滑坡监测的方法简述

合集下载

山体滑坡的监测方法

山体滑坡的监测方法

山体滑坡的监测方法
山体滑坡的监测方法包括地表位移动态观测以及深部位移动态观测。

1、地表位移动态观测:为了掌握滑坡表面各部分的动态变化,需要进行位移观测。

既观测平原位移量,又观测垂直方向(即高程)的位移量。

观测方法很多,可根据具体情况,因地制宜地使用简易的观测方法和精密观测方法。

后者即借用观测网(方格网)用经纬仪测量各观测桩的平面位移和用水平仪测量其高程变化。

简易观测方法即用木桩在裂缝两侧直接测量位移数值。

2、深部位移动态观测:为了全面地掌握滑坡体各个部位的位移动态情况,除了地表位移观测外,还需进行深部位移观测。

其方法主要有以下几种:(1)测斜仪法。

用钻孔打穿滑动面直到稳定地层,下入套管。

然后,在不同时间将测斜仪放入钻孔,测定不同深度上钻孔壁斜度的变化,换算成不同深度的位移。

(2)放射性同位素法。

将方射性同位素(一般用钴60)放在不同深度的地层中,然后在地表接收它的位移情况,借以测定深部地层的位移量。

(3)电阻丝片法。

在钻孔中放入贴有很多电阻丝片的灵敏度较高的薄金属管或塑料管,在地面上用应变仪测定其电阻值变化,即可反映不同深度的位移量。

(4)金属
球法。

在钻孔中投入金属球,对球体通电后,量测电场强度,即可确定金属球移动位置。

3、水文地质观测:即每隔一定时间测一次钻孔或井中的水位、水温,并取水样进行化验,查看异常变化。

4、地表水文观测:对于处在河流、湖泊(水库)和海洋附近的斜坡,需要进行水位、波浪、冲刷作用等观测。

较常使用、行之有效的方法。

今天。

滑坡防治工程勘查规范中的监测技术与数据分析方法

滑坡防治工程勘查规范中的监测技术与数据分析方法

滑坡防治工程勘查规范中的监测技术与数据分析方法滑坡是一种地质灾害,常常给人们的生命财产安全带来极大的威胁。

为了及时预警和准确评估滑坡的危险性,滑坡防治工程勘查中的监测技术和数据分析方法非常重要。

本文将介绍滑坡防治工程勘查规范中的一些常用监测技术以及数据分析方法。

一、监测技术1. 岩土物理勘察技术岩土物理勘察技术是滑坡防治工程勘查中常用的技术之一。

通过对岩土体的物理特性进行测试和分析,可以确定滑坡体的内部结构、力学性质以及滑坡体与周围环境的相互关系。

常用的岩土物理勘察技术包括钻孔、电阻率测量、声波测量等。

2. 遥感技术遥感技术通过获取地表信息的照片、图像和数据等,以非接触的方式监测滑坡的动态变化。

遥感技术可以提供滑坡的空间分布、运动速度和滑坡体变形的信息,为滑坡防治工程提供有效数据支持。

常用的遥感技术包括航空遥感和卫星遥感。

3. 地下水位监测技术地下水位监测可以反映滑坡体内水分的含量和流动状况,对滑坡的稳定性分析具有重要意义。

常见的地下水位监测技术包括水位计测量、孔隙水压力计测量和土壤含水量测量等。

4. 高精度位移监测技术高精度位移监测技术可以实时监测滑坡体的位移和变形情况,为滑坡预警和防治工程提供重要依据。

常用的高精度位移监测技术包括全站仪测量、GPS测量和遥感测量等。

二、数据分析方法1. 监测数据的处理与分析监测数据的处理与分析是滑坡防治工程勘查中非常重要的一步。

在数据处理过程中,需要对数据进行校正和筛选,排除干扰因素,并进行数据归纳和整理。

在数据分析过程中,需要采用合适的数学模型和统计方法,以评估滑坡的稳定性和变形趋势。

2. 监测数据的时序分析监测数据的时序分析是指对滑坡监测数据按照时间序列进行分析,以掌握滑坡的动态变化特征。

常用的时序分析方法包括波形分析、周期性分析、功率谱分析和趋势分析等,通过对监测数据的时序分析,可以揭示滑坡体的运动规律和变形趋势。

3. 监测数据的空间分析监测数据的空间分析是指对滑坡监测数据按照空间位置进行分析,以掌握滑坡的空间分布特征。

山体滑坡监测方案

山体滑坡监测方案

山体滑坡监测方案1. 引言山体滑坡是一种突发性地质灾害,造成了巨大的人员伤亡和财产损失。

为了及时预警和采取有效的措施,需要建立山体滑坡的监测系统。

本文将介绍一种山体滑坡监测方案,包括系统的组成、监测指标和监测方法。

2. 监测系统组成山体滑坡监测系统由以下几个部分组成:2.1 传感器网络传感器网络是监测系统的核心部分,用于收集山体滑坡相关的数据。

传感器可以包括倾斜度传感器、温度传感器、湿度传感器等。

这些传感器将定期或实时地采集数据,并通过无线通信传输给数据控制中心。

2.2 数据控制中心数据控制中心是监测系统的数据处理和分析中心。

它接收来自传感器网络的数据,并对数据进行处理和分析。

数据控制中心还负责生成预警信号和发送给相关部门。

2.3 数据存储和备份为了确保数据的安全性和可靠性,监测系统需要建立数据存储和备份机制。

数据存储可以使用云存储或本地服务器进行,同时需要定期进行数据备份,以防止数据丢失。

2.4 数据展示界面为了方便用户查看监测数据和预警信息,监测系统需要提供数据展示界面。

数据展示界面可以包括数据图表、地图等,使用户可以清晰地了解山体滑坡的监测情况。

3. 监测指标山体滑坡监测的指标主要包括以下几个方面:3.1 倾斜度倾斜度是山体滑坡的重要监测指标。

通过倾斜度传感器可以实时测量山体的倾斜角度,并告知相关部门。

3.2 温度和湿度温度和湿度也是山体滑坡监测的关键指标。

温度和湿度传感器可用于监测山体内部的温度和湿度变化,进而判断可能出现滑坡的风险。

3.3 地下水位地下水位的变化对山体滑坡具有重要影响。

通过地下水位监测仪可以实时监测地下水位的变化,提前预警滑坡的发生。

4. 监测方法为了实现山体滑坡的监测,可以采用以下几种方法:4.1 遥感技术遥感技术可以通过卫星图像等来监测大范围的山体滑坡情况。

这种方法可以帮助快速发现和识别潜在的滑坡风险区域。

4.2 GIS技术GIS技术可以将山体滑坡的监测数据进行空间分析和展示。

滑坡监测方案

滑坡监测方案

滑坡监测方案滑坡是指地表或坡面上的土石物质因重力作用而发生向下滑动的现象。

滑坡频繁发生的地区对土地使用和人类居住产生了严重的影响,因此滑坡监测和预警方案的制定对于保障人民的生命财产安全至关重要。

本文将介绍一个滑坡监测方案,并阐述其主要内容和实施步骤。

一、方案目标滑坡监测方案的目标是实时监测滑坡的发生和演变过程,及时预警并采取相应的措施,以减少滑坡对生命财产和环境造成的损害。

二、监测方法1. 地形监测:利用高精度GPS、激光测距等技术对滑坡区域及其周边地形进行定期监测,以了解地形变化情况。

2. 环境监测:监测降雨量、地下水位、土壤湿度等环境因素的变化,以判断滑坡发生的可能性。

3. 应力监测:利用应变计和压力传感器等设备监测滑坡区域的地下水压力和土体应力,以评估滑坡的发生风险。

4. 预警监测:将监测到的数据信息传输至监测中心,通过数据分析和模型预测,及时发出滑坡预警,通知相关的部门和人员。

三、监测设备和技术1. 高精度GPS:用于地形监测,能够准确测量地表的位置和高度,并与历史数据进行比较,判断地形的变化情况。

2. 激光测距仪:用于地形监测,能够通过激光束测量地面或其他物体的距离,实现高精度的地形测量。

3. 应变计:用于应力监测,能够测量土体的应变变化情况,判断土体的稳定性。

4. 压力传感器:用于应力监测,能够测量地下水的压力,并监测水位变化,为判断滑坡风险提供参考。

5. 数据传输系统:通过无线技术或者互联网将监测数据传输至监测中心,保证数据的准确和及时性。

四、实施步骤1. 选择监测区域:根据滑坡的历史数据和地质条件,选择潜在的滑坡区域进行监测。

2. 安装监测设备:在选定的监测区域安装GPS、激光测距仪、应变计、压力传感器等监测设备,并将其与数据传输系统连接。

3. 数据监测和分析:定期收集和存储监测数据,并进行数据分析和模型预测,以判断滑坡的发生风险。

4. 预警和应对措施:根据监测数据和预测结果,及时发出滑坡预警,并通知相关的部门和人员采取相应的措施,如疏散人员、修复道路等。

滑坡变形监测实施方案

滑坡变形监测实施方案

滑坡变形监测实施方案一、引言。

滑坡是地质灾害中常见的一种,其对人类生命财产造成的危害不可小觑。

为了及时发现滑坡变形的迹象,采取有效的监测措施,制定一套科学合理的监测实施方案显得尤为重要。

本文将就滑坡变形监测的实施方案进行探讨,以期为相关工作者提供参考。

二、滑坡变形监测技术。

1. 定位监测技术。

定位监测技术是通过全球定位系统(GPS)和卫星雷达干涉技术等手段,实现对滑坡位置的精确定位。

通过定期对滑坡位置进行监测,可以及时掌握滑坡的位置变化情况,为后续的监测工作提供数据支持。

2. 地面变形监测技术。

地面变形监测技术是通过地面变形监测仪器,如倾斜仪、位移仪等,对滑坡周边地面的变形情况进行监测。

这些监测仪器可以实时监测地面的倾斜角度和位移情况,一旦发现异常变化,就能及时报警,为滑坡的防范和治理提供重要数据支持。

3. 遥感监测技术。

遥感监测技术是通过卫星遥感和无人机遥感等手段,对滑坡区域进行高分辨率的影像监测。

通过对滑坡区域的遥感监测,可以获取大范围、全方位的滑坡信息,为滑坡变形的监测和预警提供重要数据支持。

三、滑坡变形监测实施方案。

1. 确定监测区域。

首先需要对滑坡区域进行详细的调查和分析,确定监测的范围和重点区域。

根据滑坡的规模和地质条件,合理划分监测区域,确定监测点位和监测方案。

2. 建立监测网络。

在确定监测区域后,需要建立完善的监测网络,包括定位监测点、地面变形监测点和遥感监测点。

通过这些监测点的布设,可以实现对滑坡区域的全方位监测,为滑坡变形的及时监测提供数据支持。

3. 确定监测频次。

根据滑坡的特点和监测需求,确定监测的频次和监测时间。

一般情况下,对于高危险性的滑坡区域,监测频次可以适当增加,以确保对滑坡变形的及时监测和预警。

4. 建立监测预警机制。

在监测实施过程中,需要建立健全的监测预警机制,一旦发现滑坡变形的异常情况,及时启动预警机制,通知相关部门和人员进行应急处理和处置,最大限度减少滑坡灾害对人类生命财产的危害。

浅析公路滑坡体的监测与探测方法

浅析公路滑坡体的监测与探测方法

浅析公路滑坡体的监测与探测方法公路滑坡是公路建设中经常遇到的一种自然灾害,对行车安全造成威胁。

如何及时发现和掌握滑坡的情况,对于保障公路安全,具有非常重要的意义。

本文将介绍公路滑坡体的监测与探测方法。

一、监测方法1. 监测点设置监测点配置应根据滑坡体的特点,考虑其规模、形态、临近控制点、破坏规律和变形规律等因素来确定。

尽量选择在滑坡体稳定区域、或选择在滑坡体的活动中心附近,这样能更好地判断滑坡体的状态。

2. 监测手段(1)测绘法:通过不同时间坐标的比较,反演出地表形变的变量和特征。

通过对形变数据进行分析,可以推断出滑坡的演化类别和趋势等信息。

(2)标志物法:通过在滑坡活动区域前佩戴标志物,在不同时间进行外观观测并记录标志物的位置和形态等信息,推算出滑坡活动的速率和方向等信息。

(3)物理探测法:通过测量地下水位、土壤含水量、土压力、孔隙水压、地震波反射等方式掌握滑坡体内部的情况。

(4)遥感监测法:通过卫星、航空、无人机等遥感技术获取公路滑坡等自然灾害形变信息,用于预警和预测。

1. 土壤探测(1)钻探:通过手动或机械钻探,对滑坡土体结构、物性、孔隙水压等参数进行测定,了解滑坡体内部结构和分布情况。

(2)岩芯钻取:对于岩性滑坡,可以通过岩芯取样、测定岩芯密度、抗压强度、孔隙度等参数,了解滑坡体内的岩体结构和物性,并用于评估滑坡体的稳定性。

2. 地震探测通过地震探测仪器对滑坡体采集地震波反射数据,通过对反射数据进行处理和解释,分析得出地层结构、不同地层速度等信息。

这为评估滑坡体的稳定性、判断滑坡的规模和趋势提供了科学数据支撑。

通过岩土力学试验,可以测定滑坡体土体的强度、变形特性等参数,并将其作为评估滑坡体稳定性、判断滑坡规模和趋势等指标的依据。

综上所述,公路滑坡体的监测与探测方法多种多样,不同方法的应用可从不同角度获取滑坡的信息,对于保障公路的安全性和发挥公路的功能具有重要作用。

滑坡监测的方法简述

滑坡监测的方法简述

滑坡监测方法简述及新进展姓名:高峰班级:土木(岩土)10指导教师:田雨泽滑坡监测方法简述及新进展摘要:介绍了滑坡监测的内容,以及一些常用的滑坡监测技术方法。

本文着重介绍了近些年不断发展的GPS监测系统、分布式光纤传感器、TDP测试技术、无线传感器在滑坡形监测中的应用。

并且指出了不同滑坡监测方法的适用范围和相应的优缺点。

关键词:滑坡;滑坡监测;GPS系统; TDR监测;分布式光纤传感器;无线传感器;1 引言滑坡是指斜坡上的土体或岩体,受河流冲刷、地下水活动、地震及人工切坡等因素的影响,致使部分或全部土体(或岩体)在重力作用下,沿着地面软弱面(或软弱带)整体地或分散地顺坡向下滑动的地质现象。

我国是地质灾害多发国家之一,尤以滑坡灾害的影响最为严重。

据不完全统计,中国有70多座城市和460多个县市受到滑坡灾害的威胁及危害,平均每年至少造成15-23亿元的经济损失。

如果能够对滑坡进行监测, 实现滑坡危害的早期预报, 就可以最大限度地减少和防止滑坡所造成的损失。

因此, 监测既是滑坡调查、研究和防治工程的重要组成部分,又是崩塌滑坡灾害预测预报信息获取的一种有效手段。

2 滑坡监测的内容滑坡动态监测的内容包括滑坡变形监测、建筑物变形监测、地下水动态监测和滑坡推力实测。

目前,国内外滑坡动态监测的技术方法已经发展到一个较高水平,已由过去的人工监测逐渐过渡到仪器检测,并正向高精度的自动化遥测系统发展。

监测仪器也在不断更新,随着计算机技术和测量技术的不断发展,激光测距仪和高精度电子经纬仪等先进设备,正在逐步成为滑坡动态监测的新手段。

3 滑坡监测的方法从滑坡的监测内容来看,滑坡监测应该是由多种监测方法相结合的。

对于不同的监测目的、不同的滑坡发育阶段及不同的滑坡类型所选择的滑坡监测方法也不同。

目前滑坡动态监测中使用的技术大致可归纳为宏观简易地质检测法、大地精密测量法、设站观测法、仪器仪表监测法和综合自动遥测法。

3.1 宏观简易地质检测法这种方法主要是对滑坡发育过程中的各种迹象,如地裂隙、房屋、泉水动态等进行定期监测、记录,掌握滑坡的动态变化和发展趋势。

滑坡变形监测方案

滑坡变形监测方案

滑坡变形监测方案1. 简介滑坡是一种常见的地质灾害,其发生通常与地表的巨大滑动、失稳和破坏有关。

为了及时掌握滑坡的变形状况,保护人民生命财产安全,采取监测滑坡变形的措施十分必要。

本文将介绍一种滑坡变形监测方案,包括监测方法、监测设备和数据处理等方面的内容。

2. 监测方法2.1 动态监测动态监测是通过实时采集滑坡变形数据,通过分析数据的变化趋势,判断滑坡的稳定性和可能发生的危险性。

常用的动态监测方法包括:•连续位移监测:使用位移传感器或卫星定位技术,定期测量滑坡的位移变化,以便实时掌握滑坡的变形情况。

•GPS监测:通过安装GPS接收器,测量滑坡上各测点的三维位移,可以实时监测滑坡的变形变化。

•遥感监测:利用遥感技术获取滑坡区域的高分辨率遥感影像,通过对影像的比对分析,判断滑坡的变形情况。

•声波监测:通过在滑坡区域埋设声波传感器,并结合声波测量仪器,实时监测滑坡区域的声波振动情况,以判断滑坡的变形情况。

2.2 静态监测静态监测是通过定期采集滑坡变形数据,对数据进行分析和处理,以评估滑坡的稳定性和可能的风险。

常用的静态监测方法包括:•光纤测温监测:通过在滑坡区域埋设光纤传感器,利用传感器对温度的敏感性,测量滑坡的表面温度变化,以判断滑坡的变形情况。

•声波监测:通过在滑坡区域埋设声波传感器,并结合声波测量仪器,定期监测滑坡区域的声波振动情况,以评估滑坡的变形情况。

•遥感监测:利用遥感技术获取滑坡区域的高分辨率遥感影像,通过对影像的比对分析,评估滑坡的变形情况。

3. 监测设备3.1 位移传感器位移传感器是监测滑坡位移变化的重要设备,常用的位移传感器有:•激光位移传感器:通过激光测距技术,测量滑坡上测点的位移变化。

•压电位移传感器:通过测量压电位移传感器的电阻变化,来判断滑坡位移的变化情况。

•GPS位移传感器:通过GPS定位技术,测量滑坡上测点的三维位移变化。

3.2 声波传感器声波传感器可以实时监测滑坡区域的声波振动情况,以判断滑坡的变形情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滑坡监测方法简述及新进展缪静芳摘要:介绍了滑坡监测的内容,以及一些常用的滑坡监测技术方法。

本文着重介绍了近些年不断发展的GPS监测系统、分布式光纤传感器、TDP测试技术、无线传感器在滑坡形监测中的应用。

并且指出了不同滑坡监测方法的适用范围和相应的优缺点。

关键词:滑坡;滑坡监测;GPS系统; TDR监测;分布式光纤传感器;无线传感器;1 引言滑坡是指斜坡上的土体或岩体,受河流冲刷、地下水活动、地震及人工切坡等因素的影响,致使部分或全部土体(或岩体)在重力作用下,沿着地面软弱面(或软弱带)整体地或分散地顺坡向下滑动的地质现象。

我国是地质灾害多发国家之一,尤以滑坡灾害的影响最为严重。

据不完全统计,中国有70多座城市和460多个县市受到滑坡灾害的威胁及危害,平均每年至少造成15-23亿元的经济损失。

如果能够对滑坡进行监测, 实现滑坡危害的早期预报, 就可以最大限度地减少和防止滑坡所造成的损失。

因此, 监测既是滑坡调查、研究和防治工程的重要组成部分,又是崩塌滑坡灾害预测预报信息获取的一种有效手段。

2 滑坡监测的内容滑坡动态监测的内容包括滑坡变形监测、建筑物变形监测、地下水动态监测和滑坡推力实测。

目前,国内外滑坡动态监测的技术方法已经发展到一个较高水平,已由过去的人工监测逐渐过渡到仪器检测,并正向高精度的自动化遥测系统发展。

监测仪器也在不断更新,随着计算机技术和测量技术的不断发展,激光测距仪和高精度电子经纬仪等先进设备,正在逐步成为滑坡动态监测的新手段。

3 滑坡监测的方法从滑坡的监测内容来看,滑坡监测应该是由多种监测方法相结合的。

对于不同的监测目的、不同的滑坡发育阶段及不同的滑坡类型所选择的滑坡监测方法也不同。

目前滑坡动态监测中使用的技术大致可归纳为宏观简易地质检测法、大地精密测量法、设站观测法、仪器仪表监测法和综合自动遥测法。

3.1 宏观简易地质检测法这种方法主要是对滑坡发育过程中的各种迹象,如地裂隙、房屋、泉水动态等进行定期监测、记录,掌握滑坡的动态变化和发展趋势。

其中,最常用的是对地表裂隙、建筑物变形的监测。

在裂隙处设置简易监测标志,定期测量裂隙长度、宽度、深度的变化,以及裂隙的形态和开裂延伸方向等。

由于滑坡体在滑动过程中各部位受力性质和大小不同,滑速也不同,因而不同部位产生不同力学性质的裂隙,有滑坡后部的拉张裂隙、滑坡体中前部两侧的剪切裂隙、滑体前缘的鼓张裂隙和滑坡舌部的扇形裂隙。

除此之外,还有一些滑坡标志,如封闭洼地、滑坡鼓丘、滑坡泉、马刀树、醉汉林等。

该方法的特点是获取的信息直观可靠,简单经济,实用性较强,适应于对正在发生病害的边坡进行观测。

但也存在内容单一、精度低和劳动强度大等缺点。

3.2大地精密测量法该方法即采用高精度光学和光电测量仪器,如精密水准仪、全站仪等仪器,通过测角和测距来完成监测任务。

监测边坡的二维( X、Y 方向)水平位移常用前方交会法、距离交会法:监测水平单向位移常用视准线法、小角法、测距法:监测边坡的垂直位移常用几何水准测量法、精密三角高程测量法。

大地精密测量法长期以来受到滑坡工程监测人员的高度重视,是由于具有如下优点:能确定边坡地表变形范围;量程不受限制;能观测到边坡体的绝对位移量;精度高;通过三维测量能提供点位坐标和高程;测量数字化,和计算机技术结合形成系统,实时性强;一机多测点,效率高。

适用于不同变形阶段的位移监测。

但是这种方法的缺点是受到地形条件和气象条件的限制,工作量大,周期长,连续观测能力差。

3.3 仪器仪表监测法滑坡稳定性的监测涉及到一系列的影响滑坡特定的因素及其随时间的变化量,如降雨量、土壤潮湿度、地下水位及移动特征,其中最重要的是两个因素是移动特征和地下水位。

滑坡的移动特征则由滑动面的深度、方向、移动量和移动速度等指标来表示,通过监测这些指标中得一项或者多项就能达到监测滑坡的目的。

其常用的仪器如表1所示。

表1 监测常用仪器、测量指标、适用范围和特点3.4综合自动遥测法综合自动遥测法采用自动化程度高的远距离遥控监测系统或空间技术卫星遥测,自动采集、存储、打印和显示滑坡变形监测数据,并绘制出各种变化曲线、图表。

该方法的优点是:监测内容丰富,自动化程度高,可全天候观测,并远距离传输,省时省力的特点。

缺点是受外界因素干扰,传感器、仪器易出故障,长期稳定性差。

适用于滑坡变形处于速变及临滑状态时的中、短期监测及防治施工期安全监测。

由于传感器仪器的质量不过关,国内用的不多,公开报道的应用实例是该法曾经用于重庆市万县豆芽棚滑坡治理效果检验监测。

3.5 发展的新方法3.5.1 GPS滑坡监测系统GPS 作为现代大地测量的一种技术手段,可以实现三维大地测量,作业简单方便,具有测站间无需通视、能同时测定点的三维位移、不受气候条件的限制、易于实现全系统的自动化、可消除或削弱系统误差的影响和可直接用大地高进行垂直形变测量等优点。

特别是在滑坡监测中,主要关注两期监测中所求得监测点的坐标之间的差异,而不是监测点本身的坐标。

这样两期监测中所含的共同系统误差虽然会分别影响两期的坐标值,但却不会影响所求得的变形量,因此,GPS 技术在变形监测中迅速得到了推广,成为一种新的很有前途的滑坡监测方法。

2)GPS 滑坡变形监测的方法a)周期性模式。

当滑坡的变形速率相当缓慢,在局部时间域和空间域内可以认为稳定不动时,用几台GPS 接收机,人工定期逐点采集数据,通过后处理获得各期之间的变形。

b)连续性模式。

连续运行GPS 监测技术主要利用GPS 高精度、自动化、全天候以及测点之间无须通视等优点,已广泛应用地壳形变监测等领域。

根据数据处理方式的不同,连续运行GPS 监测技术被分为实时动态监测和固定连续运行参考站。

实时动态监测主要用来监测目标的动态变形,数据采集密度高,实时计算出每个历元的位置。

3)GPS天线阵列监测系统对于GPS自动化监测系统,在实际应用中,精密的测量型GPS接收机价格非常高,导致系统的建设成本很大。

因此,高成本大大制约了其在滑坡监测中得应用。

而GPS天线阵列监测技术就是在监测点上安置一个GPS天线,通过一个天线电缆与接收机连接,系统能够按照串口的设置,自动连接获取各个天线的卫星接收信号。

因此在增加监测点数时,不要增加GPS 接收机,只需要增加接收天线和与之连接的天线电缆,从而硬件成本大幅降低。

另外一个区域只有一台GPS 接收机,减少系统的通讯成本和数据处理复杂度,而GPS天线阵列的数据处理方式与连续运行监测技术的数据处理方式一样,使得获取监测点精度也比较高。

3.5.2 TDR监测技术时域反射法(Time Domain Reflectometry,TDR)是一种远程遥感测试技术,产生于20 世纪30 年代,现在,在滑坡监测的应用方面也取得了很大的成效。

1)TDR 基本原理同轴电缆中TDR 与雷达技术的工作原理基本相同,其区别在于传播介质不同。

在同轴电缆TDR测试过程中,采用同轴电缆作为传输具有一定能量的瞬时脉冲的传播介质,电脉冲信号在同轴电缆中传播的同时,能够反映同轴电缆的阻抗特性。

当电缆发生变形时, 它的特性阻抗将发生变化。

当测试脉冲遇到电缆的特性阻抗变化时,就会产生反射波。

对反射波信号的传播时间进行测量, 就可以确定其传播时间和速度, 由此可以推断出同轴电缆特性阻抗发生变化的位置;通过对反射信号振幅的分析, 就可进一步推算电缆的状态等。

因此,同轴电缆的TDR技术又称之为“闭路雷达”。

2)TDR滑坡监测TDR 滑坡稳定性监测系统的组成及埋设如图1所示。

首先,在待监测的岩体或土体中钻孔,将同轴电缆放置于钻孔中,顶端与TDR 测试仪相连,并以砂浆填充电缆与钻孔之间的空隙,以保证同轴电缆与岩体或土体的同步变形。

岩体或土体的位移和变形使埋置于其中的同轴电缆产生剪切、拉伸变形,从而导致其局部特性阻抗的变化,电磁波将在这些阻抗变化区域发生反射和透射,并反映于TDR 波形之中。

通过对波形的分析,结合室内标定试验建立起的剪切和拉伸与TDR 波形的量化关系,便可掌握岩体或土体的变形和位移状况。

图1 TDR滑坡稳定性监测系统的组成及埋设与传统的测斜仪相比,TDR 测试技术具有以下优点:(1)信号可信度高、测试过程快速方便、耗电量低,且一套TDR 设备可同时监测几百个测点。

(2)将TDR 技术与GIS 技术相结合,可利用通讯网络远距离传输监测数据及信号。

(3)技术人员只需在室内便可对各个测点进行远程监控,监测工作安全性大大提高。

3.5.3分布式光纤传感技术1)分布式光纤传感技术原理光纤传感技术是通过对光纤内传输光某些参数( 如强度、相位、频率、偏振态等) 变化的测量, 实现对环境参数的测量。

分布式光纤传感技术以其可复用、分布式、长距离传输的优点成为光纤传感技术中最具前途的技术之一,是光纤传感监测技术的发展趋势。

其中,光纤布拉格光栅传感技术(FBG)与布里渊光时域反射传感技术(BOTDR)是最具代表性的两种分布式光纤传感技术。

2)光纤传感滑坡监测方法在滑坡监测中,光纤的选择更为重要。

因为滑坡体的应变往往都比较大,恰当的光纤选择能使监测寿命提高。

目前常用于监测的光纤有裸纤和紧套型光纤两种。

裸纤虽然测量灵敏度很高,但量程小,易于折断,施工难度大,适应于小应变测量;紧套型光纤由纤芯、包层、涂敷层和护套组成,具有耐腐蚀性强、防水性能好的优点,比裸纤更能抵抗应力作用,量程略大,并且不易断点,有利于施工。

选用紧套型光纤可提高监测寿命,因此滑坡监测用光纤常选择紧套型光纤。

光纤网络布置一般有两种形式:一维网络形式,光纤连续地沿灾害体自下而上作蛇形布置, 这种方式适合于监测一个方向的位移变化情况;二维网络形式,光纤首先连续地沿灾害体自下而上布置,然后,连续地沿水平方向从左至右或从右至左作蛇形布置,这种方式适合于监测两个方向的位移变化情况。

在铺设光纤时,应根据典型工作区滑坡体的特点,确定具体的光纤网络的布置方式。

在监测实际工程应用中,光纤铺设基本有两种方法,全面接触式铺设和定点接触式铺设,全面接触式铺设的特点是可以全面监测地质灾害体的变形情况,监测对象为整个滑坡体。

定点接触式铺设的特点是重点监测变形缝、应力集中区等潜在变形处的变形情况,监测对象为滑坡变形缝等潜在变形处。

FBG与BOTDR两种光纤传感技术各有优缺点: FBG传感器灵敏度高,能够非常准确地测量应变,虽多个FBG串联组成的FBG传感网络能实现准分布测量,但其用于响应外部被测量的敏感单元是预先设置的传感阵列,因此需对这些离散分布的传感点进行测量,灵活性较低;BOTDR传感元件为光纤,可实现分布式、长距离、不间断测量, 受其技术本身的限制,测量的空间分辨率最高只能达到1 m。

如果将FBG与BOTDR技术联合起来监测滑坡,在整个滑坡体上铺设监测光纤,利用BOTDR技术可获得整个滑坡体的概要信息;在滑坡体变形的关键部位——变形缝安装FBG传感器,利用其监测灵敏度高的特点,获得滑坡某些关键部位的应变值。

相关文档
最新文档