车辆自适应巡航控制系统(ACC)设计
ADAS算法设计(五):ACC算法设计

ADAS算法设计(五):ACC算法设计自适应巡航控制ACC为一项L1级的驾驶舒适性ADAS功能,是对定速巡航控制CC的功能升级,本文将介绍ACC的算法设计。
一、ACC算法功能定义自适应巡航控制ACC通过车辆前方的传感器持续探测前方道路,当发现与前车距离过小时,ACC主动控制车辆进行减速;当与前车的距离增加到安全距离时,ACC按照设定车速控制车辆行驶。
同时ACC 可控制车辆自动跟随前车至停车,并重新启动ACC算法的功能定义如下:1) ACC适用于(0~200)km/h2) 定速巡航功能;3) 自动跟车功能;4) Stop&Go启停功能;5) 驾驶员可通过HMI设置ACC功能的开启与关闭;6) 驾驶员可通过HMI设定巡航速度;7) 驾驶员可通过HMI设定跟车时距。
二、ACC控制系统接口根据ACC算法功能定义,ACC控制系统需输入车速、跟车时距、挡位等整车信号及传感器感知到的纵向相对距离、横向相对距离、相对速度等信息,而需要输出纵向控制等信号。
具体见下表1 表 1 ACC控制系统接口输入/输出信号备注输入A CC功能开关/功能取消信号/功能启动/恢复信号/巡航车速信号(km/h)跟车时距信号时距挡位挡位信号/本车车速信号(m/s)制动踏板信号/纵向相对距离(m)侧向相对距离(m)相对速度信号(m/s)输出A CC加速度/减速度信号(m/s2)A CC纵向控制使能/ACC状态信号/ACC制动预警信号/真实车速反馈信号/三、ACC控制系统算法ACC控制系统算法主要由目标选择模块、车辆加速度估算模块、状态控制模块和执行器控制模块四部分组成,以下分别介绍:1) 目标选择模块ACC目标选择模块的功能是根据前方车辆状态进行定速巡航和自动跟车状态的选择,系统根据前方车辆的相对速度、相对距离和设置的巡航车速信息进行预处理,提取出相对危险的目标进行跟踪。
2) 加速度估算模块ACC加速度估算模块的功能时速度跟踪控制和制动预警:速度跟踪控制采用PID控制算法,对相对速度和相对距离(输入信号)进行PID控制,设置相应积分饱和阈值和参数整定实现。
车辆自适应巡航控制系统的算法研究

车辆自适应巡航控制系统的算法研究1. 本文概述本文主要研究车辆自适应巡航控制系统(ACC)的算法。
ACC系统是在传统定速巡航控制基础上发展起来的新一代辅助驾驶系统,它能够减轻驾驶者的疲劳,提升驾驶的舒适性,增加交通车辆流量,并降低交通事故的发生。
控制算法是ACC系统控制单元的核心,其选取对于实现理想的控制要求至关重要。
本文将从ACC系统的研究概况入手,探讨ACC系统的间距策略、数学建模和控制算法设计,并通过仿真实验对系统性能进行分析。
通过本文的研究,旨在为车辆工程、控制理论与工程、交通信息工程与控制等领域的专业人员提供参考,促进ACC系统在智能交通中的推广和应用。
2. 自适应巡航控制系统概述自适应巡航控制系统(Adaptive Cruise Control,ACC)是一种先进的驾驶辅助系统,它基于传统的巡航控制系统,并增加了与前方车辆保持合理间距的功能。
ACC系统利用安装在车辆前方的雷达或激光传感器来检测前方道路上的车辆,并根据交通状况自动调整车辆的速度。
当ACC系统检测到前方有速度更慢的车辆时,它会自动降低车辆的速度,以保持与前方车辆的安全距离。
如果前方道路畅通,ACC系统则会逐渐加速,使车辆恢复到设定的巡航速度。
这种自适应的巡航控制功能可以在不驾驶员干预的情况下实现车辆的自主减速或加速,从而提高驾驶的安全性、舒适性和便利性。
ACC系统通过发动机油门控制和适当的制动来实现车速的调整。
它可以根据不同的驾驶场景和交通状况,智能地选择合适的控制策略,以确保车辆在各种情况下都能平稳、安全地行驶。
ACC系统还可以与其他驾驶辅助功能(如车道保持辅助、碰撞预警等)协同工作,为驾驶员提供更加全面的驾驶支持。
3. 安全距离算法研究通过车对车通信功能,获取前车的制动性能参数、车辆状态信息和车辆类型。
这些信息包括前车的标准制动距离、制动协调时间、临界载重系数、行驶车速、载重系数和当前峰值附着系数等。
同时,本车也需要获取自身的制动性能参数和车辆状态信息。
汽车自适应巡航控制系统的研究

汽车自适应巡航控制系统的研究一、本文概述随着汽车工业的迅速发展和汽车保有量的不断增加,道路交通安全和驾驶舒适性已成为人们日益关注的问题。
汽车自适应巡航控制系统(Adaptive Cruise Control,简称ACC)作为一种先进的驾驶辅助系统,旨在提高驾驶的安全性和舒适性。
本文旨在对汽车自适应巡航控制系统的研究进行综述,包括其工作原理、系统组成、控制策略以及发展趋势等方面,以期为该领域的进一步研究提供参考和借鉴。
本文介绍了汽车自适应巡航控制系统的基本概念和工作原理,包括其如何通过雷达、摄像头等传感器设备感知周围环境,并根据感知结果调整车辆速度和行驶状态,以实现自适应巡航。
文章详细阐述了自适应巡航控制系统的各个组成部分,包括传感器、控制器和执行器等,并分析了它们的工作原理和性能特点。
接着,本文重点介绍了自适应巡航控制系统的控制策略,包括基于规则的控制、基于模型的控制以及基于机器学习的控制等,并对各种控制策略的优缺点进行了比较和分析。
文章展望了汽车自适应巡航控制系统的未来发展趋势,包括智能化、集成化和网络化等方面,并对其在智能驾驶和智能交通系统中的应用前景进行了预测和探讨。
本文旨在全面介绍汽车自适应巡航控制系统的研究现状和发展趋势,以期为相关领域的研究人员提供有益的参考和启示。
二、汽车自适应巡航控制系统的概述汽车自适应巡航控制系统(Adaptive Cruise Control,简称ACC)是一种高级的车辆辅助驾驶系统。
该系统通过雷达、激光或摄像头等传感器监测前方车辆的速度和距离,并根据这些信息自动调整本车的速度,以保持与前车的安全距离。
自适应巡航控制系统不仅提高了驾驶的舒适性,而且在一定程度上提高了行车安全性。
汽车自适应巡航控制系统主要由传感器、控制器、执行器和用户界面组成。
传感器负责收集前方车辆的速度和距离信息,控制器根据这些信息计算出本车的最佳速度,执行器负责调整车辆的加速或减速,用户界面则让驾驶员可以设定期望的速度和跟车距离。
转载汽车自适应巡航控制系统ACC论文

转载汽车自适应巡航控制系统ACC论文原文地址:汽车自适应巡航控制系统(ACC)论文作者:风雪逍遥汽车自适应巡航控制系统(ACC)论文-机械建筑工程系05汽修班周小亮摘要:汽车自适应巡航控制系统(ACC)能减轻驾驶员疲劳强度,增加汽车安全性,减小环境污染,是发展最快的驾驶员辅助系统之一。
ACC由测距雷达、ECU、作动器组成。
文章介绍了用于ACC系统的测距雷达的研制状况,ACC中央系统控制器的研究,执行机构节气门作动器和制动作动器的研究。
关键词:自适应巡航控制测距雷达控制器作动器正文:随着汽车保有量的增加,交通不仅变得十分拥堵,而且交通事故不断增加。
为了使车辆能够自动预防交通碰撞事故,设计人员在汽车上安装了各种主动安全装置,例如测距雷达和后视镜盲点探测器等,这些装置在必要时可以通过声光的形式提醒驾驶者,并通过车载系统自动对车速和车辆间距等行车数据进行调整,从而有效地避免交通事故的发生。
在宝马E90新3系轿车上,就选装了由德国博世公司提供的驾驶辅助系统--自适应巡航控制(ACC)系统,宝马新3系是应用这项技术的第一款中型轿车。
其实,很多汽车零部件公司都有自适应巡航控制系统或类似功能的产品,例如德国大陆公司生产的主动距离向导系统。
自适应巡航控制系统主要由车距传感器(雷达)、轮速传感器、转向角传感器以及ACC控制单元等组成。
车距传感器一般安装在散热器格栅内或前保险杠的内侧,它可以探测到汽车前方200 m左右的距离;在前后车轮上装有轮速传感器(与ABS系统共用),可以感知车辆的行驶速度;转向角传感器用来判断车辆行驶的方向;ACC控制单元采集各个传感器的信号并进行计算,以便可以适时地与发动机控制单元和制动防抱死控制单元交换数据一、工作原理自适应巡航控制系统是一种智能化的自动控制系统,它是在早已存在的巡航控制技术的基础上发展而来的。
在车辆行驶过程中,安装在车辆前部的车距传感器(雷达)持续扫描车辆前方道路,同时轮速传感器采集车速信号。
自适应巡航控制系统ACC

施工区域等,使ACC提前做出应对措施。
人工智能和机器学习
自主学习和优化
通过机器学习算法,ACC能够根据驾驶员的 驾驶习惯和习惯进行自主学习和优化,提高 驾驶舒适性和安全性。
预测性控制
利用人工智能技术,ACC能够预测道路上的变化和 障碍物移动轨迹,提前调整车速和距离,提高行驶 稳定性。
人机协同驾驶
通过人工智能技术,ACC能够与驾驶员进行 自然语言交互,辅助驾驶员进行决策和控制 ,提高驾驶安全性。
自适应巡航控制系统acc
目 录
• 引言 • ACC的工作原理 • ACC的应用场景和优势 • ACC的未来发展 • 结论
01 引言
目的和背景
目的
自适应巡航控制系统(ACC)的目 的是提高驾驶安全性,减轻驾驶负 担,并提高道路交通效率。
背景
随着传感器技术和控制理论的不 断发展,ACC系统逐渐成为现代 汽车的重要辅助驾驶系统之一。
未来研究和开发的方向
进一步优化控制算法
随着人工智能和传感器技术的发展,未来自适应巡航控制 系统将更加智能化和自主化,需要进一步优化控制算法以 实现更精确和可靠的控制。
集成其他驾驶辅助系统
未来自适应巡航控制系统将更加集成化,与车道保持、自 动泊车等其他驾驶辅助系统相互协作,共同为驾驶员提供 更加全面和智能的驾驶支持。
横摆力矩控制
根据车辆的运动状态和驾驶员的转向输入,动态控制系统计算出合适的横摆力矩,以控制车辆的横摆运动和转向 动态。
03 ACC的应用场景和优势
高速公路驾驶
高速公路驾驶是自适应巡航控制系统(ACC)最常应用的场景 之一。在高速公路上,ACC能够自动调整车辆速度,保持与前 车的安全距离,减轻驾驶者的负担,提高驾驶安全性。
新能源汽车自适应巡航控制系统的研究

新能源汽车自适应巡航控制系统的研究随着环境污染和化石燃料短缺的日益严重,新能源汽车成为了未来出行的主要选择之一。
为了提高新能源汽车的安全性和舒适性,自适应巡航控制系统(AdaptiveCruiseControl,ACC)的研究变得愈发重要。
本文将介绍自适应巡航控制系统的原理、应用以及未来的发展前景。
1.自适应巡航控制系统原理自适应巡航控制系统是一种基于雷达、激光或摄像头等传感器技术的智能驾驶辅助系统。
它通过实时监测前方车辆的速度和距离,能够自动调整车辆的速度和保持与前车的安全距离。
ACC系统能够根据前车的行驶速度和距离动态调整车辆的速度,以实现自动巡航和保持车辆在安全范围内的驾驶。
2.自适应巡航控制系统的应用自适应巡航控制系统广泛应用于新能源汽车中,它可以提供以下几个方面的优势:安全性:ACC系统利用强大的传感器技术,能够实时监测前方车辆的速度和距离,避免发生追尾事故。
它能够智能地感知前车的动态变化,及时减速或加速,并保持与前车的安全距离,大大提高了行车的安全性。
舒适性:ACC系统能够自动调整车辆的速度,避免频繁的踩刹车和加速,使得驾驶过程更加平稳流畅。
驾驶者可以更加轻松地享受驾驶,减少驾驶疲劳感。
节能环保:自适应巡航控制系统能够根据前车的速度动态调整车辆的速度,合理控制加速和减速过程,提高燃料利用效率,减少碳排放,降低对环境的影响。
3.自适应巡航控制系统的未来发展随着技术的不断创新和性能的提升,自适应巡航控制系统将会得到进一步发展和应用。
以下是一些未来的发展前景:智能化:未来的自适应巡航控制系统将会更加智能化,能够不仅仅保持安全距离,还可以根据路况、交通信号等因素做出更加智能化的决策,提供更加便利和安全的驾驶体验。
互联网技术:自适应巡航控制系统可以与互联网技术相结合,实现车辆之间的信息共享和实时交流。
通过与导航系统、交通管理系统等的联动,可以实现更加智能、高效的交通管理和行车体验。
全面自动驾驶:随着自动驾驶技术的不断发展,未来的自适应巡航控制系统可能成为实现全面自动驾驶的基础。
ACC自适应巡航系统方案

雷达传感器用来决定与前车的距离和相对车速,如果距离大于设定的距离,车 辆加速到驾驶员设定车速。如果距离小于设定距离,ACC 系统会自动减小发动 机的扭矩,并在必要时采取必要的制动,以此将两车车距调节到驾驶员预设的 值,该值为受时间控制的值。出于安全性考虑,制动减速度被限定在0.3g (大 约3m/s2)。如果这样的减速度不能制动停车,则系统通过仪表发出声音以及
作动器是ACC 系统的执行机构。作动器包括节气门作动器和制动作动器。 控制器ECU计算出汽车的加速度,再将控制命令传递到作动器,控制节气 门作动器和制动作动器的动作,实现汽车的加速或减速。对节气门的控 制根据发动机的图谱反算节气门的开度,再通过机械的方式来控制节气 门的开度,从而控制发动机的输出转矩。对制动的控制可通过增加由PWM 电磁控制的电子真空助力器来实现。电子真空助力器与制动的真空助力 器相连,其结构[4]示意图如图3 所示。控制器通过电磁铁控制电子真空 助力器的气压输入,从而控制真空助力器的压力,实现制动装置的制动。
ACC 系统的组成 测距传感器(雷达) ECU 作动器
功能
• 测距传感器即雷达,用于测量自车与前车的相对距离、相 对速度、相对加速度;
• 中央控制单元ECU 进行控制计算,负责计算设定速度、实 现车头净距控制的加速度,并发出控制指令,控制汽车速 度和加速度的执行机构;
• 作动器包括节气门作动器和制动作动器,用于调节汽车的 加速度,以满足控制的要求。
文字提示,要求驾驶员介入,实施制动。总之,驾驶员需要对过程负责。
如果装备ACC 的车辆行驶速度达到30km/h 以上时,ACC 开始介入工作状 态。在当前车速(见左图),如果传感器检测范围内没有车辆,则保持设
定车速行驶。如果车辆前方遇到一辆慢车行驶在同一条车道上(见右 图),则发动机降低扭矩,如果有必要,车辆采取柔和的制动措施,以此 将两车车距调节到驾驶员预设的值,该值为受时间控制的值。制动介入是 通过ABS 液压泵的方式,出于计算的原因,只能选择同方向行驶的为参考。
自适应巡航定速控制系统(ACC)

3
自适应巡航定速控制系统 (ACC)
ACC 网络拓扑:
EPB PDK CSCM
底盘系统 CAN 传动系统 CAN 舒适系统 CAN
网关
碰撞风险系统 CAN
ACC
PSM
底盘系统 CAN
DME
传动系统 CAN
安全气囊
驾驶员 侧车门
传动系统 CAN 舒适系统 CAN
组合仪表
MMI 系统 CAN
Ralf Pfänder 服务培训
2
自适应巡航定速控制系统 (ACC)
• ACC 属于选装配置,仅随 Porsche Doppelkupplung (PDK) 保时捷 双离合器变速箱一起提供
• ACC 以标准的巡航定速控制功能为基础 (巡航定速控制 = 保持恒定的车速)
• ACC 通过启动制动器和发动机来控制车速和距离
• ACC 控制单元通过碰撞风险系统 CAN 连接到网关,并通过以下 系统进行通信:传动系统 CAN、底盘系统 CAN、舒适系统 CAN 和 MMI 系统 CAN
Ralf Pfänder 服务培训
Panamera
创建日期:26.03.2009 第 3 页,共 16 页
学员信息:
请参见《驾驶手册》(pp. 170ff.),了解有关自适应巡航定速控制系统 (ACC) 的信息。
_____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________ _____________________________________________________________________________________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车辆自适应巡航控制系统(ACC)设计与分析
65090617付裕
一、引言
ACC系统全称就是自适应巡航控制系统,它是一种智能化的行车自动控制系统,它是在早已存在的定速巡航控制技术的基础上发展而来的。
在行驶过程中,安装在车辆前部的车距传感器会持续扫描车辆前方道路,同时轮速传感器采集车速信号。
当与前面的车之间的距离过小时(这可以在车内设定距离),ACC控制单元可以通过与制动防抱死系统、发动机控制系统协调动作,使车轮适当制动,并使发动机的输出功率下降,同时车内音响会发出警报声音提醒走神的驾驶员注意,它能有效的防止追尾这类事故的发生。
本文将通过连续系统设计与分析的知识对ACC系统进行分析。
二、研究对象工作过程和要求描述
1.控制原理:
电控单元有两个输入信号,当测出的实际车速高于或低于驾驶员调定的车速时,电控单元将这两种信号进行比较,得出两信号之差,即误差信号,再经放大、处理后成为油门控制信号,送至油门执行器,驱动油门执行器动作,调节发动机油门开度,以修正两输入车速信号的误差,从而使实际车速很快恢复到驾驶员设定的车速,并保持恒定。
2.系统框图如下:
三、被控对象的数学模型建立
m ——汽车质量
g ——重力加速度
f ——滚动阻力系数
C ——空气阻力系数
A ——等效迎风面积
r ——轮胎半径
gi ——变速器速比
di ——主减速器速比
η——传动效率
当获取了自适应巡航状态下的速度控制目标ad后,整车期望转矩
四、控制系统的控制器模型设计
经查询资料可知发动机工作模式下的传递函数如下
综合查询的数据与发动机、变速箱、节气门控制器等传递函数可得,ACC系统的传递函数如下
五、 MATLAB仿真结果单位阶跃响应:
伯德图
根轨迹图
六、控制系统性能分析
1、 稳态性能分析
1) 稳态误差分析
位置误差系数:2.143)(lim 0
==→s G K s p 故稳态误差为:007.01==
p
ss K e ,故此系统具有良好稳态性能。
2) 根轨迹分析 由开环传递函数可知被控对象极点为:150,10,10321-=-=-=P P P ,零点为无穷远处。
且当开环增益从零变到无穷过程中到达某一特定值时,根轨迹可能会穿越虚轴进入右半s 平面,因此该系统对部分开环增益值是稳定的。
2、 动态性能分析
系统稳态值:3.140)(=∞C ;
上升时间:s t r 1427.0=;
峰值时间:s t p 3.0=;
二、 结论
综上所述,本控制系统设计各项性能指标良好,实现准确在固定加速度内并且平稳的调节控制车速数值,能做到不急加速,不抱死刹车,使车速保持尽量恒定状态。