半熔化区。
熔合区一般很窄,约有 0.1~0.4mm宽,常称熔合线, 在合金钢焊接接头中很难区分出 熔合区。