推荐-基于51单片机控制的语音报时万年历课程设计1 精品

合集下载

基于单片机C51的万年历设计课程设计

基于单片机C51的万年历设计课程设计

课程设计说明书设计题目:基于单片机的万年历设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

基于51单片机电子闹钟或万年历的课程设计说明书

基于51单片机电子闹钟或万年历的课程设计说明书

课程设计基于51单片机电子闹钟或万年历的设计目录目录 (1)1.项目背景 (3)1.1 项目研究的目的和意义 (3)1.2课题研究的容 (3)2.方案的选择和和论证 (4)2.1 单片机型号的选择 (4)2.2 按键的选择 (4)2.3 显示器的选择 (4)2.4 计时部分的选择 (5)2.5 发音部分的设计 (5)2.6电路设计最终方案 (5)3. AT89C52单片机简介 (6)3.1单片机基本特性 (6)3.2单片机部结构图 (6)3.3 单片机I/O引脚结构 (6)3.3.1 P0口 (6)3.3.2 P1口 (7)3.3.3 P2口 (7)3.3.4 P3口 (7)3.4单片机最小系统板 (8)4. 数字电子钟的设计原理和方法 (9)4.1 设计原理 (9)4.2 硬件电路的设计 (9)4.2.1 DS1302时钟芯片 (9)4.2.2 1602 液晶简介 (11)4.2.3 蜂鸣器驱动电路 (12)4.2.4 独立键盘电路 (13)5.软件部分的设计 (14)5.1程序流程图 (14)5.1.1 系统总流程图 (14)5.1.2 DS1302时钟程序流程图 (15)5.1.3 LCD显示程序流程图 (16)5.2程序的设计 (17)5.2.1 DS1302读写程序 (17)5.2.2液晶显示程序 (17)7.心得体会 (20)参考文献 (21)附录一系统原理图 (22)附录二系统程序 (23)1.项目背景1.1 项目研究的目的和意义20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。

忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。

但是,一旦重要事情,一时的耽误可能酿成大祸。

基于51单片机DS1302万年历课程设计报告

基于51单片机DS1302万年历课程设计报告

基于51单片机DS1302万年历课程设计报告课程名称:微机原理课程设计题目:基于DS1302芯片万年历摘要DS1302 是DALLAS 公司推出的涓流充电时钟芯片,内含有一个实时时钟/日历和31 字节静态RAM,通过简单的串行接口与单片机进行通信实时时钟/日历电路.提供秒、分、时、日、日期.、月、年的信息,每月的天数和闰年的天数可自动调整时钟。

本次课程设计的是使用专门的时钟芯片DS1302在数码管上显示的数字电子钟,并能通过按键对其进行调时和校准以及实现年月日。

DS1302是一种高性能、低功耗、带RAM的实时时钟芯片,它能够对时,分,秒进行精确计时,它与单片机的接口使用同步串行通信,仅用3条线与之相连接,就可以实现STC-51单片机对其进行读写操作,把读出的时间数据送到数码管上显示。

程序运行时,数码管将从当前时间开始显示,通过调节K2键和K3键可以分别对小时和分钟进行调整,调整后,时钟以新的时间为起点继续刷新显示,通过调节K1键可以切换年月日和时钟显示。

关键字:STC-51单片机,DS1302,数码管,动态扫描,调时,切换,秒闪;目录一、设计任务与要求 (4)1.1设计任务 (4)1.2设计要求 (4)1.3发挥部分 (4)1.4创新部分 (4)二、方案总体设计 (5)2.1设计目的 (5)2.2硬件功能描述 (5)2.3设计方案选择 (5)2.4总体设计 (6)2.5总体方案及基本工作原理 (6)三、硬件设计 (7)3.1 STC89C51芯片 (7)3.2电源模块及晶振模块 (7)3.3 DS1302 (8)3.4数码管显示模块 (9)3.5蜂鸣器部分 (10)3.6按键部分 (11)四、软件设计 (13)4.1软件流程图 (13)4.2 软件设计 (13)主函数部分: (13)五、系统仿真和调试 (15)5.1 仿真软件简介 (15)5.2硬件调试 (15)5.3软件调试 (15)5.4使用说明 (16)六、设计总结与体会 (18)6.1学习方面 (18)6.2工作方面 (18)七、参考文献 (19)一、设计任务与要求1.1设计任务DS1302万年历;1.2设计要求利用DS1302生成万年历,时钟可调,通过四位数码管显示,并可实现秒闪功能,同时蜂鸣器闹铃;1.3发挥部分设置按键K3用来切换显示时钟和年月日;1.4创新部分只设置了两个按键K1和K2来调节时分,时钟到24归零,分钟到60归零,分钟有长按迅速调节功能。

基于单片机的万年历课程设计

基于单片机的万年历课程设计

一、前言随着电子技术的迅速发展,特别是随大规模集成电路出现,给人类生活带来了根本性的改变。

由其是单片机技术的应用产品已经走进了千家万户。

电子万年历的出现给人们的生活带来的诸多方便。

本设计是基于51系列的单片机进行的电子万年历设计,采用八位数码管显示年月日时分秒及温度信息,具有可调整日期和时间功能。

时间、日期调整由三个按键来实现,并可对闹铃开关进行设置。

日历能显示阳历和阴历年、月、日以及星期、时、分、秒。

设计以STC89C52RC 单片机为核心,构成单片机控制电路;以DS1302时钟芯片作为万年历信号发生器;以DS18B20作为检测温度的传感器。

关键词时钟电钟;DS1302;DS18B20;数码管;单片机。

二、系统概述及总体方案2.1系统概述本电子万年历采用单片机控制技术和数码管显示方案,可以很好的完成万年历和实时温度显示。

它可以对年、月、日、周日、时、分、秒进行计时,还具有闰年补偿等多种功能。

对于数字电子万年历采用直观的数字显示,可以同时显示年、月、日、周日、时、分、秒和温度等信息,还具有时间校准等功能。

2.2总体方案2.2.1单片机芯片:采用AT89S52,片内ROM全都采用Flash ROM;能以3V的超低压工作;同时也与MCS-51系列单片机完全相同,该芯片内部存储器为8KB ROM 存储空间,同样具有89C51的功能,且具有在线编程可擦除技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,不需要对芯片多次拔插,所以不会对芯片造成损坏。

所以选择采用AT89S52作为主控制系统.2.2.2 时钟芯片:采用DS1302时钟芯片实现时钟,DS1302芯片是一种高性能的时钟芯片,可自动对秒、分、时、日、周、月、年以及闰年补偿的年进行计数,而且精度高,位的RAM做为数据暂存区,工作电压2.5V~5.5V范围内,2.5V时耗电小于300nA.且同组同学已从Maxim申请到了这种芯片,所以本设计采用了这种芯片。

单片机实训报告 - 基于51单片机的数字万年历设计

单片机实训报告 - 基于51单片机的数字万年历设计

《单片机应用实训》课程设计报告姓名:班级:指导老师:实习时间:基于51单片机的数字万年历设计摘要:利用单片机、DS1302芯片、DS18B20芯片搭建一个数字万年历模块,编写程序,实现了年、月、日、时、分、秒计数,温度测量、时钟报警等功能。

关键词: STC89C51 数字时钟一、 实训目的电子时间显示器现在在任何地方都有涉及到,例如电子表和商场的时间显示等等,所以它是一种既方便又实用的技术,而我们所做的万年历则是在它的基础上做出来的,通过万年历的制作,我们可以进一步了解计数器的使用,了解各个进制之间的转换,以及其他的任意进制计数器的构成方法等,并且进一步了解DS1302芯片、DS18B20芯片的使用等。

二、总体设计方案根据项目任务,该系统采用STC89C51为控制核心,以电子大赛开发板为实验平台,利用各种芯片实现相应功能,三、硬件设计1、单片机最小系统STC89C52为40引脚双列直插芯片,有四个I/O 口P0,P1,P2,P3,每一条I/O 线都能独立地作输出或输入。

单片机的最小系统如下图所示,18引脚和19引脚接晶振电路,XTAL1接外部晶振和微调电容的一端,在片内它是振荡器倒相放大器的输入,XTAL2接外部晶振和微调电容的另一端,在片内它是振荡器倒相放大器的输出。

第9引脚为复位输入端,接上电容,电阻及开关后够成上电复位电路,20引脚为接地端,40引脚为电源端。

时钟振荡电路用于产生单片机正常工作时所需要的时钟信号,电路由两个22pF的瓷片电容和一个12MHz的晶振组成,并接入到单片机的XTAL1和XTAL2引脚处 使单片机工作于内部振荡模式。

此电路在加电后延迟大约10ms振荡器起振,在XTAL2引脚产生幅度为3V左右的正弦波时钟信号,其振荡频率主要由石英晶振的频率决定。

时钟振荡电路如下图所示。

复位电路由电阻和极性电容组成,如下图所示,通过高电平使单片机复位,在时钟电路开始工作后,当高电平的时间超过大约2us时,即可实现复位。

基于51单片机电子闹钟或万年历的设计课程设计

基于51单片机电子闹钟或万年历的设计课程设计

目录目录............................................... 错误!未定义书签。

1.项目背景......................................... 错误!未定义书签。

项目研究的目的和意义.......................... 错误!未定义书签。

课题研究的内容................................. 错误!未定义书签。

2.方案的选择和和论证............................... 错误!未定义书签。

单片机型号的选择.............................. 错误!未定义书签。

按键的选择.................................... 错误!未定义书签。

显示器的选择.................................. 错误!未定义书签。

计时部份的选择................................ 错误!未定义书签。

发音部份的设计................................ 错误!未定义书签。

电路设计最终方案............................... 错误!未定义书签。

3. AT89C52单片机简介.............................. 错误!未定义书签。

单片机大体特性................................. 错误!未定义书签。

单片机内部结构图............................... 错误!未定义书签。

单片机I/O引脚结构............................ 错误!未定义书签。

P0口..................................... 错误!未定义书签。

基于51单片机的万年历设计

基于51单片机的万年历设计

洛阳理工学院课程设计报告课程名称单片机原理与应用设计题目基于STC89C51万年历得设计与实现专业物联网工程班级学号姓名完成日期大约在冬季目录摘要 (1)一、设计目标与内容 (2)1、1设计目标 (2)1、2 设计内容 (2)1、3设计要求 (2)1、4 本章小结 (2)二、系统设计 (3)2、1 电路设计框图 (3)2、2 系统硬件概述 (3)2、3 主要单元电路得设计 (4)2、3、1 时钟电路模块得设计 (4)2、3、2温度传感器电路设计 (5)2、3、3显示模块得设计 (7)2、4本章小结 (7)三、系统得软件设计 (7)3、1程序流程图 (7)3、1、1 系统总流程图 (7)3、1、2 温度程序流程图 (8)3、1、3 DS1302时钟程序流程图 (8)3、1、4 LCD显示程序流程图 (9)3、2程序得设计 (10)3、2、1 DS18B20测温程序 (10)3、2、2 DS1302读写程序 (11)3、2、3液晶显示程序 (13)3、3本章小结 (13)四、仿真与调试 (14)4、1 Keil软件调试流程 (14)4、2 Proteus软件运行流程 (16)4、3本章小结 (16)总结 (16)基于STC89C51万年历得设计与实现摘要古人依靠日冕、漏刻记录时间,而随着科技得发展,电子万年历已经成为日渐流行得日常计时工具。

本文研究得万年历系统拟用STC89C52单片机控制,以DS1302时钟芯片计时、DS18B20采集温度、1602液晶屏显示。

系统主要由温度传感器电路,单片机控制电路,显示电路以及校正电路四个模块组成。

本文阐述了系统得硬件工作原理,所应用得各个接口模块得功能以及其工作过程,论证了设计方案理论得可行性。

系统程序采用C语言编写,经Keil软件进行调试后在Proteus软件中进行仿真,可以显示年、月、日、星期、时、分、秒与温度并具有校准功能与与即时时间同步得功能。

实验结果表明此万年历实现后具有读取方便、显示直观、功能多样、电路简洁等诸多优点,符合电子仪器仪表得发展趋势,具有广阔得市场前景。

(完整版)基于51单片机的万年历的设计

(完整版)基于51单片机的万年历的设计

单片机课程实训SCM PRACTICAL TRAINING目录第一部分课程设计任务书 (1)一、课程设计题目 (1)二、课程设计时间 (1)三、实训提交方式 (1)四、设计要求 (1)第二部分课程设计报告 (2)一、单片机发展概况 (2)二、MCS-51单片机系统简介 (2)三、设计思想 (3)四、硬件电路设计 (3)1. 总体设计 (3)2. 晶振电路 (4)3. 复位电路 (4)4. DS1302时钟电路 (5)5. 温度采集系统电路 (5)6. 按键调整电路 (6)7. 闹钟提示电路 (6)五、软件设计框图 (7)六、程序源代码 (8)1. 主程序 (8)2. 温度控制程序 (11)3. 日历设置程序 (13)4. 时钟控制程序 (18)5. 显示设置程序 (20)七、结束语 (23)八、课程设计小组分工 (23)九、参考文献 (23)第一部分课程设计任务书一、课程设计题目用中小规模集成芯片设计制作万年历。

二、课程设计时间五天三、实训提交方式提交实训设计报告电子版与纸质版四、设计要求(1)显示年、月、日、时、分、秒和星期,并有相应的农历显示。

(2)可通过键盘自动调整时间。

(3)具有闹钟功能。

(4)能够显示环境温度,误差小于±1℃(5)计时精度:月误差小于20秒。

第二部分课程设计报告一、单片机发展概况单片机诞生于20世纪70年代末,它的发展史大致可分为三个阶段:第一阶段(1976-1978):初级单片机微处理阶段。

该时期的单片机具有 8 位CPU,并行 I/O 端口、8 位时序同步计数器,寻址范围 4KB,但是没有串行口。

第二阶段(1978-1982):高性能单片机微机处理阶段,该时期的单片机具有I/O 串行端口,有多级中断处理系统,15 位时序同步技术器,RAM、ROM 容量加大,寻址范围可达 64KB。

第三阶段(1982-至今)位单片机微处理改良型及 16 位单片机微处理阶段民用电子产品、计算机系统中的部件控制器、智能仪器仪表、工业测控、网络与通信的职能接口、军工领域、办公自动化、集散控制系统、并行多机处理系统和局域网络系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于51单片机控制的语音报时万年历-----20/11/20XX SDU(WH)一.实验要求运用单片机及相关外设实现以下功能:1)万年历及时钟显示2)时间日期可调3)可对时间进行整点报时和随机报时二.方案分析根据实验要求,选用STC公司的8051系列,STC12C5A16S2增强型51单片机。

此单片机功能强大,具有片内EEPROM、1T分频系数、片内ADC转换器等较为实用功能,故选用此款。

实验中,对日期和时间进行显示,显示的字符数较多,故选用12864LCD屏幕。

该屏幕操作较为便捷,外围电路相对简单,实用性较强。

为了实现要求中的时间日期可调,故按键是不可缺少的,所以使用了较多的按键。

一方面,单片机的I/O口较为充足;另一方面,按键较多,选择的余地较大,方便编程控制。

实验中,并未要求对时间和日期进行保存和掉电续运行,所以并未添加EEPROM和DS12C887-RTC芯片。

实际上,对万年历来说,这是较为重要的,但为了方便实现和编程的简单,此处并未添加,而是使用单片机的定时器控制时间,精度有差别。

且上电默认时间为20XX-01-01 09:00:00 之后需要手动调整为正确时间。

要求中的语音报时功能,这里选用ISD1760芯片的模块来帮助实现。

此模块通过软件模拟SPI协议控制。

先将所需要的声音片段录入芯片的EEPROM区域,之后读出各段声音的地址段,然后在程序中定义出相应地址予以控制播放哪一声音片段。

三.电路硬件设计实际效果图四.程序代码部分Main.h#ifndef _MAIN_H#define _MAIN_H#include "reg52.h"#include "INTRINS.H"#include "math.h"#include "string.h"#include "key.h"#include "led.h"#include "12864.h"#include "main.h"#include "isd1700.h"#include "sound.h"extern unsigned int count;extern unsigned int key_time[8]; extern unsigned char key_new; extern unsigned char key_old; extern unsigned char stop_flag; extern unsigned char key_follow[8]; extern unsigned int key_num[8];sbit BEEP=P3^7;sbit ISD_SS=P0^7;sbit ISD_MISO=P0^4;sbit ISD_MOSI=P0^5;sbit ISD_SCLK=P0^6;extern unsigned char date_show[]; extern unsigned char time_show[]; extern unsigned char sec;extern unsigned char min;extern unsigned char hour;extern unsigned char day;extern unsigned char month; extern unsigned char year_f; extern unsigned char year_l; extern unsigned char leap_year_flag;extern unsigned char update_flag;extern unsigned char adjust_flag;extern unsigned char key;unsigned char report();#endifMain.c#include "main.h"unsigned int count=0;unsigned int key_num[8]=0;unsigned char key_new=0;unsigned char key_old=0;unsigned char stop_flag=0;unsigned char key_follow[8]=0;unsigned char sec=1;unsigned char min=0;unsigned char hour=9;unsigned char day=1;unsigned char month=1;unsigned char year_f=20;unsigned char year_l=14;unsigned char leap_year_flag=0;unsigned char date_show[]="20XX-01-01"; unsigned char time_show[]="09:00:00";unsigned char update_flag=1;unsigned char key=0;unsigned char adjust_flag=0;unsigned char adjust_pos=0;unsigned char report_flag=0;void main(){unsigned char i;P2=0XFF;BEEP=0;init();initinal(); //调用LCD字库初始化程序TMOD=0x01; //使用定时器T0TH0=(65536-1000)/256; //定时器高八位赋初值TL0=(65536-1000)%256; //定时器低八位赋初值*/ EA=1; //开中断总允许ET0=1; //允许T0中断TR0=1; //启动定时器T0while(1){if(update_flag){lcd_pos(1,0);for(i=0;i<10;i++)write_dat(date_show[i]);lcd_pos(2,4);for(i=0;i<8;i++)write_dat(time_show[i]);update_flag=0;}if(key!=keyscan_nor()){key=keyscan_nor();if(key==8&&!adjust_flag)adjust_flag=1;if(key&&adjust_flag){if(key==1){adjust_pos++;if(adjust_pos==14)adjust_pos=0;}else if(key==2){if(!adjust_pos)adjust_pos=13;elseadjust_pos--;}else if(key==6){if(!adjust_pos)sec++;else if(adjust_pos==1)sec=sec+10;else if(adjust_pos==2)min++;else if(adjust_pos==3)min=min+10;else if(adjust_pos==4)hour++;else if(adjust_pos==5)hour=hour+10;else if(adjust_pos==6)day++;else if(adjust_pos==7)day=day+10;else if(adjust_pos==8)month++;else if(adjust_pos==9)month=month+10;else if(adjust_pos==10)year_l++;else if(adjust_pos==11)year_l=year_l+10;else if(adjust_pos==12)year_f++;else if(adjust_pos==13)year_f=year_f+10; }else if(key==7){if(!adjust_pos)sec--;else if(adjust_pos==1)sec=sec-10;else if(adjust_pos==2)min--;else if(adjust_pos==3)min=min-10;else if(adjust_pos==4)hour--;else if(adjust_pos==5)hour=hour-10;else if(adjust_pos==6)day--;else if(adjust_pos==7)day=day-10;else if(adjust_pos==8)month--;else if(adjust_pos==9)month=month-10;else if(adjust_pos==10)year_l--;else if(adjust_pos==11)year_l=year_l-10;else if(adjust_pos==12)year_f--;else if(adjust_pos==13)year_f=year_f-10;}else if(key==3)adjust_flag=0;if(key==6||key==7){if(sec>=80)sec=0;if(min>=80)min=0;if(hour>=40)hour=0;if(month>30)month=1;if(day>50)day=0;if(year_f>=120)year_f=0;if(year_l>=120)year_l=0;}}}if(key==3)report_flag=1;if(report_flag){clrram();Dingwei(2,1);lcd_mesg("REPORTING!!!");report();clrram();}}}void time0() interrupt 1{static unsigned char timer=0;TH0=(65536-50000)/256; //定时器高八位赋初值TL0=(65536-50000)%256; //定时器低八位赋初值timer++;if(timer==20){sec++;time_show[6]=sec/10+48;time_show[7]=sec%10+48;if(sec>=60){sec=0;min++;time_show[6]=sec/10+48;time_show[7]=sec%10+48;time_show[3]=min/10+48;time_show[4]=min%10+48;}if(min>=60){min=0;hour++;time_show[3]=min/10+48;time_show[4]=min%10+48;time_show[0]=hour/10+48;time_show[1]=hour%10+48;}if(hour>=24){hour=0;day++;time_show[0]=hour/10+48;time_show[1]=hour%10+48;date_show[8]=day/10+48;date_show[9]=day%10+48;}if((day>=29&&!leap_year_flag&&month==2)||(day==30&&leap_year_flag&&month==2)||(day==31&&(month==4||month==6||month==9||month==11))||(month==32)){day=1;month++;date_show[8]=day/10+48;date_show[9]=day%10+48;date_show[5]=month/10+48;date_show[6]=month%10+48;}if(month>=13){month=1;year_l++;date_show[5]=month/10+48;date_show[6]=month%10+48;date_show[0]=year_f/10+48;date_show[1]=year_f%10+48;date_show[2]=year_l/10+48;date_show[3]=year_l%10+48;}if(year_l>=100){year_l=0;year_f++;if(((!((year_f*100+year_l)%4))&&((year_f*100+year_l)%100))||(!((year_f*100+year_l)%40 0)))leap_year_flag=1;elseleap_year_flag=0;date_show[0]=year_f/10+48;date_show[1]=year_f%10+48;date_show[2]=year_l/10+48;date_show[3]=year_l%10+48;}timer=0;update_flag=1;if(adjust_flag){time_show[7]=sec%10+48;time_show[6]=sec/10+48;time_show[4]=min%10+48;time_show[3]=min/10+48;time_show[1]=hour%10+48;time_show[0]=hour/10+48;date_show[9]=day%10+48;date_show[8]=day/10+48;date_show[6]=month%10+48;date_show[5]=month/10+48;date_show[3]=year_l%10+48;date_show[2]=year_l/10+48;date_show[1]=year_f%10+48;date_show[0]=year_f/10+48;}}if(adjust_flag&&timer==10){if(!adjust_pos)time_show[7]=' ';else if(adjust_pos==1)time_show[6]=' ';else if(adjust_pos==2)time_show[4]=' ';else if(adjust_pos==3)time_show[3]=' ';else if(adjust_pos==4)time_show[1]=' ';else if(adjust_pos==5)time_show[0]=' ';else if(adjust_pos==6)date_show[9]=' ';else if(adjust_pos==7)date_show[8]=' ';else if(adjust_pos==8)date_show[6]=' ';else if(adjust_pos==9)date_show[5]=' ';else if(adjust_pos==10)date_show[3]=' ';else if(adjust_pos==11)date_show[2]=' ';else if(adjust_pos==12)date_show[1]=' ';else if(adjust_pos==13)date_show[0]=' ';update_flag=1;}if(!min&&!sec&&!adjust_flag)report_flag=1;}unsigned char report(){PlaySoundTick(11);long_delay();if(!min){if(hour<=10){PlaySoundTick(hour);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else if(hour>10&&hour<20){PlaySoundTick(10);short_delay();PlaySoundTick(hour-10);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else if(hour==20){PlaySoundTick(2);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else{short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(hour-20);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}}else{if(hour<=10){PlaySoundTick(hour);short_delay();PlaySoundTick(12);short_delay();}else if(hour>10&&hour<20){PlaySoundTick(10);short_delay();PlaySoundTick(hour-10);short_delay();PlaySoundTick(12);short_delay();}else if(hour==20){PlaySoundTick(2);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(12);short_delay();}else{PlaySoundTick(2);short_delay();short_delay();PlaySoundTick(hour-20);short_delay();PlaySoundTick(12);short_delay();}if(min<=10){PlaySoundTick(min);short_delay();PlaySoundTick(13);short_delay();}else if(min>10&&min%10){PlaySoundTick(min/10);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(min-10*(min/10));short_delay();PlaySoundTick(13);short_delay();}else{PlaySoundTick(min/10);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(13);short_delay();}}report_flag=0;time_show[7]=sec%10+48;time_show[6]=sec/10+48;time_show[4]=min%10+48;time_show[3]=min/10+48;time_show[1]=hour%10+48;time_show[0]=hour/10+48;date_show[9]=day%10+48;date_show[8]=day/10+48;date_show[6]=month%10+48;date_show[5]=month/10+48;date_show[3]=year_l%10+48;date_show[2]=year_l/10+48;date_show[1]=year_f%10+48;date_show[0]=year_f/10+48;return 0;}Isd1700.h#ifndef _ISD1760_H#define _ISD1760_H#include "main.h"#define ISD1700_PU 0x01#define ISD1700_STOP 0X02 #define ISD1700_REST 0x03 #define ISD1700_CLR_INT 0x04 #define ISD1700_RD_STAUS 0x05 #define ISD1700_RD_PLAY_PTR 0x06 #define ISD1700_PD 0x07#define ISD1700_RD_REC_PTR 0x08 #define ISD1700_DEVID 0x09#define ISD1700_PLAY 0x40 #define ISD1700_REC 0x41 #define ISD1700_ERASE 0x42 #define ISD1700_G_ERASE 0x43 #define ISD1700_RD_APC 0x44 #define ISD1700_WR_APC1 0x45 #define ISD1700_WR_APC2 0x65#define ISD1700_WR_NVCFG 0x46 #define ISD1700_LD_NVCFG 0x47 #define ISD1700_FWD 0x48 #define ISD1700_CHK_MEM 0x49 #define ISD1700_EXTCLK 0x4A #define ISD1700_SET_PLAY 0x80 #define ISD1700_SET_REC 0x81 #define ISD1700_SET_ERASE 0x82 #define NULL 0x00 #define ISD_LED 0x10extern unsigned char data ISD_M_RAM_C[7];extern void init(void);extern void delay_isd(int x);extern void m_sate(void);extern void rest_isd_m_ptr(void);extern unsigned char T_R_m_byte(unsigned char m_data );extern void isd1700_par2_m(unsigned char m_par, unsigned int data_par);extern void isd1700_Npar_m(unsigned char m_par,m_byte_count);extern void isd1700_7byte_m(unsigned char m_par, unsigned int star_addr, unsigned int end_addr);extern void spi_pu (void);extern void spi_stop (void);extern void spi_Rest ( void );extern void spi_CLR_INT(void);extern void spi_RD_STAUS(void);extern void spi_RD_play_ptr(void);extern void spi_pd(void);extern void spi_RD_rec_ptr(void);extern void spi_devid(void);extern void spi_play(void);extern void spi_rec (void);extern void spi_erase (void);extern void spi_G_ERASE (void);extern void spi_rd_apc(void);extern void spi_wr_apc1 (void);extern void spi_wr_apc2 (void);extern void spi_wr_nvcfg (void);extern void spi_ld_nvcfg (void);extern void spi_fwd (void);extern void spi_chk_mem(void);extern void spi_CurrRowAddr(void);extern void seril_back_sate(unsigned char byte_number);extern void spi_set_opt(unsigned char spi_set_m);void init(void);#endifIsd1700.c//#pragma src#include "isd1700.h"#include "sound.h"#define uchar unsigned char#define uint unsigned intsbit DAC_sync=P2^0;sbit DAC_sclk=P2^1;sbit DAC_din =P2^2;bit re_fig;uchar data m_temp;uchar data ISD_M_RAM[7];uchar data ISD_M_RAM_C[7];uchar data *isd_m_ptr;uchar data *back_data_ptr;void init(void);void isd_delay(int x);void m_sate(void);void rest_isd_m_ptr(void);uchar T_R_m_byte( uchar m_data );void isd1700_par2_m(uchar m_par, uint data_par);void isd1700_Npar_m(uchar m_par,m_byte_count); //no parameter m void isd1700_7byte_m(uchar m_par, uint star_addr, uint end_addr);void spi_pu (void);void spi_stop (void);void spi_Rest ( void );void spi_CLR_INT(void);void spi_RD_STAUS(void);void spi_RD_play_ptr(void);void spi_pd(void);void spi_RD_rec_ptr(void);void spi_devid(void);void spi_play(void);void spi_rec (void);void spi_erase (void);void spi_G_ERASE (void);void spi_rd_apc(void);void spi_wr_apc1 (void);void spi_wr_apc2 (void);void spi_wr_nvcfg (void);void spi_ld_nvcfg (void);void spi_fwd (void);void spi_chk_mem(void);void spi_CurrRowAddr(void);void seril_back_sate(uchar byte_number); void spi_set_opt(uchar spi_set_m);void m_sate(void){uchar sate_temp;uint apc_temp;if(RI){ sate_temp=SBUF;if(sate_temp==0x09){ spi_devid();}if(sate_temp==0x44){spi_rd_apc();}if(sate_temp==0x40){spi_play();}if(sate_temp==0x04){spi_CLR_INT();}if(sate_temp==0x05){spi_RD_STAUS();}if(sate_temp==0x43){ spi_G_ERASE();}if(sate_temp==0x01){ spi_pu ();}if(sate_temp==0x02){ spi_stop();}if(sate_temp==0x03){ spi_Rest ();}if(sate_temp==0x06){spi_RD_play_ptr();}if(sate_temp==0x07){spi_pd();}if(sate_temp==0x08){ spi_RD_rec_ptr();}if(sate_temp==0x41){ spi_rec();}if(sate_temp==0x42){ spi_erase();}if(sate_temp==0x45){spi_wr_apc1 ();}if(sate_temp==0x65){ spi_wr_apc2 ();}if(sate_temp==0x46){ spi_wr_nvcfg ();}if(sate_temp==0x47){ spi_ld_nvcfg ();}if(sate_temp==0x48){ spi_fwd ();}if(sate_temp==0x49){ spi_chk_mem();}if(sate_temp==0x60){ spi_CurrRowAddr();}if(sate_temp==0x80){spi_set_opt(ISD1700_SET_PLAY|ISD_LED);//spi_set_opt(ISD1700_SET_PLAY);}if(sate_temp==0x81){spi_set_opt(ISD1700_SET_REC|ISD_LED);//spi_set_opt(ISD1700_SET_REC);ISD_M_RAM_C[0]=ISD1700_SET_REC ;seril_back_sate(1);}if(sate_temp==0x82){spi_set_opt(ISD1700_SET_ERASE|ISD_LED);//spi_set_opt(ISD1700_SET_ERASE);}if(sate_temp==ISD1700_WR_APC2){RI=0;while(!RI);apc_temp=SBUF;apc_temp=apc_temp<<8;RI=0;while(!RI);apc_temp|=SBUF;RI=0;ISD_SS=0;isd1700_par2_m(ISD1700_WR_APC2,apc_temp);ISD_SS=1;}RI=0;}if(re_fig){rest_isd_m_ptr();sate_temp=0;do{SBUF=*back_data_ptr++;while(!TI);TI=0;}while(++sate_temp<=2);re_fig=0;}}void spi_set_opt(uchar spi_set_m){uint start_addr,end_addr;RI=0;while(!RI);start_addr=SBUF;start_addr=start_addr<<8;RI=0;while(!RI);start_addr|=SBUF;RI=0;while(!RI);end_addr=SBUF;end_addr=start_addr<<8;RI=0;while(!RI);end_addr|=SBUF;RI=0;ISD_SS=0;isd1700_7byte_m(spi_set_m, start_addr, end_addr);ISD_SS=1;}void spi_pu (void){ISD_SS=0;isd1700_Npar_m(ISD1700_PU,2);ISD_SS=1;}void spi_stop (void){ISD_SS=0;isd1700_Npar_m(ISD1700_STOP,2);ISD_SS=1;ISD_M_RAM_C[0]=ISD1700_STOP ;seril_back_sate(1);}void spi_Rest (void){ISD_SS=0;isd1700_Npar_m(ISD1700_REST,2);ISD_SS=1;}void spi_CLR_INT(void){ISD_SS=0;isd1700_Npar_m(ISD1700_CLR_INT,2);ISD_SS=1;}void spi_RD_STAUS(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_STAUS,3);ISD_SS=1;i=ISD_M_RAM_C[1];//j=ISD_M_RAM_C[2];ISD_M_RAM_C[1]=ISD_M_RAM_C[0];ISD_M_RAM_C[0]=i;seril_back_sate(3);}void spi_CurrRowAddr(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_STAUS,3);ISD_SS=1;i=ISD_M_RAM_C[1];ISD_M_RAM_C[1]=ISD_M_RAM_C[0]>>5|ISD_M_RAM_C[1]<<3;ISD_M_RAM_C[0]= i >>5;seril_back_sate(3);}void spi_RD_play_ptr(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_PLAY_PTR,4);ISD_SS=1;i=ISD_M_RAM_C[3]&0x03;ISD_M_RAM_C[3]=ISD_M_RAM_C[2];ISD_M_RAM_C[2]=i;seril_back_sate(4);}void spi_pd(void){ISD_SS=0;isd1700_Npar_m(ISD1700_PD,2);ISD_SS=1;}void spi_RD_rec_ptr(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_REC_PTR,4);ISD_SS=1;i=ISD_M_RAM_C[3]&0x03;ISD_M_RAM_C[3]=ISD_M_RAM_C[2];ISD_M_RAM_C[2]=i;seril_back_sate(4);}void spi_devid(void){ISD_SS=0;isd1700_Npar_m(ISD1700_DEVID,3);ISD_SS=1;ISD_M_RAM_C[2]=ISD_M_RAM_C[2]&0xf8;seril_back_sate(3);}void spi_play(void){ISD_SS=0;isd1700_Npar_m(ISD1700_PLAY|ISD_LED,2);ISD_SS=1;}void spi_rec (void){ISD_SS=0;isd1700_Npar_m(ISD1700_REC|ISD_LED,2);ISD_SS=1;ISD_M_RAM_C[0]=ISD1700_REC ;seril_back_sate(1);}void spi_erase (void){ISD_SS=0;isd1700_Npar_m(ISD1700_ERASE|ISD_LED,2);ISD_SS=1;}void spi_G_ERASE (void){ISD_SS=0;isd1700_Npar_m(ISD1700_G_ERASE|ISD_LED,2);ISD_SS=1;}void spi_rd_apc(void){ISD_SS=0;isd1700_Npar_m(ISD1700_RD_APC,4);ISD_SS=1;seril_back_sate(4);}void spi_wr_apc1 (void){}void spi_wr_apc2 (void){ISD_SS=0;isd1700_par2_m(ISD1700_WR_APC2, 0x0400);ISD_SS=1;}void spi_wr_nvcfg (void){ISD_SS=0;isd1700_Npar_m(ISD1700_WR_NVCFG,2);ISD_SS=1;}void spi_ld_nvcfg (void){ISD_SS=0;isd1700_Npar_m(ISD1700_LD_NVCFG ,2);ISD_SS=1;}void spi_fwd (void){ISD_SS=0;isd1700_Npar_m(ISD1700_FWD,2);ISD_SS=1;}void spi_chk_mem(void){ISD_SS=0;isd1700_Npar_m(ISD1700_CHK_MEM,2);ISD_SS=1;}void seril_back_sate(uchar byte_number){uchar sate_temp;rest_isd_m_ptr();sate_temp=0;do{SBUF=*back_data_ptr++;while(!TI);TI=0;}while(++sate_temp<byte_number);}void rest_isd_m_ptr(void){isd_m_ptr=ISD_M_RAM;back_data_ptr=ISD_M_RAM_C;}void isd1700_Npar_m (uchar m_par,m_byte_count){uchar i;i=0;ISD_M_RAM[0]=m_par;isd_m_ptr=&ISD_M_RAM[1];do{*isd_m_ptr++=NULL;}while(++i<m_byte_count-1);rest_isd_m_ptr();i=0;do{*back_data_ptr++=T_R_m_byte(*isd_m_ptr++);i++;}while(i<m_byte_count);}void isd1700_par2_m(uchar m_par, uint data_par){uchar i;ISD_M_RAM[0]=m_par;ISD_M_RAM[1]=data_par;ISD_M_RAM[2]=data_par>>8;rest_isd_m_ptr();i=0;do{*back_data_ptr++=T_R_m_byte(*isd_m_ptr++);i++;}while(i<3);}void isd1700_7byte_m(uchar m_par, uint star_addr, uint end_addr) {uchar i;ISD_M_RAM[0]=m_par;ISD_M_RAM[1]=NULL;ISD_M_RAM[2]=star_addr;ISD_M_RAM[3]=star_addr>>8;ISD_M_RAM[4]=end_addr;ISD_M_RAM[5]=end_addr>>8;ISD_M_RAM[6]=NULL;rest_isd_m_ptr();i=0;do{*back_data_ptr++=T_R_m_byte(*isd_m_ptr++);i++;}while(i<=7);}uchar T_R_m_byte( uchar m_data ){uchar bit_nuber;uchar temp;bit_nuber=0;temp=0;do{ISD_SCLK=0;isd_delay(1);if((m_data>>bit_nuber&0x01)!=0){ISD_MOSI=1;}else{ISD_MOSI=0;}if(ISD_MISO){temp=(temp>>1)|0x80;}else{temp=temp>>1;}ISD_SCLK=1;isd_delay(1);}while(++bit_nuber<=7);ISD_MOSI=0;return (temp);}void isd_delay(int x){uchar i;for(; x>=1; x--){for(;i<=20;i++);}}void init(void){TMOD=0x21;SCON=0x50;TL0=0x00; //25msTH0=0x70; //25msTH1=0xE8;TL1=0xE8; //波特率:1200bps(12MHz:0xE6 11.0592MHz:0xE8)ET0=1;EA=1;TR1=1;IT0 = 0;EX0 = 0;spi_pu();spi_devid();}12864.h#ifndef _12864_H#define _12864_H#include "main.h"sbit RS =P3^2;sbit RW=P3^3;sbit EN=P3^4;void buzy();void TransferData(char data1,bit DI);void Dingwei(unsigned char line,unsigned char row);void delayms(unsigned int n);void delay(unsigned int m);void lcd_mesg(unsigned char code *adder1);void displayonechar(unsigned int data2);void initinal(void) ; //LCD字库初始化程序void clrram(void);void lcd_pos(unsigned char ,unsigned char );void write_dat(unsigned char);extern unsigned char time_show[];extern unsigned int aaa;#endif12864.c#include "12864.h"#define DataPort P1void initinal(void) //LCD字库初始化程序{TransferData(0x30,0); //8BIT设置,RE=0: basic instruction setTransferData(0x08,0); //Display on ControlTransferData(0x10,0); //Cursor Display Control光标设置TransferData(0x0C,0); //Display Control,D=1,显示开TransferData(0x01,0); //Display Clear}void buzy(){DataPort=0xff;RW=1;RS=0;EN=1;while(DataPort&0x80);EN=0;}void Dingwei(unsigned char line,unsigned char row) //定位在哪行哪列显示{unsigned int i;switch(line){case 1: i=0x80+row;break;case 2: i=0x90+row;break;case 3: i=0x88+row;break;case 4: i=0x98+row;break;default: i=0x80;break;}TransferData(i,0);delay(1);}void lcd_mesg(unsigned char code *addr) //传送一个字符串{while(*addr>0){TransferData(*addr,1);addr++;}}void TransferData(char data1,bit DI) //传送数据或者命令,当DI=0,传送命令,当DI=1,传送数据.{buzy();RW=0;RS=DI;DataPort=data1;EN=1;EN=0;}void delayms(unsigned int n) //延时10×n毫秒程序{unsigned int i,j;for(i=0;i<3*n;i++)for(j=0;j<2000;j++);}void delay(unsigned int m) //延时程序,微妙级{while(m--){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}}void write_cmd(unsigned char cmd){RS=0;RW=0;EN=0;P1=cmd;delayms(1);EN=1;delayms(1);EN=0;}void write_dat(unsigned char dat)RS=1;RW=0;EN=0;P1=dat;delayms(1);EN=1;delayms(1);EN=0;}void lcd_pos(unsigned char x,unsigned char y){unsigned char pos;if(x==0)x=0x80;else if(x==1)x=0x90;else if(x==2)x=0x88;else if(x==3)x=0x98;pos=x+y;write_cmd(pos);}void clrram(void){write_cmd(0x30);write_cmd(0x01);}Sound.h#ifndef _SOUND_H#define _SOUND_H#include "main.h"//以下为语音信息对应播放起始地址定义,A为开始,B为结束#define sound_0A 0x0012#define sound_0B 0x0017#define sound_1A 0x0019#define sound_1B 0x0025#define sound_2A 0x0027#define sound_2B 0x002e#define sound_3A 0x002f#define sound_3B 0x0039#define sound_4A 0x003b#define sound_4B 0x0048#define sound_5A 0x004a#define sound_5B 0x004f#define sound_6A 0x0052#define sound_6B 0x0159#define sound_7A 0x005c#define sound_7B 0x0062#define sound_8A 0x0065#define sound_8B 0x0131#define sound_9A 0x006f#define sound_9B 0x015F#define sound_10A 0x0079#define sound_10B 0x015E#define sound_11A 0x0082#define sound_11B 0x018A#define sound_12A 0x0091#define sound_12B 0x0100#define sound_13A 0x009f#define sound_13B 0x0100#define sound_14A 0x00ac#define sound_14B 0x0100void GetSound(unsigned char soundtick); void PlaySoundTick(unsigned char number); void delay_isd(unsigned int time);void short_delay();void long_delay();#endifSound.c#include "sound.h"void GetSound(unsigned char soundtick){ISD_SS=0;switch(soundtick){case 0:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_0A, sound_0B); }break;case 1:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_1A, sound_1B); }break;case 2:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_2A, sound_2B); }break;case 3:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_3A, sound_3B); }break;case 4:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_4A, sound_4B); }break;case 5:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_5A, sound_5B); }break;case 6:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_6A, sound_6B); }break;case 7:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_7A, sound_7B); }break;case 8:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_8A, sound_8B); }break;case 9:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_9A, sound_9B); }break;case 10:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_10A, sound_10B); }break;case 11:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_11A, sound_11B); }break;case 12:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_12A, sound_12B); }break;case 13:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_13A, sound_13B); }break;case 14:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_14A, sound_14B); }break;default: break;}ISD_SS=1;}void PlaySoundTick(unsigned char number) {spi_stop ();delay_isd(30000);GetSound(number);}void delay_isd(unsigned int time){while(time--!=0);}void short_delay(){delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);}void long_delay(){short_delay();short_delay();short_delay();short_delay();}Key.h#ifndef _KEY_H#define _KEY_H#include "main.h"sbit KEY1=P2^0;sbit KEY2=P2^1;sbit KEY3=P2^2;sbit KEY4=P2^3;sbit KEY5=P2^4;sbit KEY6=P2^5;sbit KEY7=P2^6;sbit KEY8=P2^7;sbit KEY_SURE=P3^6;void key_delay(unsigned char z); unsigned char keyscan_nor();#endifKey.c#include "key.h"unsigned char keyscan_nor() {if(!KEY1){key_delay(20);if(!KEY1){LED1=0;return 1;}}if(!KEY2){key_delay(20);if(!KEY2){LED2=0;return 2;}}if(!KEY3){key_delay(20);if(!KEY3){LED3=0;return 3;}}if(!KEY4){key_delay(20);if(!KEY4){LED4=0;return 4;}}if(!KEY5){key_delay(20);if(!KEY5){LED5=0;return 5;}}if(!KEY6){key_delay(20);if(!KEY6){LED6=0;return 6;}}if(!KEY7){key_delay(20);if(!KEY7){LED7=0;return 7;}}if(!KEY8){key_delay(20);if(!KEY8){LED8=0;return 8;}}return 0;}void key_delay(unsigned char z) {unsigned char x,y;for(x=z;x>0;x--)for(y=110;y>0;y--); }五.参与制作人员ZYL。

相关文档
最新文档