实验二 存储器实验

合集下载

计算机组成原理实验

计算机组成原理实验

DR1 65
DR2 A7
S3S2S1S0 0000
M=0 Cn=1 Cn=0
M=1
0001
0010 0110 1000 1001 1011 1101
1111
运算器实验原理图
实验线路
74LS181功能表
注意: F=A+B 不带进位加 F=A加B 带进位加
实验二
一、实验目的
存储器实验
了解静态存储器的工作原理
注:
A7…A0 => AD7…AD0
写存储器
读存储器
实验三
一、实验目的
微程序控制器实验
学习微程序的编写方法,了解微程序控制的实现过程 二、实验设备 TDN-CM++实验仪一套、PC机一台 三、实验内容
要求编写以下五条指令的微程序,在数据通路图中 观察执行过程
1、IN R0 INPUT →R0
2、OUT [ADDR]
02
03 04 05 06 07
00C043
01ED84
RAM →IR
PC →AR,PC+1 →PC RAM →AR RAM →DR1 R0 →DR2
*****3
DR1+DR2->R0
六、实验线路
注: 从实验箱手动输入微码时 : UA5…UA0 => MA5…MA0 从电脑输入微码时 : UA5… UA0 =源自 SE6…SE1微指令格式
WE A9 A8 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1
INPUT RAM读 RAM写 LED 无
S3-S0,M,Cn是运算器74LS181的运 算控制(看P16); UA5-UA0是下一条微指令地址.

实验二 I2C存储器实验

实验二 I2C存储器实验

I2C存储器实验实验目的1、了解I2C总线的工作原理2、掌握I2C总线驱动程序的设计和调试方法3、掌握I2C总线存储器的读写方法实验仪器单片机开发板、稳压电源、计算机实验原理1、 I2C总线常识I2C总线采用一个双线式漏极开路接口,可在一根总线上支持多个器件和主控器。

所连接的器件只会把总线拉至低电平,而决不会将其驱动至高电平。

总线在外部通过一个电流源或上拉电阻器连接至一个正电源电压。

当总线空闲时,两条线路均为高电平。

在标准模式中,I2C 总线上的数据传输速率高达100kbit/s,而在快速模式中则高达400kbit/s。

I2C总线上的每个器件均由一个存储于该器件中的唯一地址来识别,并可被用作一个发送器或接收器(视其功能而定)。

除了发送器和接收器之外,在执行数据传输时,还可把器件视作主控器或受控器。

主控器是负责启动总线上的数据传输并生成时钟信号以允许执行该传输的器件。

同时,任何被寻址的器件均被视作受控器。

CAT24WC01/02/04/08/16是一个1K/2K/4K/8K/16K位串行CMOS EEPROM,内部含有128/256/512/1024/2048个8位字节,CATALYST公司的先进CMOS技术实质上减少了器件的功耗,CAT24WC01有一个8字节页写缓冲器,CAT24WC02/04/08/16有一个16字节页写缓冲器,该器件通过I2C总线接口进行操作,有一个专门的写保护功能,并且器件能与400KHzI2C 总线兼容。

引脚名称和功能如图1所示。

图1 24系例I2C存储器引脚说明通过器件地址输入端A0、A1和A2可以实现将最多8个24WC01和24WC02器件4个24WC04器件,2个24WC08器件和1个24WC16器件连接到总线上。

2、I2C总线协议(1)只有在总线空闲时才允许启动数据传送。

(2)在数据传送过程中,当时钟线为高电平时,数据线必须保持稳定状态,不允许有跳变。

时钟线为高电平时,数据线的任何电平变化将被看作总线的起始或停止信号。

计算机组成原理 - 实验二存储器实验_

计算机组成原理 - 实验二存储器实验_
按所画连线图接线。
操作步骤
接线图中OO1、OO2、OOE1、OOE2是四个观察记数的 指示灯,其中OO1、OO2是写信号记数,OOE1、OOE2 是读信号记数。FULL及EMPTYy是满和空标志灯。
实验时,先拨动CLR开关使FIFO清空。然后给INPUT DEVICE单元中置一个数,按动START,此时将此数写入 到FIFO中,依次写四次后,FULL满标志置位。此时再也 写不进去,然后连续按动KK2-读信号,将顺序读出所存 的四个数,从总线显示灯检查结果是否与理论值一致。
C3=FIFOWR&O2&!O1; C4=FIFOWR&O2&O1; EMPTY=(OE==O)&!FLAGG; FULL=(OE==O)&FLAGG; END
25
26
3.LS273模块(ls273.abl)
MODULE LS273
"INPUT
CLK
PIN ;
I7,I6,I4,I3,I2,I1,I0 PIN ;
OE.CLK=FIFORD;
O.CLK=!FIFOWR;
24
OE.AR=!RST; O.AR=!RST; FLAGG.CLK=FIFOWR; FLAGG.AR=(!FIFORD)#(!RST); FLAGG:=1; WHEN OE==3 THEN OE:=0 ELSE OE:=OE+1; WHEN O==3 THEN O:=0 ELSE O:=O+1; C1=FIFOWR&!O2&!O1; C2=FIFOWR&!O2&O1;
7
三.实验内容
实验时将T3脉冲接至实验板上时序电路模块的TS3 相应插孔中,其脉冲宽度可调,其它电平控制信号 由“SWITCH UNIT”单元的二进制开关模拟,其中 SW-B为低电平有效,LDAR为高电平有效。

存储器实验

存储器实验

实验二:存储器实验一:实验目的:1:掌握随机存储器RAM的工作特性及使用方法;2:掌握半导体存储器存储和读出数据的工作原理;3:了解半导体存储器电路的定时要求;二:实验条件:1:PC机一台;2:MAX+PLUSⅡ软件;三:实验内容(一)1:所用到的芯片74244:收发器(双向的三态缓冲器)74161:4位二进制计数器(作为程序计数器PC)74273:8个D触发器(作为地址寄存器AR)7448:七段译码器(显示输入的数据)2:实验电路图(A)存储器RAM(B)数据输入电路由两个十六进制计数器连接成16*16=256进制的计数器,可以实现八位的输入。

(C) 数码管扫描显示电路由一个扫描电路scan和一个七段译码器7449组成,scan内部是一个二选一的多路复用器。

(D)存储器电路图3、波形仿真(A)地址计数器74161产生地址练习☆置数法产生地址:(0-300ns)eg:产生地址为03Heg:产生地址06H(B)地址的产生,所以采用边写边读的方法,从下图D[7..0]上的输出可以看出01H—05H都写入了01H—05H单元中。

☆LDAR在写数据的时候打开(使地址和数据同步加1),读的时候关闭;☆读数据的时候PC_BUS关闭;(C)存储器进行读/写操作,连读操作☆修改部分的电路图:分析:只需要把74161的LD 信号改为上图所示的控制信号,其他的控制不变,即数据和地址加1的情况有两种,一是当161LOAD有效时,二是当读信号时,但是要注意读数据的时候要把161LOAD关掉,以防加两次1.☆0-600ns:将07H写入第07H单元,并读出数据☆600ns-1.8us:将0EH写入第08H单元(省略了读数据的操作,若要写完读数据后立刻读数据可参看上面(B)的仿真),从外部送进数据09H,0AH,0BH作为地址(可以省去清零后再计数等不必要的步骤,提高效率),并通过161计数产生数据0DH,0CH,0BH,0DH写入09H单元,0CH写入0AH单元,0BH写入0B单元。

实验二 RAM扩展实验

实验二 RAM扩展实验

实验二RAM扩展实验(请在实验课前写好预习报告,预习报告日期必在做实验课之前,预习报告中应该出现跟实验1内容相关的原理,电路图(可简画),流程图(或是程序,有程序就必带注释))实验仪器:pc机,8086k微机原理实验箱实验目的:1.掌握存储器芯片的特性及与CPU的连接方法。

2.掌握访问连续存储空间的方法。

实验内容:(1必须在实验课前通过仿真实验完成,电路为EX2_1.DSN,程序为EX2_1.ASM)1.利用62256(32K×8bit)的静态SRAM芯片进行扩展,要求扩展的存储器容量为64KB,且要求和8086CPU相连接。

扩展后,利用此扩展的存储体进行读写访问,将内存0000H:4000H 地址开始的位置至0000H:4063H位置处依次写上0-99。

实验连线:提示:应该有哪三类线?实验流程图参考实验程序:assume cs:codecode segmentstart:mov ax,0000h ;设置DS的段地址值为0mov ds,axmov bx,4000H ;利用BX存放存储单元的偏移地址,从200H开始mov al,0 ;AL中为要写到存储单元中的数据。

初始值为1mov ds:[bx],al ;将1写入内存0000H:4000H地址处mov cx,100 ;设置循环次数为100次l1:mov ds:[bx],al ;循环体目的将AL中的值填入存储器inc bx ;偏移地址指针下移一个字节inc al ;待填充到存储单元的数据也自增1loop l1 ;根据CX的次数执行上面的循环体int 3 ;断点中断,目的是为了观察内存结果,用实验箱做实验时,不用这步code endsend start提示:如果仿真过程中把内存窗口关掉,可以按图中所示选择调试菜单中:即可出现思考问题:1)通过EX2_1.DSN仿真运行结果观察两块62256芯片写入的内容各有什么特点?为什么会产生这样的结果?2)停止运行,观察EX2_1.DSN仿真图,U7:62256芯片的片选段CE由那两个信号进行或运算获得?这两个信号都为哪种电平时才能选中这块U7:62256芯片。

实验二双端口存储器原理实验

实验二双端口存储器原理实验

实验二双端口存储器原理实验实验目的:1.了解双端口存储器的工作原理;2.了解双端口存储器的读写时序;3.掌握双端口存储器的控制方式。

实验器材:1.双端口RAM芯片;2.数字逻辑实验箱;3.示波器。

实验原理:双端口存储器是一种具有两个访问端口的存储器,其中一个端口用于读数据,另一个端口用于写数据。

两个端口可以同时进行读写操作,且可以独立操作,互不干扰。

双端口存储器广泛应用于多核处理器、高速路由器、交换机等领域,其性能优越,能提供更高的并行处理能力。

双端口存储器的读写时序如下:1.读操作时序:1)使能端CE1置低,选中读数据的端口;2)地址信号输入地址端口AD1;3)等待一段时间,取数据端口的读数据。

2.写操作时序:1)使能端CE2置低,选中写数据的端口;2)地址信号输入地址端口AD2;3)数据输入数据端口D;4)等待一段时间,完成写操作。

实验步骤:1.连接双端口RAM芯片到数字逻辑实验箱上,确保电路连接正确;2.连接示波器到仪表箱,用于监测信号波形;3.按照双端口存储器的读写时序,设置实验箱上的信号发生器;4.编写控制代码,控制实验箱上的信号发生器模拟读写操作;5.观察示波器上的波形,验证读写操作的正确性;6.分析实验结果,总结双端口存储器的工作原理和性能。

实验注意事项:1.操作实验箱时要小心谨慎,防止损坏实验箱和芯片;2.实验过程中需要观察示波器上的波形,确保信号发生器的设置正确;3.根据实验目的和步骤设定实验结果的收集和分析方式;4.实验后及时关闭实验箱和示波器,保持实验室整洁。

实验结果与分析:根据实验步骤设置好实验箱上的信号发生器,并编写相应的控制代码后,进行实验。

通过示波器监测到的信号波形可以验证读写操作的正确性。

实验结果的收集和分析主要包括以下内容:1.读操作时序的验证:通过示波器观察到CE1端信号在读操作开始时置低,地址信号AD1输入正确,数据端口读数据正确。

2.写操作时序的验证:通过示波器观察到CE2端信号在写操作开始时置低,地址信号AD2输入正确,数据端口D输入正确。

实验二存储器实验

实验二存储器实验

原 ①接通电源,用示波器接入方波信号源的输出插孔H24,调节电位器
理 W1,使H24端输出实验所期望的频率的方波。
实 ②将时序电路模块中的ф和H23排针相连。 验
③在时序电路模块中有两个二进制开关“STOP”和“STEP”,将
“STOP”开关置为“RUN”状态、“STEP”开关置为“EXEC”状
态时,按动微动开关START,则T3输出为连续的方波信号,此时调
节电位器W1,用示波器观察,使TS3端输出实验要求的脉冲信号。
当“STOP”开关置为“RUN”状态、“STEP”开关置为“STEP”
状态时,每按动一次微动开关START,则T3 输出一个单脉冲,其脉
冲宽度与连续方式相同。
④关闭电源。
7


四、实验步骤


成 ⑵ 按如下图所示,连接实验线路,仔细查线


控制信号
写地址
写内容
读内容

SW-B
LDAR
CE
WE
14



组 (2)向存储器的00H,01H,02H,03H,04H,05H,06H地址

单元分别写入数据
原 理
AAH,55H,33H,44H,66H,08H,F0H(十六进制).


15
计 算
六、思考题



原 ①存储器在写操作和读操作的过程中
理 实 验
6. 本实验中存储器能够存储的最大容量是多少? PC、AR寄存器的位数是多少?存储器的每个
单元能存放的最大整数和最小整数是多少?
7. 存储器本身是怎样存取数据的?本实验中是 如何控制内存的读和写?

计算机组成原理实验二报告

计算机组成原理实验二报告

实验(二)存储器实验1、实验目得1 深入理解计算机内存储器得功能,组成知识。

2深入得学懂静态存储芯片得读写原理与用她们组成教学计算机存储系统得方法(即字,位扩展技术),控制其运行方式2、实验内容1、完成存储器扩展得实验,需要为扩展内存选择一个地址,并注意读写与OE等控制得正确状态。

2、用监控程序得D,E命令对存储器进行读写,比较RAM,EEPROM,EPROM在读写上得异同。

3、用A命令写一段程序,对RAM进行读写,用D命令查瞧结果就是否正确。

4、用A命令写一段程序,对扩展存储器EEPROM进行读写,用D命令查瞧结果就是否正确,如果不正确,分析原因,改写程序,重新运行。

3、实验步骤1、检查FPGA下方得插针要按下列要求短接:标有“/MWR”“RD”得插针左边两个短接,标有“/MRD”“GND”得插针右边两个短接,标有ROMLCS与RAMLCS得插针短接。

2、RAM(6116)支持即时读写,可直接用A、E命令向扩展得存储器输入程序或改变内存单元得值。

RAM中得内容在断电后会消失,重新启动实验机后会发现内存单元得值发生了改变。

1>用E命令改变内存单元得值并用D命令观察结果。

<1>在命令行提示符状态下输入:E2020<2>在命令行提示符状态下输入:D2020<3>断电后重新启动教学实验机,用D命令观察内存单元2020~2023得值。

2>用A命令输入一段程序,执行并观察结果。

<1>在命令行提示符状态下输入:A 2000<2>在命令行提示符状态下输入:T 2000<3>在命令行提示符状态下输入:G 2000<4> 在命令行提示符状态下输入:ﻩR3、将扩展得ROM芯片(27或27系列得替代产品58C65芯片)插入标有“EXTROMH”与“EXTROMP”得自锁进插座,要注意芯片插入得方向,带有半圆形缺口得一方朝左插入。

如果芯片插入方向不对,会导致芯片毁坏,然后锁紧插座。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本步骤如下: 实验基本步骤如下: 完成存储器实验电路的连接; ⑴ 完成存储器实验电路的连接; 分别向存储器多个单元写入数据( ⑵ 分别向存储器多个单元写入数据(地址和数据 自定); 自定); ⑶ 分别从存储器相关单元中读出所写入的数据进 行验证。 行验证。 完成存储器实验电路的连接; ⑷ 完成存储器实验电路的连接; 分别向各寄存器写入数据; ⑸ 分别向各寄存器写入数据; 分别从各寄存器读出所写入的数据进行验证。 ⑹ 分别从各寄存器读出所写入的数据进行验证。 实验思考: 实验思考:如果不希望在存储器数据存取过程中 改变电路连接,应如何修改实验电路? 改变电路连接,应如何修改实验电路?
计算机组成原理实验课件
陆遥
实验二 存储器和寄存器实 验
一、实验目的
1. 2.
掌握SRAM存储器的数据通路及操作控制方法。 存储器的数据通路及操作控制方法。 掌握 存储器的数据通路及操作控制方法 掌握通用寄存器的数据通路及操作控制方法。 掌握通用寄存器的数据通路及操作控制方法。
二、实验任务及要求
1.
完成存储器数据通路的连接, 完成存储器数据通路的连接,并向多个存储单 元写入数据并读出验证。 元写入数据并读出验证。
2.
完成通用寄存器组数据通路的连接, 完成通用寄存器组数据通路的连接,并进行寄 存器的写入和读出操作。 存器的写入和读出操作。
三、实验原理
数据总线 二进制开关 LED数据显示灯
STOP
E
74245(双向缓冲) DIR
BUS
M/C STOP
D7 ~ D0 & CS 6264(8K×8) WE A12~A8 … A7 ~ A0 & OE &
CR RM CW WM EMCK
≥1
74244(三态门)
STOP
二进制开关 存储器实验电路
控制信号说明: 控制信号说明: ⑴ BUS控制存储器与数据总线的数据传送方向, 控制存储器与数据总线的数据传送方向, 控制存储器与数据总线的数据传送方向 BUS=1,接收;BUS=0,发送。 = ,接收; = ,发送。 是存储器的正常读写允许信号, ⑵ RM和WM是存储器的正常读写允许信号,低 和 是存储器的正常读写允许信号 电平有效。 电平有效。 ⑶ EMCK是存储器的写入脉冲,上升沿有效。 是存储器的写入脉冲,上升沿有效。 是存储器的写入脉冲 ⑷ CR和CW是键盘监控程序对存储器的读写控制 和 是键盘监控程序对存储器的读写控制 信号。 信号。 是键盘监控程序对主存和控存的选择信号。 ⑸ M/C是键盘监控程序对主存和控存的选择信号。 是键盘监控程序对主存和控存的选择信号
控制信号说明: 控制信号说明: 是寄存器选择信号。 ⑴ SB和SA是寄存器选择信号。 和 是寄存器选择信号 是寄存器读允许信号, ⑵ RR是寄存器读允许信号,低电平有效。 是寄存器读允许信号 低电平有效。 是寄存器写允许信号, ⑶ WR是寄存器写允许信号,低电平有效。 是寄存器写允许信号 低电平有效。 是寄存器写入脉冲, ⑷ RCK是寄存器写入脉冲,上升沿有效。 是寄存器写入脉冲 上升沿有效。
相关文档
最新文档