最新初一培优专题数轴上动点问题有答案
初一数轴动点问题(有答案)

数轴动点问题1、如图,有一数轴原点为O,点A所对应的数是-1,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K 和点C所对应的数.2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3s后,两点相距15cm(单位长度为1cm).已知动点A、B的速度比是1∶4 (速度单位:cm/s).(1)求出3s后,A、B两点在数轴上对应的数分别是多少?(2)若A、B两点从(1)中的位置同时向数轴负方向运动,经过几秒,原点恰好处在两个动点的正中间?3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?(1)若点P到点A、点B的距离相等,求点P对应数。
(3-(-1))/2=2 3-2=1 所以P=1.(2)|x-(-1)|+|x-3|=|x+1|+|x-3|=5 所以,存在,X=3.5或X=-1.5.(3)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?设时间是t. t分后,P是-1*t=-t,A是-1-5t,B是3-20t. |-t-(-1-5t)|=|-t-(3-20t)| |-t+1+5t |=|-t-3+20t| |4t+1|=|19t-3| 所以有: 4t+1=19t-3,解得t=4/15. 或者说4t+1=3-19t,得t=2/23 所以,出发的时间是2/23分或4/15分钟.4、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数.(注:文档可能无法思考全面,请浏览后下载,供参考。
专题02 数轴上动点问题专项训练(解析版)

当 0 < t £ 6 时,则 AP = -8 + 2t - -8 = 2t,CP = 4 - -8 + 2t = 12 - 2t ,
∵点 P 是线段 AC 的“二倍关联点”, ∴ AP = 2CP 或 AP = 1 CP ,
解得 t = 170 ; 7
110 170
由上可得,经过 秒或 秒的时间两只电子蚂蚁在数轴上相距 30 个单位长度.
7
7
【点睛】本题考查了数轴上两个数的大小比较,有理数的加减及乘法运算,绝对值的意义,数轴上
动点的运动,熟练运用方程思想及分类思想是解题关键.
2.(2023 上·广东韶关·七年级统考期末)如图,数轴上点 A 在原点 O 的左侧,点 B 在原点的右侧,
秒
【分析】(1)根据数轴上两点间的距离公式求解即可; (2)用 AO 除以点 P 运动的速度即可求出 t 的值,进而可求出点 Q 表示的数; (3)分三种情况:①点 B 为 PQ 中点,则 BP = BQ ;②点 P 为 BQ 中点,则 BP = PQ ;③若点 Q 为 BP 中点,则 BQ = PQ ,根据数轴上两点间的距离可得到关于 t 的方程,解方程即可求出结果.
(1)求出 a,b 的值; (2)现有一只电子蚂蚁 P 从点 A 出发,以 4 个单位长度/秒的速度向右运动,同时另一只电子蚂蚁 Q 从点 B 出发,以 3 个单位长度/秒的速度向左运动. ①设两只电子蚂蚁在数轴上的点 C 相遇,求出点 C 对应的数是多少? ②经过多长时间两只电子蚂蚁在数轴上相距 30 个单位长度? 【答案】(1) a = -20 , b = 120
【详解】(1) AB = 8 - -6 = 14 ;
部编数学七年级上册培优专题09数轴上册的动点问题解析版含答案

培优专题09 数轴上的动点问题【专题精讲】数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
类型一:求运动后点对应的数1.(2022·安徽·定远县第一初级中学七年级期末)如图,已知A,B两点在数轴上,点A表示的数为-10,3=,点M以每秒3个单位长度的速度从点A向右运动.点N以每OB OA秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是______.(2)经过几秒,点M、点N重合?【答案】(1)30(2)10【分析】(1)根据点A表示的数为-10,OB=3OA,可得点B对应的数;(2)点M、点N重合时,即点M追上点N,此时两点在数轴上的运动路程之差为10,以此列式即可求出.(1)解:OB=3OA=30.故B点对应的数是30.(2)点M、点N重合时,此时两点在数轴上的运动路程之差为10,设时间为t秒,则有3t-2t=10解得:t=10故经过10秒,点M、点N重合.【点睛】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.2.(2022·全国·七年级课时练习)已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为 ,点B表示的数为 ;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);②t为何值时,P,Q两点重合;③请直接写出t为何值时,P,Q两点相距5个单位长度.在数轴上点P表示的数是104t-+,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.【答案】(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,则6436BC t t t =+-=+,()32225AB t t t=---=+()62544BC AB t t t\-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.类型二:求运动中的时间5.(2022·全国·七年级专题练习)综合与探究阅读理解:数轴是一个非常重要的数学工具,使数和数轴上的点建立起对应关系,这样能够用“数形结合”的方法解决一些问题.数轴上,若A ,B 两点分别表示数a ,b ,那么A ,B 两点之间的距离与a ,b 两数的差有如下关系:||AB a b =-或b a -.问题解决:如图,数轴上的点A ,B 分别表示有理数2,5-.填空:(1)A ,B 两点之间的距离为_______;(2)点C 为数轴上一点,在点A 的左侧,且6AC =,则点C 表示的数是_______;(3)拓展应用:在(2)的条件下,动点P 从点A 出发,以每秒2个单位长度的速度在数轴上匀速运动,设运动时间为t 秒(0t >),当t 为何值时,P ,C 两点之间的距离为12个单位长度?【答案】(1)7(2)4-(3)3t =或9秒时,P ,C 两点之间的距离为12个单位长度【分析】(1)根据公式计算即可 .(2) 设C 表示的数为C x ,根据公式AC =|2-C x |=6,计算后,结合定C 的位置确定答案即可.(3) 解答时,分点P 向左运动和向右运动两种情况求解.(1)∵数轴上的点A ,B 分别表示有理数2,5-,∴AB =|-5-2|=7,故答案为:7.(2)设C 表示的数为C x ,根据题意,得AC =|2-C x |=6,∴2-C x =6或2-C x = -6,解得C x = -4或C x =8,∵点C 在点A 的左侧,∴C x <2A x =,∴C x = -4,故答案为:-4.(3)①当点P 向右运动时,点P 表示的数为2+2t ,根据题意,得 22(4)12t +--=,解这个方程,得 3t =;②当点P 向左运动时,点P 表示的数为2-2t ,根据题意,得4(22)12t ---=,解这个方程,得9t =,故当3t =或9秒时,P ,C 两点之间的距离为12个单位长度.【点睛】本题考查了数轴上的动点问题,两点间的距离,分类思想,熟练掌握公式,正确理解距离的意义是解题的关键.6.(2021·江苏·扬州市江都区第三中学七年级阶段练习)如图,直径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是 ;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是 ;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:第1次第2次第3次第4次第5次+1+2﹣1﹣4+3①第几次滚动后,A点距离原点最远?此时点A所表示的数是多少?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?(以上小题结果保留p)【答案】(1)p-;(2)2π或−2π;(3)①第2次,3p;②11p,p【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【详解】解:(1)∵圆片沿数轴滚动1周的长度为d p p=∴把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是-p.故答案为:-p;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,则滚动的长度为2p,点D 表示的数是2π或−2π.故答案为:2π或−2π;(3)①由表格可得第1次滚动后,A点距离原点为p;第2次滚动后,A点距离原点为3p;第3次滚动后,A点距离原点为2p;第4次滚动后,A点距离原点为-2p;第5次滚动后,A点距离原点为p;∴第2次滚动后,A点距离原点最远;②∵|+1|+|+2|+|-1|+|−4|+|+3|=11,∴11×p=11p,∴A点运动的路程共有11p个单位,此时点A所表示的数是p.【点睛】此题主要考查了数轴以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.7.(2022·全国·七年级专题练习)如图,在数轴上,点A、B、C表示的数分别为-2、1、6(点A与点B之间的距离表示为AB).(1)AB= ,BC= ,AC= .(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:2BC-AC的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,求其值.(3)若点C以每秒3个单位长度的速度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动.求随着运动时间t的变化,AB、BC、AC之间的数量关系.【答案】(1)3,5,8;(2)会,理由见解析;(3)当t<1时,AB+BC=AC;当t大于或等于1,且t小于或等于2时,BC+AC=AB;当t>2时,AB+AC=BC【分析】(1)根据点A、B、C在数轴上的位置,写出AB、BC、AC的长度;(2)求出BC和AB的值,然后求出2BC−AB的值,判断即可;(3)分别表示出AB、BC、AC的长度,然后分情况讨论得出之间的关系.【详解】解:(1)由图可得,AB=3,BC=5,AC=8,故答案为:3,5,8;(2)2BC−AB的值会随着时间t的变化而改变.设运动时间为t秒,则2BC−AB=2[6+5t−(1+2t)]−[1+2t−(−2−t)]=12+10t−2−4t−1−2t−2−t=3t+7,故2BC−AB的值会随着时间t的变化而改变;(3)由题意得,AB=t+3,BC=5−5t(t<1时)或BC=5t−5(t≥1时),AC=8−4t(t≤2时)或AC=4t−8(t>2时),当t<1时,AB+BC=(t+3)+(5−5t)=8−4t=AC;当1≤t≤2时,BC+AC=(5t−5)+(8−4t)=t+3=AB;当t>2时,AB+AC=(t+3)+(4t−8)=5t−5=BC.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是能求出两点间的距离.8.(2022·全国·七年级专题练习)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”.(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是______;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M、N的幸福中心,则C所表示的数可以是______(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,74秒时,电子蚂蚁是A和B的幸福中心吗?请说明理由.类型三:求运动中的速度等问题9.(2022·全国·七年级课时练习)如图,在数轴上,点A,B分别表示15-,9,点P、Q 分别从点A、B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒,在运动过程中,当点P,点Q和原点O这三点中的一点恰好是另外两点为端点的线段的中点时,则满足条件整数t的值()A.22B.33C.44D.5510.(2022·全国·七年级课时练习)已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为( )A .34B .14 或 34C .14或32D .322+|b ﹣4|=0,记AB =|a ﹣b |.(1)求AB 的值;(2)如图,点P 、Q 分别从点A 、B 同时出发沿数轴向右运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,当BQ =2BP 时,P 点对应的数是多少?(3)在(2)的条件下,点M 从原点与P 、Q 点同时出发沿数轴向右运动,速度是每秒x 个单位长度(1<x <2),若在运动过程中,2MP —MQ 的值与运动的时间t 无关,求x 的值.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)解得:21mn=ìí=î,答:P点的运动速度2单位长度/秒,Q点的运动速度1单位长度/秒.【点睛】本题考查数轴上的点表示的数及两点间的距离、一元一次方程的应用,二元一次方程组的应用等知识,根据题中描述找到等量关系式是解题的关键.。
初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
七年级上数轴上的动点问题[最新最全版]
![七年级上数轴上的动点问题[最新最全版]](https://img.taocdn.com/s3/m/36f514053169a4517723a3dd.png)
-1-2-33210O B A P0123-3-2-1B A OA BCD备用图O 数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO . (1)写出数轴上点A 、C 表示的数;(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运 动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=32CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的 式子表示); ②t 为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程91x +=的两根(a b <),2(16)c -与20d -互为相反数。
(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
初一数学上学期动点问题专题培优(含答案)

初一上学期动点问题练习1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3="14"解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36-t;(2)当16≤t≤24时PQ=t-3(t-16)=-2t+48,当24<t≤28时PQ=3(t-16)-t=2t-48,当28<t≤30时PQ=72-3(t-16)-t=120-4t,当30<t≤36时PQ=t-[72-3(t-16)]=4t-120.3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.解:(1)点A表示的数为-26,点B表示的数为-10,点C表示的数为10;(2)PA=1×t=t,PC=AC-PA=36-t;(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1(x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:Ⅰ)点Q从A点向点C运动时,如果点Q在点P的后面,那么1(x+16)-3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1(x+16)=2,解得x=9,此时点P表示的数是-1;Ⅱ)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1(x+16)+2=2×36,解得x=13.5,此时点P表示的数是3.5;如果点Q在点P的前面,那么3x+1(x+16)-2=2×36,解得x=14.5,此时点P表示的数是4.5.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3,-1,3.5,4.5.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。
七年级上册数学培优专题训练4 动点问题附解析学生版

七年级上册数学培优专题训练4 动点问题附解析学生版一、单选题(共8题;共16分)1.(2分)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2020cm的线段AB,则线段AB盖住的整点个数是()A.2020B.2021C.2020或2021D.2019或2020 2.(2分)已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的()A.左侧1010厘米B.右侧1010厘米C.左侧1011厘米D.右侧1011厘米3.(2分)数轴上有O,A,B,C,D五个点,各点的位置与所表示的数如图所示,且3<|d|<5.若数轴上有一点M,M所表示的数为m,且|m−d|=|m−3|,则关于点M的位置,下列叙述正确的是()A.M在O,B之间B.M在O,C之间C.M在C,D之间D.M在A,D之间4.(2分)有理数a,b,c在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①abc<0;②a−b+c<0;③|a|a+|b|b+|c|c=3;④|a−b|−|b+c|+|a−c|=2a.A.4个B.3个C.2个D.1个5.(2分)正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续翻转,则在数轴上与2020对应的点是()A.A B.B C.C D.D6.(2分)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是()A.12B.13C.14D.157.(2分)如图,在数轴上,点P表示−1,将点P沿数轴做如下移动,第一次点P向右平移2个单位长度到达点P1,第二次将点P1向左移动4个单位长度到达P2,第三次将点P2向右移动6个单位长度,按照这种移动规律移动下去,第n次移动到点P n,给出以下结论:①P5表示5;②P12>P11;③若点P n到原点的距离为15,则n=15;④当n为奇数时,|P n−P n−1|=2P n;以上结论正确的是()A.①②③B.①②④C.②③D.①④8.(2分)如图,A、O、B两点在数轴上对应的数分别为﹣20、0、40,C点在A、B之间,在A、B两点处各放一个挡板,M、N两个小球同时从C处出发,M以2个单位/秒的速度向数轴负方向运动,N以4个单位/秒的速度向数轴正方向运动,碰到挡板后则反方向运动,速度大小不变.设两个小球运动的时间为t秒钟(0<t<40),当M小球第一次碰到A挡板时,N小球刚好第一次碰到B挡板.则:①C点在数轴上对应的数为0;②当10<t<25时,N在数轴上对应的数可以表示为80﹣4t;③当25<t<40时,2MA+NB始终为定值160;④只存在唯一的t值,使3MO=NO,以上结论正确的有()A.①②③④B.①③C.②③D.①②④二、填空题(共12题;共12分)9.(1分)如图,已知A,B两点在数轴上,点A表示的数为−10,点B表示的数为30,点M以每6个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N同时出发,经过秒,点M、点N分别到点B的距离相等.10.(1分)如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若甲的速度是乙的速度的3倍,则它们第2021次相遇在边.11.(1分)如图,数轴上相邻两个整数之间的距离为1个单位,圆的周长为4个单位长,在圆的4等分点处分别标上0、1、2、3.先让圆周上表示数字0的点与数轴上表示-2的点重合,再将数轴右半轴按顺时针方向环绕在该圆上(如:圆周上表示数字1的点与数轴上表示-1的点重合…),则数轴上表示2020的点与圆周上表示数字的点重合.12.(1分)同学们都知道:|5−(−2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,同理,|x+2|+|x+3|可以表示数轴上有理数x所对应的点到-2和3所对应的点的距离之和,则|x+2|+|x+3|的最小值为.13.(1分)如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2020.14.(1分)如图所示,在数轴上,点A表示1,现将点A沿轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n 与原点的距离不小于20,那么n的最小值是.15.(1分)如图,已知数轴上的点C表示的数为6,点A表示的数为-4,点B是AC的中点,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,运动时间为1秒(t> 0),另一动点Q,从B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,且P,Q同时出发,当t为秒时,点P与点Q之间的距离为2个单位长度。
第5讲 初识数轴上动点问题 培优训练 2024-2025学年人教版七年级数学上册

第5讲初识数轴上动点问题专题1 动点问题(1)——画图分类讨论法题型一距离倍分问题——画图→分类→设未知数列方程如图,三点A,B,C在数轴上,点A,B在数轴上表示的数分别为—12,16.(规定:数轴上两点A,B之间的距离记为AB)【典例】若点C在数轴上,满足AC: BC=1:3,求点C对应的数.方法小结:结合数轴画图分类讨论,注意设未知数,列方程.题型二距离和差问题——画图→分类→设未知数列方程变式1.若点C 在数轴上,满足AC+BC=32..求点C 对应的数.变式2.若点C 在数轴上,满足AC--BC=12.求点C 对应的数.专题2 动点问题(2)——距离绝对值法模型绝对值距离法在数轴上点P 到—1的距离是到3的距离的3倍.求P点对应的数.题型一距离和差问题【典例】如图,数轴上点C 表示的数为x,点A 和点B 表示的数分别为a,b,且a=—7,b=2,回答下列问题:(1)A,B两点间的距离AB= ;(2)①若AC=1,求x的值;②若点C在点B 的右边,且AC+BC=12,求x的值;(3)点C到A,B两点间所有表示整数的点(不含A,B两点)的距离之和为40.则x的值为.题型二距离倍分问题变式1.如图,A,B 在数轴上分别对应的数为10和—10,点P 对应的数为x,且PB=4PA,求x 的值.变式2.(1)如图1,在数轴上动点P 到A,B 的距离之和为6,即PA+PB=6,求点P 对应的数;(2)如图2,在数轴上点O为原点,点A 对应的数为24,点P 在数轴上,且PA=3PO求点P 对应的数.专题3 动点问题(3)——单动点问题题型一用坐标表示动点位置,距离注意带绝对值【典例】如图,动点P 从点A 出发,以2个单位长度/秒的速度沿数轴向右运动到点B,然后以原速返回A 点,点P 运动的时间为t秒.(1)当t≤5时,P点表示的数为;(2)当5<t≤10时,P 点表示的数为;(3)若OP=2,求t的值.方法:①在数轴上表示P₁,P₂的坐标,. x P1=x A+2t,x P2=x B−2(t−5);circle2OP=|x P−x0|;;③分情况,列方程求解.题型二用坐标表示数轴上两点间距离变式.如图,已知a,b分别对应数轴上A,B两点,并且满足|a−2|+(3a+2b)²=0,点P 为数轴上一个动点,它对应的数是x.(1)填空: a=,b=,AB=;(2)若P 为线段AB 上一点,并且. PA=3PB,,求x的值;(3)若P 点从A 点出发以每秒2个单位长度的速度运动,那么出发几秒钟后,使得. PA=4PB?* 注意|a|=|b|分两种情形:( a=b或a=−b.方法小结:( (1)PA=|x−2|,PB=|x+3|;(2)结合距离关系列方程.专题4 动点问题(4)----双动点问题b|;模型二已知数轴上两点A,B对应的数为-1,3,点P 为数轴上一动点,其对应的数为x.(1)PA=|x+1|,PB=|x-3|;(2)若PA+PB=5,则|x+1|+|x-3|=5,结合图形知.x=-32或x= 72题型一点的位置未定,距离带绝对值【典例】如图,数轴上点A,B分别表示-7,1,点P,Q分别从点A,B同时沿数轴的正方向运动,点P 的速度是每秒2个单位长度,点Q 的速度是每秒1个单位长度,设运动的时间为t秒.(1)在运动过程中,请用含t 的代数式表示点P,Q在数轴上表示的数;(2)当t为何值时,P,Q两点的距离等于2个单位长度?题型二方程法(画图讨论),绝对值法(列绝对值方程)变式.如图,在数轴上点A 表示的数为-4,B表示的数为10,点P,Q分别从点B,A同时出发,相向运动,且在原点相遇.设它们运动的时间为t秒,点P 运动的速度为每秒2.5个单位长度.(1)直接写出点P 对应的数是,点Q对应的数是(用含t 的式子表示);(2)当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。
x?1,则A表示的数为与B2.若数轴上点A表示的数为两点之间的距离用式子,点B可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。
t,则A点运动的2个单位长度/秒的速度向右运动,若运动时间为3.A点在数轴上以路程可以用式子表示为______________。
?1,A点在数轴上以2个单位长度/4.若数轴上点A表示的数为秒的速度向右运动,tt秒后到达的位置所表示的数可以用式子表示为点运动,则A若运动时间为______________。
答案:1、3; 2、,x+1; 3、2t; 4、1x?t?2?1二、已做题再解:1、半期考卷的第25题:如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足?2?0?)16a??(b(1)点A表示的数为_________,点B表示的数为________。
精品文档.精品文档(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。
(3)在(2)的条件下,若点P运动到达B点后按原路原速立即返回,点Q继续按原速原方向运动,从P、Q在点C处相遇开始,再经过多少秒,P、Q两点的距离为4个单位长度?备用图备用图___8____ B表示的数为A表示的数为 ____,点解:(1)点16?处相遇CQ同时运动t秒在点(2)设P、t=6解得3t+t=24所表示的数是此时点C6=2?16+3?2.所表示的数是答:点C 个单位长度Q两点的距离为4(2)再经过a秒,P、个单位长B点前相距4从点C处相遇后反向而行,点P到达分类讨论:①度a=1 3a+a=4 解得 4个单位长度点后返回,此时相当于点Q在P点前②点P到达B??a=4解得46a???3a?6③点P到达B点后返回,从后追上Q点后又相距4个单位长度,此时相当于点P在点Q前4个单位长度??解得a=84??3a6?a?6答:再经过1秒或4秒或8秒,P、Q两点的距离为4个单位长度。
精品文档.精品文档2、七年级上学期期中模拟(1)的第10题:数轴上有A、B 两点表示—10,30,有两只蚂蚁P、Q同时分别从A、B 两点相向出发,速度分别是2单位单位长度/秒、3个单位长度/秒,当它们相距10个单位长度时,则蚂蚁P在数轴上表示的数是()解:经过t秒,P、Q相距10个单位长度,则P点运动路程为2t,运动后P点表示数为—10+2t,Q点运动路程为3t分类讨论:①还未相遇前相距10个单位长度2t+3t=40-10 解得t=6此时P点表示数为—10+2×6=2②相遇后又相距10个单位长度2t+3t=40+10 解得t=10此时P点表示数为—10+2×10=10综上所述,蚂蚁P在数轴上表示的数是2或10挑战题:1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
分析:如图1,易求得AB=14,BC=20,AC=34⑴设x秒后,甲到A、B、C的距离和为40个单位。
此时甲表示的数为—24+4x。
①甲在AB之间时,甲到A、B的距离和为AB=14甲到C的距离为10—(—24+4x)=34—4x依题意,14+(34—4x)=40,解得x=2②甲在BC之间时,甲到B、C的距离和为BC=20,甲到A的距离为4x依题意,20+4x)=40,解得x=5即2秒或5秒,甲到A、B、C的距离和为40个单位。
⑵是一个相向而行的相遇问题。
设运动t秒相遇。
依题意有,4t+6t=34,解得t=3.4相遇点表示的数为—24+4×3.4=—10.4 (或:10—6×3.4=—10.4)⑶甲到A、B、C的距离和为40个单位时,甲调头返回。
而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。
①甲从A向右运动2秒时返回。
设y秒后与乙相遇。
此时甲、乙表示在数轴上为同一点,所表示的数相同。
甲表示的数为:—24+4×2—4y;乙表示的数为:10—6×2—6y精品文档.精品文档依题意有,—24+4×2—4y=10—6×2—6y,解得y=7相遇点表示的数为:—24+4×2—4y=—44 (或:10—6×2—6y=—44)②甲从A向右运动5秒时返回。
设y秒后与乙相遇。
甲表示的数为:—24+4×5—4y;乙表示的数为:10—6×5—6y依题意有,—24+4×5—4y=10—6×5—6y,解得y=—8(不合题意,舍去)即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为—44。
点评:分析数轴上点的运动,要结合数轴上的线段关系进行分析。
点运动后所表示的数,以起点所表示的数为基准,向右运动加上运动的距离,即终点所表示的数;向左运动减去运动的距离,即终点所表示的数。
2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
分析:⑴设AB中点M对应的数为x,由BM=MA所以x—(—20)=100—x,解得x=40 即AB中点M对应的数为40⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇,依题意有,4t+6t=120,解得t=12(或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12)相遇C点表示的数为:—20+4t=28(或100—6t=28)⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。
P、Q为同向而行的追及问题。
依题意有,6y—4y=120,解得y=60(或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60)D点表示的数为:—20—4y=—260 (或100—6y=—260)点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。
⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。
在⑵、⑶中求出相遇或追及的时间是基础。
精品文档.精品文档3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。
依题意,3—x=x—(—1),解得x=1⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。
①P在点A左侧,PA=—1—x,PB=3—x依题意,(—1—x)+(3—x)=5,解得x=—1.5②P在点B右侧,PA=x—(—1)=x+1,PB=x—3依题意,(x+1)+(x—3)=5,解得x=3.5⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。
故P点总位于A点右侧,B可能追上并超过A。
P到A、B的距离相等,应分两种情况讨论。
设运动t分钟,此时P对应的数为—t,B对应的数为3—20t,A对应的数为—1—5t。
①B未追上A时,PA=PA,则P为AB中点。
B在P的右侧,A在P的左侧。
PA=—t—(—1—5t)=1+4t,PB=3—20t—(—t)=3—19tt= —1+4t=319t,解得依题意有,②B追上A时,A、B重合,此时PA=PB。
A、B表示同一个数。
t= 20t,解得—依题意有,—15t=3—或分钟时,P到A、即运动B的距离相等。
精品文档.。