初一动点问题
初一动点问题的解题公式口诀

初一动点问题的解题公式口诀
1、数轴上两点之间的距离。
可用绝对值来表示,即两点所表示的数差的绝对值。
如,数轴上点A,B所表示的数是a,b,则AB=|a-b|或|b-a|。
2、数轴上一个动点用字母来表示。
用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减。
如,数轴上点A对应的数为-1,点P从A出发,以每秒2个单位长度的速度向右运动,设运动的时间是t,则点P所表示的数是-1+2t。
3、数轴上任意两点间的线段的中点。
两点所表示的数相加的和除以2,如数轴上的点所表示的数是a,b,则线段AB的中点所表示的数是(a+b)/2。
初一动点问题专题

初一动点问题专题随着社会的不断发展,初中阶段的学生面临着各种动点问题。
动点问题是指不仅涉及学生的行为和情绪,还涉及到他们的心理健康和学习状态。
这些问题可能会影响学生的学业成绩,甚至对其未来的发展产生不利影响。
因此,针对初一学生的动点问题,学校和家长都需要引起重视,并采取有效的措施加以解决。
一、初一学生的典型动点问题1.学习动点问题初一是学生升入中学的新阶段,在学习上可能会遇到新的困难和挑战。
这一阶段的学习内容开始增加,难度也有所加大,这对于一些学生来说可能会感到压力较大,导致学习动点问题的出现。
表现为不愿意完成作业、不专心听讲、成绩下降等情况。
2.行为动点问题初一学生大多处于青春期的阶段,心理和情绪易受外界影响,因此很容易出现行为动点问题。
表现为叛逆、情绪波动大、与同学之间的关系出现问题等情况。
3.人际关系动点问题初一学生由于面对新的环境和人际关系,可能会出现人际关系动点问题。
比如社交能力不足、交友困难等情况。
二、初一动点问题的影响初一动点问题的产生会对学生的成长和发展产生一定的负面影响。
1.学业成绩下降学习动点问题会导致学生的学业成绩下降,甚至可能影响其未来的升学和就业。
2.心理健康问题动点问题可能会导致学生的心理健康问题,表现为焦虑、抑郁等症状。
3.人际关系问题人际关系动点问题会影响学生与同学之间的关系,也可能影响学生未来的社交能力。
三、解决初一动点问题的措施1.学校的措施学校可以通过课程设置和心理辅导等方式帮助学生解决动点问题。
比如设置针对初一学生的心理健康课程、开展校园心理辅导活动等。
2.家长的关注家长是学生成长过程中不可或缺的重要角色,他们需要关注学生的动点问题并给予必要的帮助。
家长可以积极与学校沟通,了解学生的学习和生活状况,并给予合适的支持和鼓励。
3.学生自我调节学生自己也要学会自我调节,比如学会倾诉和释放负面情绪、培养积极心态、树立正确的学习态度等。
此外,学生还可以尝试参加一些兴趣班或者活动,转移注意力,建立自信心。
初一 简单的动点-动点问题

初一简单的动点-动点问题
1.动点问题的解决关键在于动中求静,需要灵活运用数学知识,如分类思想、数形结合思想和转化思想。
举例来说,对于数轴上给定的点,可以通过求其对应的数值来解决问题。
2.在数轴上给定两点A和B,可以通过动点P的运动来解决问题。
例如,当P为AB线段的三等分点时,可以求出P对应的数值。
另外,可以通过求P到A点和B点距离和为10的条件来解出P的数值,或者通过P、A和B点的运动速度比例来求出P的位置。
3.在直角三角形ABC中,可以通过点D在AC线段上的运动来解决问题。
例如,可以求出△ABD的面积与CD的长度之间的关系式,并通过求导数求出△ABD面积的最大值及其对应的CD长度。
另外,可以通过△ABD面积是△ABC面积的一半的条件来求出D的位置。
4.在正方形ABCD中,可以通过动点P沿着ABCD四条边的运动来解决问题。
例如,可以求出当P经过的路程为1cm
时,△APE的面积,并通过已知△APE面积求出P经过的路程x的值。
5.在长方形ABCD中,可以通过动点Q沿着ADCB四条边的运动来解决问题。
例如,可以求出AP的长度,并通过已知△APQ面积求出含x的代数式S。
另外,可以通过点M和Q同时从A出发的条件来求出它们相遇时的位置。
初一路程动点问题练习题

一、直线上的动点问题1. 已知直线l:y=2x+1,动点P在直线l上,且P到点A(1,3)的距离为2,求动点P的坐标。
2. 在直线l:x+y=3上,动点P的坐标为(t,3t),求点P到原点O的距离d的表达式。
3. 直线l:y=kx+b上,动点P的坐标为(x,kx+b),若点P到点A(a,b)的距离为定值,求k和b的取值范围。
二、圆上的动点问题1. 圆O的方程为x^2+y^2=16,动点P在圆上,且OP的长度为4,求动点P的坐标。
2. 圆O的方程为x^2+y^2=9,动点P在圆上,且OP的长度为3,求动点P到圆心O的距离的最大值和最小值。
3. 圆O的方程为x^2+y^2=4,动点P在圆上,且∠AOP=60°,求点P的坐标。
三、直线与圆的位置关系1. 圆O的方程为x^2+y^2=9,直线l:y=x+1与圆O相交于A、B两点,求AB的长度。
2. 圆O的方程为x^2+y^2=16,直线l:y=x+4与圆O相切于点P,求点P的坐标。
3. 圆O的方程为x^2+y^2=25,直线l:y=2x+3与圆O相交于A、B两点,求AB的中点坐标。
四、椭圆上的动点问题1. 椭圆的方程为x^2/4+y^2/9=1,动点P在椭圆上,且∠AOP=60°,求点P的坐标。
2. 椭圆的方程为x^2/9+y^2/16=1,动点P在椭圆上,且OP的长度为5,求动点P的坐标。
3. 椭圆的方程为x^2/25+y^2/16=1,动点P在椭圆上,且∠AOP=45°,求点P的坐标。
五、双曲线上的动点问题1. 双曲线的方程为x^2/9y^2/16=1,动点P在双曲线上,且∠AOP=30°,求点P的坐标。
2. 双曲线的方程为x^2/16y^2/9=1,动点P在双曲线上,且OP的长度为10,求动点P的坐标。
3. 双曲线的方程为x^2/25y^2/36=1,动点P在双曲线上,且∠AOP=90°,求点P的坐标。
初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
初一下册几何动点问题

初一下册几何动点问题1、(1)已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,要证明AC⊥CE.2)将CD沿CB方向平移得到图②③的情形,其余条件不变,要判断AC⊥CE是否成立,需要重新证明一遍。
2、(1)已知△ABC为等边三角形,动点D在边CA上,动点P边BC上,要证明当AP=BD时,Q点为定点。
2)已知动点D,P在射线CA和射线BC上运动,要证明∠BQP=60°。
3)已知动点P在AB的延长线上运动,连接PD交BC于E,要证明DE=PE。
3、已知梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,要证明CM=AB和CF=AB+AF。
4、已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D。
1)要证明当三角形绕点P旋转到PC⊥OA时,PC=PD。
2)要说明当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD不相等。
3)要直接给出结论,当三角形绕点P旋转到PC与OA 所在直线相交的位置时,线段PC和PD相等。
5、在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB 边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,要证明△ADF≌△CEF,并试证明△DFE是等腰直角三角形。
6、(1)已知△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。
2)当把△ADE绕A点旋转到图②的位置时,需要重新判断CD=BE是否成立。
7、已知△ABC中,AB=AC=10厘米,BC=8厘米,点D 为AB的中点。
点P在线段BC上以3厘米/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动。
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等。
答:是。
证明:由于AB=AC,所以∠ABC=∠ACB,又因为D是AB的中点,所以AD=BD。
初一数学动点经典例题20道

初一数学动点经典例题20道1.如果一个角的度数是60度,则这个角的补角和余角分别是多少度?答:补角为30度,余角为150度。
2.如果一个直角三角形的斜边长是10,那么它的两腰长分别是多少?答:每个腰长都是根号50(即约为7.07)。
3.如果一个圆的直径是12,那么这个圆的周长是多少?答:这个圆的周长是约37.68。
4.如果一个正方形的边长是5,那么这个正方形的面积是多少?答:这个正方形的面积是25。
5.如果一个三角形的底边长是6,高为4,那么这个三角形的面积是多少?答:这个三角形的面积为12。
6.如果一个长方形的长为7,宽为3,那么这个长方形的面积是多少?答:这个长方形的面积是21。
7.如果一个正方体的边长是4,那么这个正方体的体积是多少?答:这个正方体的体积是64。
8.如果一个等腰三角形的两底边长均为8,那么这个三角形的高是多少?答:这个三角形的高为约6.93。
9.如果一个矩形的长为9,宽为2,那么这个矩形的周长是多少?答:这个矩形的周长是22。
10.如果一个圆的半径是5,那么这个圆的面积是多少?答:这个圆的面积是约78.5。
11.如果一个正方体的表面积为96,那么这个正方体的边长是多少?答:这个正方体的边长是4。
12.如果一个三角形的三个内角分别为50度、60度和70度,那么这个三角形的角平分线的交点在哪里?答:这个三角形的角平分线的交点距离三角形的各顶点均等。
13.如果一个梯形的底边长为7,顶边长为3,高为4,那么这个梯形的面积是多少?答:这个梯形的面积为20。
14.如果一个球的直径是8,那么这个球的体积是多少?答:这个球的体积是约268.08。
15.如果一条线段的长度为10,那么在这个线段上任意取一点,那么这个点距离线段两个端点的距离差是多少?答:这个点距离线段两个端点的距离差不超过5。
16.如果一个等边三角形的边长为3,那么这个等边三角形的面积是多少?答:这个等边三角形的面积为约3.9。
初一数学动点问题答案与解析

动点问题答案与解析一、单点移动问题1.【解答】(1)-21(2)14.5秒(3)37-2t(4)BC:2t-29当A在C的左边:AC:52-2t当A在C的右边:AC:2t-522.【解答】解:(1)点P表示的有理数为﹣4+2×2=0;(2)6﹣(﹣4)=10,10÷2=5,5÷2=2.5,(10+5)÷2=7.5.故点P是AB的中点时t=2.5 或7.5;(3)在点P由点A到点B的运动过程中,点P与点A的距离为2t;(4)在点P由点B到点A的返回过程中,点P表示的有理数是6﹣2(t﹣5)=16﹣2t.3.【解答】解:(1)①点P在点B的左边时∵PB=2,4﹣2=2,∴点P表示的是2.②点P在点B的右边时,∵PB=2,4+2=6,∴点P表示的是6.综上,可得点P表示的是2或6;(2)∵4﹣(﹣2)=6,∴线段AB的长度是6.①AP=AB=2时,点P表示的是﹣2+2=0.②BP=AB=2时,点P表示的是4﹣2=2.综上,可得点P表示的是0或2;(3)①点P在点B的左边时,∵AP=6﹣2=4,4÷2=2,∴线段AM的长是2.②点P在点B的右边时,∵AP=6+2=8,8÷2=4,∴线段AM的长是4.综上,可得线段AM的长是2或4.(4)根据图示,可得当点P在A、B两点之间时,PA+PB的值最小,此时,PA+PB=AB=6,所以PA+PB 的最小值是6.二、两点移动问题4.【解答】解:(1)①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8﹣12=﹣4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴点P表示的数是8﹣3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB﹣3,∴3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∴3x+2x=15解得:x=3.∴点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN﹣PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP﹣PQ=AQ+BP﹣PQ=(AQ+BP﹣PQ)﹣PQ= AB﹣PQ=(12﹣PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN﹣PQ=12.5.【解答】解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.6.【解答】解:(1)设A点运动速度为x单位长度/秒,则B点运动速度为4x单位长度/秒.由题意得:3x+3×4x=15解得:x=1∴A点的运动速度是1单位长度/秒,B点的速度是4单位长度/秒;(2)设y秒后,原点恰好处在A、B的正中间.由题意得:y+3=12﹣4y解得:答:经过秒后,原点恰处在A、B的正中间;(3)设B追上A需时间z秒,则:4×z﹣1×z=2×(+3)解得:,=64.答:C点行驶的路程是64长度单位.7.【解答】解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=4(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2当P在B的右侧,PA+PB=x﹣(﹣1)+x﹣3=6,得x=4故点P对应的数为﹣2或4;(3)解:设经过x分钟点A与点B重合,根据题意得:2x=4+x,解得x=4.∴6x=24.答:点P所经过的总路程是24个单位长度.8.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.9.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.三、多点移动问题10.【解答】解:(1)A表示的数是﹣6,点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是:﹣6+8﹣5=﹣3,故答案为:﹣3;(2)∵A,B对应的数分别为﹣6,2,点C到点A,点B的距离相等,∴AB=8,x的值是﹣2.故答案为:﹣2;(3)根据题意得:|x﹣(﹣6)|+|x﹣2|=10,解得:x=﹣7或3;故答案为:﹣7或3;(4)当点A、B重合时,﹣6+4t=2﹣2t,解得t=;当点C为A、B中点且点C在点A的右侧时,﹣t﹣(﹣6+4t)=(2﹣2t)﹣(﹣t),解得t=1;当点C为A、B中点且点C在点A的左侧时,(﹣6﹣4t)﹣(﹣t)=(﹣t)﹣(2﹣2t)m解得t=1(舍去).综上所述,当t=或1,点C到点A、B 的距离相等.11.【解答】解:(1)设B点的运动速度为x,A、B两点同时出发相向而行,则他们的时间相等,有:=,解得x=1,所以B点的运动速度为1;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y,始终有CB:CA=1:2,即:=,解得y=,当C停留在﹣10处,所用时间为:=秒,B的位置为=﹣.12.【解答】解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)QC﹣AM的值不发生变化.理由如下:设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.四、线段移动问题13.【解答】解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b的值是4.(2)由题意得:①11﹣(b+3)﹣b=(11﹣b),解得:b=.②11﹣(b+3)+b=(11﹣b),解得:b=﹣5.答:若AC﹣0B=AB,满足条件的b值是或﹣5.14.【解答】解:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M表示的数为t,N表示的数为t+2,∴AM=t﹣(﹣1)=t+1.故答案为:t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11,解得:t=.故答案为:.(3)假设能相等,则点A表示的数为2t﹣1,M表示的数为t,N表示的数为t+2,B表示的数为11﹣t,∴AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,∵AM=BN,∴|t﹣1|=|2t﹣9|,解得:t1=,t2=8.故在运动的过程中AM和BN能相等,此时运动的时间为秒和8秒.15.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15,则此木棒长为:15÷3=5,故答案为:5.(2)如图,点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为﹣40,当点M移动到点B时,点N所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.五、图形动点问题16.【解答】【考点】8A:一元一次方程的应用.【专题】25 :动点型;2A :规律型.【分析】此题利用行程问题中的相遇问题,设出正方形的边长,乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a×=,在AB边相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在CB边相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在DC边相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AB边相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AD边相遇;…因为2008=502×4,所以它们第2008次相遇在边AB上.故答案为:AB.【点评】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?
2、如图:AB∥CD,直线交AB、CD分别于点E、F,点M在EF上,N是直线CD 上的一个动点(点N不与F重合)
(1)当点N在射线FC上运动时,,说明理由?
(2)当点N在射线FD上运动时,与有什么关系?并说明理由
3、如图,点C是线段AB的中点,点D、E分别是线段AC、CB的中点.
(1)若线段AB=10cm,求线段AC和线段DE的长度;
(2)若线段AB=a,求线段DE的长度.
(3)若甲、乙两点分别从点A、D同时出发,沿AB方向向右运动,若甲、乙两点同时到达B点,请你写出一组符合条件的甲、乙两点运动的速度.
4、在长方形ABCD中,AB=CD=10cm、BC=AD=8cm,动点P从A点出发,沿A⇒B⇒C⇒D路线运动到D停止;动点Q从D出发,沿D⇒C⇒B⇒A路线运动到A停止;若P、Q同时出发,点P速度为1cm∕s,点Q速度为2cm∕s,6s后P、Q同时改变速度,点P速度变为2cm∕s,点Q速度变为1cm∕s.
(1)问P点出发几秒后,P、Q两点相遇?
(2)当Q点出发几秒时,点P点Q在运动路线上相距的路程为25cm?。